

Review Article

Medicinal chemistry

Open Access

Role of Aryl Urea Containing Compounds in Medicinal Chemistry

Pratiksha Sikka^{1*}, Jagdish K Sahu¹, Arun K Mishra¹ and SR Hashim² ¹Department of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India ²Indian Institute of Chemical Technology, Hyderabad, Andhra Pradesh, India

Abstract

Aryl urea is an entity which is being synthesized in many of its derivative form from past few years; the entity is major source of interest for many of medicinal chemist to explore its various biological activities. In present study, we review the chemistry of aryl urea and its pharmacological actions as an anticonvulsant, antimicrobial, antiviral and anti inflammatory agent by studying its various synthesized derivatives. This review can be helpful to develop various more new compounds possessing aryl urea moiety that could be better in terms of efficacy and lesser toxicity.

Keywords: Aryl urea derivative; Anticonvulsant; Antimicrobial; Anticancer; Antiviral activity

Introduction

Medicinal chemistry according to Burger "tries to be based on the ever increasing hope that biochemical rationales for drug discovery may be found". In contrast he described pharmaceutical chemistry as being concerned primarily with modifications of structure having known physiologic or pharmacologic effects and with analysis of drugs, Medicinal chemistry as practiced encompasses both definitions, but the most difficult and at the same time the most rewarding challenge is the rational design of new therapeutic agents and finding the biochemical pathways through which drugs exert their beneficial effects.

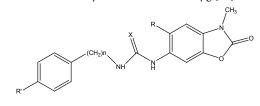
The role of medicinal chemist is to design and synthesize a newly discovered medicinal or a pharmaceutical agent with increased potency and duration of action and decreasing adverse s effects. The focus on development of new synthetic drug compound as drugs has resulted in the incorporation of many other disciplines, such as biochemistry and molecular biology into medicinal chemistry. These areas include biology, computer-aided design, x-ray crystallography, metabolism and pharmacokinetics, legal and regulatory affairs, clinical franchise management, pharmaceutics and process research chemistry [1-6].

Heterocycles are part of organic chemistry and plays a lead role in the biological activities. The presence of heterocyclic is found in all kinds of organic compounds. It helps in the manufacturing of synthetic drugs, fungicides and dyes which are helpful in antibacterial, antimyobacterial, anti-HIV activity, genotoxic, herbicidal, analgesic, anti inflammatory, muscle relaxants, anticancer, antimalarial, antifungal and insecticidal agent [7].

Aryl Urea Derivatives

Urea and its derivatives have been investigated for their biological activities including antiatherosclerotic, antibiotic and hypoglycaemic effect and antitumour activities. Some of the urea derivatives are in use as hypnotics, sedatives and anticonvulsants, antibacterial and anticancer agents. Urea, which is a naturally occurring compound, was the first organic compound which has synthesized in lab by Wohler in 1928, and played important physiological and biological roles in animal kingdom. Synthesis of urea became a remarkable step in the history of synthetic organic chemistry [8]. Some of the urea derivatives are thiourea, phenyl urea, sulphur urea etc have been found to exhibit a potent inhibiting effect on HIV-1 protease enzyme and as an anticancer, anticonvulsive and sedative-hypnotic activities. They are also served as an extensive application as agrochemicals, resin precursors and synthetic intermediates [9].

Traditional synthesis of urea derivatives involves the reaction


of amines with phosgene, CO or isocyanate, which has tremendous toxicological and environmental problems. Alternative routes have also been developed, which involve amines reacting with urea, ethylene carbonate or diethyl carbonate. However, these expensive reagents originate from CO₂ reacting with ammonium, ethylene oxide or ethanol. Some researchers have also synthesized urea derivatives through amines reacting with CO₂ in the presence of catalysts, such as 1,8-diazabicyclo[5.4.0]undec-7-ene, CsOH, Cs₂CO₃, Au/poly, [Bmim] OH₂O or KOH/PEG1000, using ionic liquids, *N*-methylpyrrolidone or CO₂ as solvent [10].

Although a large number of antibiotics and chemotherapeutics are available for medical use, the antimicrobial resistance created a substantial need of new class of antibacterial agents in the last decades. Derivatives of urea, thiourea and thiosemicarbazide play a vital role in the field of medicinal chemistry by regulating various pharmacological activities. Literature survey reveals that urea and thiourea derivatives showed a broad spectrum of biological Activities as anti-HIV, antiviral, HDL- elevating antibacterial, analgesic properties [11-14].

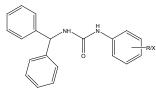
Different Activity of Urea Derivatives

Antimicrobial activity

Gulkok et al. synthesized few compounds of urea and thio urea derivatives by the reaction of 6-amino-5-nonsubstituted/chloro-3-methyl-2(3*H*) –benzoxazolones with appropriate isocynates and thio –isocynates and were evaluated for their anti-microbial and antifungal activity. Out of which five urea compounds (1 to 5) and two thiourea derivatives (6 and 7) exhibited good activity against *Escheria coli* with Minimum Inhibitory Concentration of 32 µg [15].

*Corresponding author: Pratiksha Sikka, Department of Pharmacy, IFTM University, Moradabad-244 102, Uttar Pradesh, India, Tel: +91-9837633173; E-mail: pratikshasikka29@gmail.com

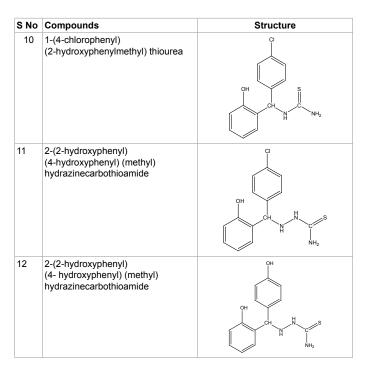
Received November 02, 2015; Accepted November 20, 2015; Published November 25, 2015

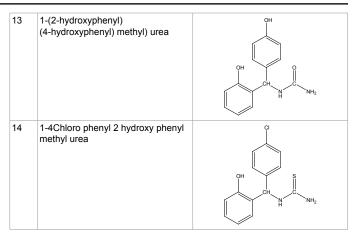

Citation: Sikka P, Sahu JK, Mishra AK, Hashim SR (2015) Role of Aryl Urea Containing Compounds in Medicinal Chemistry. Med chem 5: 479-483. doi: 10.4172/2161-0444.1000305

Copyright: © 2015 Sikka P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Compounds	R	R'	N	X
1	-H	-H	0	0
2	-H	-CI	0	0
3	-H	-H	2	0
4	-Cl	-H	0	0
5	-Cl	-OCH ₃	0	0
6	-Cl	-H	0	S
7	-Cl	-H	1	S

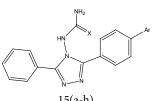
Anticonvulsant activity


Ramesh et al. synthesized, five Arylurea derivatives using microwave irridation which were evaluated for their anticonvulsant activity by induced Pentylene tetrazole Convulsion (PTZ) in mice. Diazepam was used as Standard Drug. Compounds 8 (1-(4- methoxyphenyl)-3- (diphenylmethyl)urea) and 9 (1-(4-chlorophenyl)-3-(diphenylmethyl) urea) were found to possess potent anticonvulsant activity [16].



Compound	X/R
8	p-OCH ₃
9	p-Cl

Antibacterial activity


Umadevi et al. synthesized few compounds by condensing urea, Thio urea and thiosemicarbazide with phenol and substituted aromatic aldehyde and these compounds was further evaluated for antibacterial activity *in vivo* against *Bacillus subtilis*, *Salmonella aureus*, *Salmonella typhi* and *Shigella dysentry*. Ampicillin was taken as standard drug. Compounds 10 to 14 shows significant antibacterial activity [17].

Anti-inflammatory activity

Cherala et al. synthesized a series of 1- [3-(4-substitutedphenyl)-5-phenyl-4H-1,2,4-triazol-4-yl]urea and 1-[3-(4-substitutedphenyl)-5-phenyl-4H-1,2,4-triazol-4-yl]thiourea derivatives and these compounds were further evaluated for antiinflammatory activity by using Carragenean-induced paw edema rat model. Diclofenac sodium gum acacia in normal saline was used as standard drug. All the compounds {15(a-h)} showed a significant anti-inflammatory activity *in vivo*. The maximum activity was observed at 3rd and 4th hour showed potent anti-inflammatory activity [18].

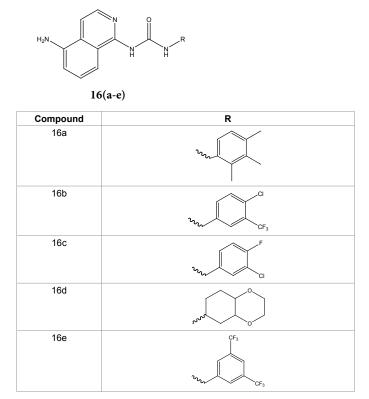
15(u 1)	
Compound	X	Ar
15a	0	-C ₆ H ₅
15b	0	-C ₆ H ₄ (p-Cl)
15c	0	-C ₆ H ₄ (p-Cl) -C ₆ H ₄ (p-OCH ₃)
15d	0	-Furfuryl
15e	S	-C ₆ H ₅
15f	S	-C _c H ₄ (p-Cl)

s

S

Antiproliferative activity

15q


15h

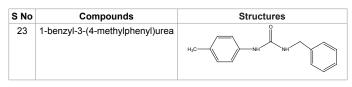
Jung et al. synthesized aminoisoquinolinylureas by nitration of 1-chloroisoquinoline using a mixture of nitric and sulpuric acids gave 1-chloro-5-nitroisoquinoline which is then treated with 7 N ammonia solution in methanol led to nucleophilic displacement and formation of 1-amino-5-nitroisoquinoline which is then reacted with the appropriatearyl isocyanate derivatives gives the corresponding diarylurea derivatives. Reduction of the nitro group with palladium over carbon in hydrogen atmosphere produced aminoisoquinolinylureas. These compounds were further screened for *in vitro* antiproliferative activity against line A375P human melanoma cell. Sorafenib was taken as a reference standard. Compounds $\{16(a-e)\}$ showed superior potency against A375P to Sorafenib whereas compound 16(e) shows highest potency possessing 3,5-bis(trifluoromethyl)phenyl terminal ring with IC₅₀ value of 0.41 μ M [19].

-C₆H₄(p-OCH₃)

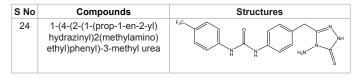
-Furfuryl


Citation: Sikka P, Sahu JK, Mishra AK, Hashim SR (2015) Role of Aryl Urea Containing Compounds in Medicinal Chemistry. Med chem 5: 479-483. doi: 10.4172/2161-0444.1000305

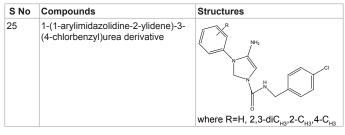
Antidepressant activity


Parveen et al. synthesized fourteen *N*-nitrophenyl-*N*'-(alkyl/ aryl)urea and symmetrical 1,3-disubstituted urea derivatives All the synthesized compounds were subjected for antidepressant activity *in vivo*, using Tail Suspension test using Phenelzine was taken as standard drug. Among them, compound 17 demonstrated higher antidepressant activity (89.83%), whereas compounds 18-22 showed activity values between 36 to 59% which were also larger than the standard drug [8].

S No	Compounds	Structure
17	N-(4-Nitrophenyl)-N-(1'-phenylethyl)urea	
18	N-(2-Nitrophenyl)-N-(1'-phenylethyl)urea	
19	N-(3-Nitrophenyl)-N-(3'-nitrophenyl)urea	H H H ₃ C H ₃ C
20	N-(4-Chlorophenyl)-N-(2'-nitrophenyl)urea	O2N CCH2)5
21	N-(3-Nitrophenyl)-N'-(3'-nitrophenyl)urea	


Antiulcernic activity

Vijaya et al. tested unsymmetrically substituted urea derivative Compound 23 for the antiulcer genic activity of alcohol and aspirin induced ulcer models on rats by taking ranitidine as standard drug. Ulcer index was calculated by histopathological studies. The test compound at a concentration of 50 and 100 mg/kg exhibited a protective effect on ulcer-induced models in a dose dependent manner, and was comparable with the standard drug ranitidine [20].


Antiacetylcholinesterase activity

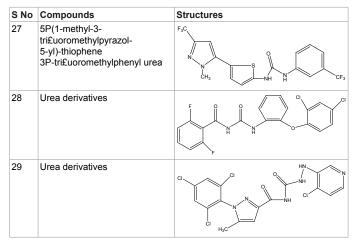
Mohsen et al. synthesized few urea and thiourea derivatives bearing 1,2,4-triazole ring by reacting 4-(amino-phenyl) acetic acid with corresponding isothiocynate. All these synthesized compounds were further evaluated for their ability to inhibit acetylcholinesterase using a modification of Ellamans spectrometer method which is based on the reaction of released Thiocholine to give a coloured product with a chromogenic reagent, 5,5-dithio-bis-(2-nitrobenzoic acid). Donepezil was taken as standard drug. Among all of the compound only Compound 24, showed noteworthy anti-AChE activity based on the activity halogen atom on the phenyl ring have made good contribution to anti cholinesterase activity [21].

Antiviral activity

Rajtar et al. Synthesized four compounds of 1-(1-arylimidazolidine-2-ylidene)-3arylalkylurea derivatives by the reaction of ethyl N-(1-arylimidazolidine-2-ylidene)carbamic acid ester with 4-chlorbenzylaminederivatives of 1-(1-arylimidazolidine-2-ylidene)-3-arylalkylurea were obtained and these compounds were evaluated for *in vitro* antiviral activity. Ribavirin was taken as reference compound against Coxsackie virus B3 (CVB3) using the cytopathic effect (CPE). Only compound 25 slightly influenced the CVB3 replication by reducing the virus replication level by 0.77 log, which resulted in reducing the titre by 12.8% [22].

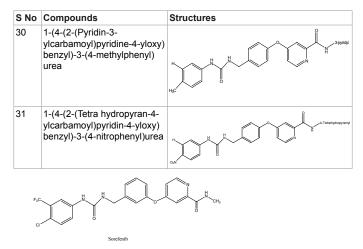
CNS activity

Kashaw et al. synthesized a series of Compounds 26(a-i) by using a solution of 2- propyl-benzoxazin-4-one, substituted phenyl semicarbazides in glacial acetic acid and then refluxed for 4 h and it


was then poured into crushed ice and left overnight. The solid which was separated out was filtered, washed with cold distilled water, dried and recrystallized from hot ethanol. These compounds were further evaluated for CNS depressant and sedative-hypnotic activity. All the compounds showed significant CNS activity [23].

S No	Compound	Structure	
26 1-(4-substituted-phenyl)-3-(4- oxo-2-propyl-4H- quinazolin-3- yl)-urea			
	Compound	R	
	26(a)	-H	
	26(b)	-F	
	26(c)	-Br	
	26(d)	-1	
	26(e)	<i>m</i> -CH ₃	
	26(f)	p-CH ₃	
	26(g)	-CH2-CH ₃	
	26(h)	-OCH ₃	
26(i)		-OCH ₂ -CH ₃	

Antitrypanosomal activity


Xiaohui et al. identified nine compounds with varied scaffolds by using DOCK 4.0.1, were found to be significantly active at concentrations below 10 μ M against cruzain and rhodesain as standard. Two of the scaffolds, the urea scaffold and the aroyl thiourea scaffold, exhibited activity against *Trypanosoma cruzi in vivo* and both enzymes *in vitro*. The Compound 27 showed activity at 3.1 μ M IC₅₀ against cruzain and a 3 μ M IC₅₀ against rhodesain. Infected cells treated with D16 survived 22 days in culture compared with 6 days for their untreated counterparts.

Two compounds Compound 28 and 29 were active against both proteases below 10 μ M which were tested in a cell culture assay of *Trypnosoma cruzi* infection of mammalian cells. No toxicity was observed against the mammalian cells. For both compounds, inhibition of parasite replication was observed. Mammalian cells infected with parasites died at 6 days from parasitolysis of cells but on treatment with Compound 28 or 29 the cells survived upto 10 days [24].

Antitumor activity

Shen et al. synthesized a series of some new benzyl urea derivatives which were screened for their inhibitory activities on MX-1, HepG2, Ketr3 andHT-29 cell lines. Compounds 30 and 31 showed greater inhibitory activity against HT-29 and MX-1, respectively when compared to sorafenib as standard. Compound 30 having a *N*-3-pyridyl moiety, not only exhibited significant inhibitory activity against HT-29 cell line (IC₅₀ 3.82 μ mol.L⁻¹), but also possessed an improved solubility at pH 7.2. In this way, compound 30 could serve as a valuable lead for further structural modifications to develop new agents against colon cancer [25].

Future aspects of aryl ureas

The present review study showed that aryl urea derivatives signify an important class of compounds possessing a wide spectrum of biological activities. The aryl ureas are one of the simplest of all chemicals which are used in clinics. The ureides have ensured to exhibit significant antibacterial activity. Some of the important pharmacologically activities ascribed to ureides are anti-tumour, anticancer, antidiabetic and hyperglycemic. They are all new compounds and interesting to determine their physiological properties. Various recent new drugs developments in aryl urea derivatives show better effect and less toxicity. This has been noticed so far, that modifications on aryl urea moiety displayed interesting biological activities. It will be exciting to observe that these modifications can be utilized as potent therapeutic agents in future.

References

- 1. Whitesides GM, Deutch J (2011) Let's get practical. Nature 469: 21-22.
- Burger A (1983) A Guide to the Chemical Basis of Drug Design. John Wiley & Sons: New York, USA.
- Houlton S (2012) Teaching and Training the Medicinal Chemistry of the Future. Med Chem Com 16: 134-139.
- 4. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662-1664.
- 5. Marshall E (1993) Toxicology goes molecular. Science 259: 1394-1398.
- Timmerman H, de Souza NJ (2009) Medicinal chemistry teaching and training: a continuous adaptation. Chem Med Chem 4: 1055-1058.
- Gupta V, Kant V (2013) A Review on Biological Activity of Imidazole and Thiazole Moieties and their Derivatives. Science International 1: 253-260.
- Perveen S, Mustafa S, Khan MA, Dar A, Khan KM, et al. (2012) Substituted urea derivatives: a potent class of antidepressant agents. Med Chem 8: 330-336.
- Viana GM, Aguiara LC, Ferrão JA, Simas ABC, Vasconcelos MG (2013) The use of aqueous potassium dichloroiodate for the synthesis of ureas. Tetrahedron Letters 54: 936-940.
- Wu C, Cheng H, Liu R, Wang Q, Hao Y, et al. (2010) Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chem 12: 1811-1816.
- 11. Struga M, Kossakowski J, Kedzierska E, Fidecka S, Stefańska J (2007) Synthesis and pharmacological activity of urea and thiourea derivatives of

4-azatricyclo[5.2.2.0(2,6)]undec-8-ene-3,5-dione. Chem Pharm Bull (Tokyo) 55: 796-799.

- Venkatachalam TK, Mao C, Uckun FM (2004) Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg Med Chem 12: 4275-4284.
- Bloom JD, Dushin RG, Curran KJ, Donahue F, Norton EB, et al. (2004) Thiourea inhibitors of herpes viruses. Part 2: N-Benzyl-N'-arylthiourea inhibitors of CMV. Bioorg Med Chem Lett 14: 3401-3406.
- Lee J, Lee J, Kang M, Shin M, Kim JM, et al. (2003) N-(3-acyloxy-2benzylpropyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea analogues: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J Med Chem 46: 3116-3126.
- Gulkok Y, Bicer T, Onurdag K, Ozgen S, Sahin M, et al. (2012) Synthesis of some new urea and thiourea derivatives and evaluation of their antimicrobial activities. Turk J Chem 36: 279-291.
- Ramesh D, Gangadhar S, Katti SA (2013) Synthesis, Characterization and anticonvulsant activity of 1-(Aryl)-3-(Diphenyl) Urea derivatives. International Journal of Research in Pharmacy and Chemistry 3: 2231-2781.
- Umadevi P, Deepti K, Srinath I, Vijayalakshmi G, Tarakaramji M (2012) Synthesis and in vitro antibacterial activity of some new Urea, Thio urea and Semicarbazide derivatives. International Journal of Pharmacy and Pharmaceutical Sciences 4: 379-383.
- 18. Cherala S, Lingabathula H, Ganta R, Ampati S, Manda S (2012) Synthesis

and anti-inflammatory activity of novel series of Diphenyl-1-2-3-4-Triazoles and related derivatives. European Journal of Chemistry 9: 2510-2515.

- Cho HJ, El-Gamal MI, Oh CH, Lee SH, Kim G, et al. (2012) Synthesis and Antiproliferative Activity of New Aminoisoquinolinyl urea Derivatives against Melanoma Cell Line. Bull Korean Chem Soc 33: 3635-3639.
- Vijayakumar S, Bongu S, Gomathi P (2013) Anti-ulcerogenic activity of unsymmetrically substituted urea derivative (1-benzyl-3-(4-methylphenyl) urea. African Journal of Pharmacy and Pharmacology 7: 2522-2527.
- Mohsen UA, Kaymakcioglu BK, Celen AO, Kaplancikli ZA (2014) Some Urea and Thiourea Derivatives Bearing, 2,4-Triazole Ring and Their Anti-Acetylcholinesterase Activities. Musbed journal 4: 85-89.
- Rajtar B, Szacon E, Swiatek L, Rzadkowska M, Matosiuk D, et al. (2013) Antiviral activity of 1-(1-arylimidazolidine-2-ylidene)-3-(4-chlorobenzyl)urea derivatives. Journal of Pre-Clinical and Clinical Research 7: 104-106.
- Kashaw SK, Kashaw V, Mishra P, Jain NK, Stables JP (2009) Synthesis, anticonvulsant and CNS depressant activity of some new bioactive 1-(4-substituted-phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea. Eur J Med Chem 44: 4335-4343.
- 24. Du X, Hansell E, Engel JC, Caffrey CR, Cohen FE, et al. (2000) Aryl ureas represent a new class of anti-trypanosomal agents. Chem Biol 7: 733-742.
- 25. Lu CS, Tang K, Li Y, Jin B, Yin DL, et al. (2013) Synthesis and in vitro antitumor activities of novel benzyl urea analogues of sorafenib. Yao Xue Xue Bao 48: 709-717.