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Abstract

The aim of this paper is to introduce a new concept for strong almost Pringsheim convergence with respect to an
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Introduction

Throughout w, y and A denote the classes of all, gai and analytic
scalar valued single sequences, respectively. We write w* for the set of
all complex triple sequences (xmnk), where m,n,keN, the set of positive
integers. Then, w* is a linear space under the coordinate wise addition
and scalar multiplication.

We can represent triple sequences by matrix. In case of double
sequences we write in the form of a square. In the case of a triple
sequence it will be in the form of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and
double sequence spaces is found in Hardy, Subramanian et al. [2-
9], and many others. Later on investigated by some initial work on
triple sequence spaces is found in Sahiner et al. [10], Esi et al. [11-15],
Subramanian et al. [16-25] and many others. Some interesting results
in this direction can be seen [26-29].

Let (x, ) bea triple sequence of real or complex numbers. Then the
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give one space is said to be convergent if and only if the triple sequence
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A sequence x=(x_ ) is said to be triple analytic if,

mnk:
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Supm,n,k |xmnk|m+n+ < 00,

The vector space of all triple analytic sequences are usually denoted
by *. A sequence x=(x_ ) is called triple entire sequence if,

mnk

1
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‘xmnk

The vector space of all triple entire sequences are usually denoted
by I'°. Let the set of sequences with this property be denoted by A’ and
I'® is a metric space with the metric,

d(x,y) = sup,,, {

forall x=(x

1
Xk —ymnk‘mwwk m,nk: 1,2,3,..}, (1)

)and y=(y, ) in I". Let ¢={finite sequences}.
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Consider a triple sequence x=(x,_ ). The (m,n,k)" section x™" of

the sequence is defined by xlmmkl = Z:njnqk: oy g for all m,n,k N,
[0 0 .0 0 ..]
00 .00
5mnl( =
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.0

with 1 in the (m,1,k)™ position and zero otherwise.

A sequence x=(x, ) is called triple gai sequence if

1
((m nt k)!‘x . )WH,{ 50 as m,n,koo. The triple gai sequences will

be denoted by y°.

Definitions and Preliminaries

A triple sequence x=(x,_ ) has limit 0 (denoted by Plimx=0)

(i.e) ((m+n+k)!‘x — 0 as m,n,k—o0. We shall write

1/m+n+k
)

more briefly as P—convergent to 0.
Definition

A modulus function was introduced by Nakano [30]. We recall that
a modulus fis a function from [0,00)[0,%0), such that,
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(1) fix)=0 if and only if x=0
(2) flety)< flx)

(3) fis increasing,

+f(y), for all x20, y>0,

(4) f is continuous from the right at 0. Since |f{x)—f(y)< f(lxy|), it
follows from here that fis continuous on [0,00).

Definition

Let (g, ),(a),(i) be sequences of positive numbers and
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Then the transformation is given by'

T,=——=>" 3" > 4.4,q,((m+n+k)x
QQQZ 2 (

is

Vm+n+k
mnk )

called the Riesz mean of triple sequence x=(x, ). If P~lim T (x)=0,0R,
then the sequence x=(x ) is said to be Riesz convergent to 0. If x=(x

is Riesz convergent to 0, then we write PR—limx:O.

mnk)

Definition

The triple sequence 6, U:{(mi,nl,kj)} is called triple lacunary if there
exist three increasing sequences of integers such that

m,=0, h[:mH%oo as ioo and

ny=0,h, =n,—n,  — oo aslo.

ky=0,h; =k, ~k,_ | — oo asj0.
Let m,, . =mnk;.h, ;= hhh;, and 0, is determine by

— — %
L., :{(m,n,k):m,,, <m<m, and n_ <n<n, and k,_ <kSk,},q‘ = ’::‘4 .4, :%,q/ :k—/.

Using the notations of lacunary sequence and Riesz mean for triple
sequences.

0, lj:{(ml.,nl,kj)} be a triple lacunary sequence and qmgn;k be

sequences of positive real numbers such that

B A A
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Clearly, H,=Q, - Q’”'—l JH = Q -0
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If the Riesz transformation of triple sequences is RH-regular,

and H,=0,-0, —® as i—o0,H = Z —>©

ne (] Ly [
as AR OO,H = Zke(o,k,-]pkj —> 0 as joo’ then

0, = {(ml’n/, )} {(Qm Qn o, )} is a triple lacunary sequence.
If the assumptions Q o0. as oo, QS — o0 as so and Q —> 0 as t—>o0.
may be not enough to obtain the conditions H—>. as j — o0, H, — o
as loand H, — 0 as j—>oo respectively. For any lacunary sequences
(m,),(n) and (kj) are integers.

Throughout the paper, we assume that
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If we take g,
yp Vg and 1.

Let f be an Orlicz function and p=(p, ) be any factorable triple
sequence of strictly positive real numbers, we define the following
sequernce spaces:

[42:0,.0.f .1 ]=
A 1
{P—hm,./.m?ﬁif,ﬂ,i

uniformly in i,/ and j.
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uniformly in 4,/ and j.
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]

tely,

Xt ks j

] w}
:

Let f be an Orlicz function, p=pmnk be any factorable double

sequence of strictly positive real numbers and and 4.-9, and ¢, be
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sequences of positive numbersand O, = ¢, +:-:q,,, 0,=4q,q, and
0, =du 4y

If we choose ¢, =1,q, =1 and 4, =1 for all m,n and k, then we

obtain the following sequence spaces.

[20a.1:p]=

P- lim,./‘Hx 71 =
00,9,

uniformly in 7,/ and j.

mei ke

04,4y [f((m+n+k)! X

1o}

[A‘Z,q,f,p]=

{P sup,, QQ,Q —_— 12,, D ny qk[ ( m+n+k)!‘x”m.‘”+,yk+]

»
) ik } <w}’

uniformly in 4,/ and j.
Main Results

Theorem

If fbe any Orlicz function and a bounded factorable positive triple
number sequence p, . then [ ;(;,9,@.,61, f, pJ is linear space.

Proof: The proof is easy. Therefore omit the proof.

Theorem

For any Orlicz function f, we have | 72.6,.4. /.7 | <[ 12.0,.4.p |
Proof: Let x € [Zz,@[f,q,p] so that for each i,/ and j.
[22:04:0.1:P]=

. ! - =
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mi Lk

1

uniformly in 4,/ and j.

Since f is continuous at zero, for £>0 and choose § with 0<d<1
such that f(t)<e for every t with 0<t6. We obtain the following,
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Hence i,/ and j goes to infinity, we are granted X € [Z;ﬁ,-g,-,q,f,l?]-
Theorem
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function £.,[ 2., £,q.p | <[ 72-0,.4.7 ]
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Since x € [Z;, fsq, p], the last three terms tend to zero uniformly
in m,n,k in the sense, thus, for each i,/ and j:
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-1 =K

Since H,,=0, éwa_ -0, ém 5,{;1 we are granted for each i,/
and j the following:
QmQ Q 1+5 and Q’"i—lQ”/ 1Q j-1 Sl.
H, o f, g
The terms

0.4 manek Pmn
Zm 12"/ Z? 4n4,9% [f((m +n +k)! X )1/ + +ki| "

mtr,nts,k+u

QéE

and

)1 mn+k :|",.mk

are both gai sequences for all r,s and u. Thus A, is a gai sequence for
each i,/ and j. Hence x [)(R,Qj,q,p].
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Theorem

Let 0, ={m,n,k} be a triple lacunary sequence and 9.9.9x with

limsupV, <o, limsup,V ;<o and limsup?,- <o then for any

Orlicz function /', [}(R, 129> fPJ [ZR,qu]

Proof: Since limsupV, <o, limsup,V: <o and limsup V<o
there exists H>0 such that V, < H, V( <H and ¥ H foralliland
j. Let xe [;(i,ﬁ,q,q,f,pJ and &>0. Then there exist i >0, [ >0 and j >0

such that for every ai, b>I and c=j, and for all i,/ and j.
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Corollary

Let 0, ={m,n,k} be a triple lacunary sequence and qu]ngk be

i,

sequences of positive numbers. If 1<lim, V, lim, supV, <co, then for any
Orlicz function f, [ 13.60,.q.f.2]=[ 12:4.f.p]
Definition

Let 6, ={m,n,k} be a triple lacunary sequence. The triple number

sequence x is said to be S[ 240 -F convergent to 0 provided that for
every € >0,
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