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Arguments for and against the Riemann hypothesis

Mathematical papers about the Riemann hypothesis tend to be cautiously 
noncommittal about its truth. Of authors who express an opinion, most of them, 
such as Riemann (1859) and Bombieri (2000), imply that they expect (or at 
least hope) that it is true. The few authors who express serious doubt about 
it include  Ivić (2008), who lists some reasons for skepticism, and Littlewood 
(1962), who flatly states that he believes it false, that there is no evidence for 
it and no imaginable reason it would be true. The consensus of the survey 
articles (Bombieri 2000, Conrey 2003, and Sarnak 2005) is that the evidence 
for it is strong but not overwhelming, so that while it is probably true there is 
reasonable doubt.

Some of the arguments for and against the Riemann hypothesis are listed 
by Sarnak (2005), Conrey (2003), and Ivić (2008), and include the following:

Several analogues of the Riemann hypothesis have already been 
proved. The proof of the Riemann hypothesis for varieties over finite fields 
by Deligne (1974) is possibly the single strongest theoretical reason in favor 
of the Riemann hypothesis. This provides some evidence for the more general 
conjecture that all zeta functions associated with automorphic forms satisfy 
a Riemann hypothesis, which includes the classical Riemann hypothesis as 
a special case. Similarly  Selberg zeta functions  satisfy the analogue of the 
Riemann hypothesis, and are in some ways similar to the Riemann zeta 
function, having a functional equation and an infinite product expansion 
analogous to the Euler product expansion. But there are also some major 
differences; for example, they are not given by Dirichlet series. The Riemann 
hypothesis for the Goss zeta function was proved by Sheats (1998). In contrast 
to these positive examples, some  Epstein zeta functions  do not satisfy the 
Riemann hypothesis even though they have an infinite number of zeros on 
the critical line (Titchmarsh 1986). These functions are quite similar to the 
Riemann zeta function, and have a Dirichlet series expansion and a functional 
equation, but the ones known to fail the Riemann hypothesis do not have an 
Euler product and are not directly related to automorphic representations.

At first, the numerical verification that many zeros lie on the line seems 
strong evidence for it. But analytic number theory has had many conjectures 
supported by substantial numerical evidence that turned out to be false. 
See  Skewes number  for a notorious example, where the first exception to 
a plausible conjecture related to the Riemann hypothesis probably occurs 
around 10316; a counterexample to the Riemann hypothesis with imaginary 
part this size would be far beyond anything that can currently be computed 
using a direct approach. The problem is that the behavior is often influenced by 
very slowly increasing functions such as log log T, that tend to infinity, but do so 
so slowly that this cannot be detected by computation. Such functions occur in 
the theory of the zeta function controlling the behavior of its zeros; for example 
the function S(T) above has average size around (log log T)1/2. As S (T) jumps 
by at least 2 at any counterexample to the Riemann hypothesis, one might 
expect any counterexamples to the Riemann hypothesis to start appearing 
only when S (T) becomes large. It is never much more than 3 as far as it has 
been calculated, but is known to be unbounded, suggesting that calculations 
may not have yet reached the region of typical behavior of the zeta function.
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Introduction

The Riemann hypothesis is a fundamental mathematical conjecture that 
has huge implications for the rest of math. It forms the foundation for many 
other mathematical ideas — but no one knows if it's true. Its validity has 
become one of the most famous open questions in mathematics.

Where did this idea come from?

Back in 1859, a German mathematician named Bernhard Riemann 
proposed an answer to a particularly thorny math equation. His hypothesis 
goes like this: The real part of every non-trivial zero of the Riemann zeta 
function is 1/2. That's a pretty abstract mathematical statement, having to do 
with what numbers you can put into a particular mathematical function to make 
that function equal zero.

In math, a function is a relationship between different mathematical 
quantities. A simple one might look like this: y = 2x.

It's a sum of an  infinite sequence, where each term — the first few are 
1/1^s, 1/2^s and 1/3^s — is added to the previous terms. What is a zero of 
the Riemann zeta function?

A "zero" of the function is any number you can put in for x that causes the 
function to equal zero.

What's the "real part" of one of those zeros, and what 
does it mean that it equals 1/2?

The Riemann zeta function involves what mathematicians call "complex 
numbers." A complex number looks like this: a+b*i.

In that equation, "a" and "b" stand for any real numbers. A real number can 
be anything from minus 3, to zero, to 4.9234, pi, or 1 billion. But there's another 
kind of number:  imaginary numbers. Imaginary numbers emerge when you 
take the square root of a negative number, and they're important, showing up 
in all kinds of mathematical contexts.

The simplest imaginary number is the square root of -1, which is written 
as "i." A complex number is a real number ("a") plus another real number ("b") 
times i. The "real part" of a complex number is that "a."

A few zeros of the Riemann zeta function, negative integers between -10 
and 0, don't count for the Riemann hypothesis. These are considered "trivial" 
zeros because they’re real numbers, not complex numbers. All the other zeros 
are "non-trivial" and complex numbers.

The Riemann hypothesis states that when the Riemann zeta functions 
crosses zero (except for those zeros between -10 and 0), the real part of the 
complex number has to equal to 1/2.
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