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Introduction

This survey offers a thorough review of how deep learning methods are changing
the landscape of inverse problems. It discusses various architectures and tech-
niques, from unrolling iterative algorithms to purely data-driven approaches, high-
lighting their potential to overcome limitations of traditional methods, especially in
computational efficiency and handling complex non-linearities [1].

This paper introduces a deep unrolling network architecture that integrates train-
able regularizers for solving inverse problems in computational imaging. The ap-
proach iteratively approximates the solution by combining a learned data fidelity
term with a flexible regularization network, demonstrating improved performance
over fixed regularization methods and achieving higher reconstruction quality with
fewer iterations [2].

This review explores the application of physics-informed neural networks (PINNs)
in medical imaging inverse problems. It details how PINNs leverage known phys-
ical models to constrain neural network training, enabling robust reconstructions
even with limited data and addressing challenges like ill-posedness and noise.
The paper covers various modalities and outlines future research directions for
this promising field [3].

This paper tackles the critical issue of uncertainty quantification in deep learning
approaches for inverse problems. It explores various methods, including Bayesian
deep learning and ensemble techniques, to provide reliable estimates of recon-
struction uncertainty, which is crucial for decision-making in sensitive applications
like medical diagnosis or scientific discovery [4].

This survey systematically reviews data-driven strategies for solving inverse prob-
lems, covering techniques that learn mappings directly from data without explicit
physical models. It categorizes methods based on how they incorporate data, from
supervised learning to generative models, and discusses their advantages in han-
dling complex forward models and achieving high-quality reconstructions [5].

This paper introduces the Fourier Neural Operator (FNO), a novel deep learning
architecture capable of learning mappings between infinite-dimensional function
spaces. It specifically addresses solving parametric partial differential equations
and, by extension, various inverse problems, by efficiently learning operators di-
rectly from data, showcasing superior generalization capabilities compared to tra-
ditional neural networks [6].

This review systematically surveys recent advances in applying deep learning
techniques to acoustic inverse problems. It covers various applications, includ-
ing medical ultrasound, non-destructive testing, and underwater acoustics, em-
phasizing how deep learning models enhance reconstruction quality, accelerate
computations, and address the inherent ill-posedness of these problems [7].

This paper explores the use of physics-informed neural networks (PINNs) to solve
inverse problems in optical imaging. By integrating optical propagation models
directly into the neural network’s loss function, PINNs can effectively reconstruct
high-quality images from limited or noisy measurements, showcasing particular
promise in areas like microscopy and tomography [8].

This foundational work introduces Physics-informed neural networks (PINNs) for
solving forward and inverse problems in computational fluid dynamics. It demon-
strates how embedding physical laws into the neural network architecture allows for
efficient and accurate solution of PDEs and parameter inference, even with sparse
and noisy data, offering a powerful alternative to traditional numerical methods [9].

This comprehensive review explores the role of deep generative models, such
as GANs and VAEs, in solving inverse problems. It discusses how these mod-
els can learn complex prior distributions of natural signals, enabling high-quality
reconstructions by effectively filling in missing information and mitigating the ill-
posedness inherent in inverse tasks [10].

Description

Deep Learning has emerged as a transformative force in the realm of inverse prob-
lems, fundamentally altering how scientists and engineers approach these complex
challenges. Initial surveys highlight its potential to overcome limitations of tradi-
tional methods, especially in computational efficiency and handling intricate non-
linearities [1, 5]. These advancements span various architectures, from unrolling
iterative algorithms to purely data-driven approaches. The field sees continuous
reviews detailing specific applications and methodological advancements, under-
scoring a broad shift towards data-driven paradigms for improved reconstruction
quality and accelerated computations [7].

At the heart of these developments are novel network architectures designed to
tackle the inherent difficulties of inverse problems. One notable approach in-
volves deep unrolling networks that integrate trainable regularizers, iteratively ap-
proximating solutions by combining learned data fidelity terms with flexible reg-
ularization networks [2]. This method consistently demonstrates superior perfor-
mance over fixed regularization techniques, leading to higher reconstruction qual-
ity with fewer iterations. Another significant innovation is the Fourier Neural Oper-
ator (FNO), a Deep Learning architecture capable of learning mappings between
infinite-dimensional function spaces. FNOs efficiently learn operators directly from
data to solve parametric partial differential equations and various inverse prob-
lems, exhibiting impressive generalization capabilities compared to conventional
neural networks [6]. Furthermore, deep generative models, including Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs), play a crucial
role. These models learn complex prior distributions of natural signals, allowing for
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high-quality reconstructions by effectively filling in missing information and miti-
gating ill-posedness inherent in inverse tasks [10].

Physics-Informed Neural Networks (PINNs) represent a powerful class of methods
that integrate known physical models directly into the neural network training pro-
cess. This technique constrains network training based on physical laws, enabling
robust reconstructions even when data is limited or noisy. PINNs address signifi-
cant challenges like ill-posedness and noise, finding applications in diverse fields.
For instance, they are employed in medical imaging inverse problems, covering
various modalities and showing promising future research avenues [3]. Beyond
medical applications, PINNs have been explored for inverse problems in optical
imaging, where integrating optical propagation models into the network’s loss func-
tion allows for effective reconstruction of high-quality images from sparse or noisy
measurements, particularly useful in microscopy and tomography [8]. The foun-
dational work on PINNs showcased their utility in computational fluid dynamics,
demonstrating efficient and accurate solutions for Partial Differential Equations
(PDEs) and parameter inference even with sparse and noisy data, presenting a
strong alternative to traditional numerical methods [9].

A critical aspect within Deep Learning for inverse problems is the quantification of
uncertainty. Research explores various methods, such as Bayesian Deep Learn-
ing and ensemble techniques, to provide reliable estimates of reconstruction un-
certainty. This is vital for informed decision-making in sensitive applications, in-
cluding medical diagnosis and scientific discovery, where understanding the re-
liability of reconstructions is paramount [4]. Overall, the pervasive application of
Deep Learning methods across acoustic, medical, and optical inverse problems
underscores their ability to enhance reconstruction quality, accelerate computa-
tions, and effectively manage the intrinsic ill-posedness of these challenges [7,
3, 8]. The collective body of work demonstrates a powerful synergy between ad-
vanced neural network architectures, data-driven learning, and the incorporation
of physical principles to revolutionize inverse problem solving.

Conclusion

Deep Learning methods are fundamentally reshaping how researchers approach
inverse problems. These approaches offer significant advantages over traditional
techniques, especially in computational efficiency and managing complex non-
linearities. From iterative unrolling algorithms to entirely data-driven frameworks,
the field is evolving rapidly. Specific architectures like Fourier Neural Operators
(FNOs) demonstrate a powerful ability to learn mappings in infinite-dimensional
function spaces, leading to superior generalization. Physics-Informed Neural Net-
works (PINNs) are proving effective by embedding physical laws directly into the
neural network architecture, ensuring robust solutions even with limited or noisy
data. This is particularly valuable in fields such as medical imaging and computa-
tional fluid dynamics. Beyond specific architectures, the integration of trainable
regularizers and the exploration of deep generative models, including Genera-
tive Adversarial Networks (GANs) and Variational Autoencoders (VAEs), further
enhance reconstruction quality by learning complex prior distributions. A crucial
aspect being addressed is uncertainty quantification, with methods like Bayesian
Deep Learning providing essential reliability estimates for sensitive applications.
Reviews consistently highlight the expanded capabilities of Deep Learning in

diverse inverse problems, from acoustic to optical imaging, demonstrating im-
proved reconstruction quality and accelerated computations by tackling inherent
ill-posedness. The collective progress shows a concerted effort to leverage data
and physics for more accurate and efficient solutions.
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