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Introduction
Accurate quantitative assessment of the association between 

exposure and response is central to identifying causality in medical 
research [1,2]. Multiple rate ratios or odds ratios are commonly used 
for quantifying the exposure-response associations [3]. However, 
dichotomizing continuous exposure may produce biased estimates 
and result in a loss of statistical efficiency, while multiple inferences 
can lead to false positive results [4-6]. The Lorenz curve and Gini 
index (GI) provide an alternative to assessing the overall relationship 
between continuous exposure and response [7-9]. The approach 
utilizes an integrated quantitative and graphical framework to make 
more efficient use of information. In addition to performing univariate 
assessment of inequality for highly skewed variables (such as individual 
income) [10,11], the GI has been applied to examine continuous 
exposure-response relations [7,12,13]. On the other hand, when 
bivariate relations between the exposure and response are of interest, a 
more general form of GI, the concentration index (CI), is available [14]. 
Although CI is well suited for measuring socioeconomic inequality in 
health [15-17], there are still potentials for more general applications 
[9].

The present study generalizes the application of GI and CI in 
medical research and demonstrates their usefulness for summarizing 
rate ratios, odds ratios and attributable risks. A correlation measure 
is proposed to assess and summarize overall associations between risk 
factors and ill-health outcome. Two examples illustrate applications 
of the methodology in comparison with the regression based 
decomposition. Pros and cons of the approach are also considered 
in the medical research context. The variance of rate ratio and the 
derivation of continuous data are given in the appendices.

Methods
Gini and concentration indices

We first review the GI, Lorenz curve, CI, and their role in assessing 

exposure and response using grouped data. Consider a p-level exposure 

Xi and an ill-health response Yi, where Yi = di/ni denotes the response 

proportions sorted in ascending order (Y1 ≤ … ≤ Yi ≤ … ≤ Yp); di and ni 
represent respectively the number of ill-health events and population 
size for group i, with i if n N=  being the frequency proportion of 

the total population N. Let 
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=∑  be the mean. Under this setting, the

Lorenz curve is defined by 
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=∑ plotted on the ordinate against

Fi along the abscissa [14,15]. It is the cumulative proportion of cases 
(Li) compared to the cumulative proportion of the at-risk population 
(Fi), ordered by the level of risk. If Li = Fi, the Lorenz curve coincides 
with the diagonal line, implying that Y is distributed in line with f so 
that the ill-health is evenly distributed. Otherwise, it lies beneath the 
diagonal line. The further the Lorenz curve deviates from the diagonal 
line, the greater is the degree of disparity. Let cov[Y,F] be the covariance 
between Y and F. The GI can be given by

p 1

i i 1 i 1 i
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2GI cov[Y ,F ] ( F L F L )
Y

−

+ +
=

= = −∑ ,

which represents twice the area between the diagonal line and the 
Lorenz curve [14]. If every group has exactly the same risk, GI = 0 
representing perfect equality. If one group owns all the ill-health 
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Abstract
Accurate assessment of the association between exposure and response is central to identifying causality in 

medical research. The concentration index has been commonly used to study income inequality and socioeconomic 
related health inequality. This study generalizes applications of the concentration index to measure the relative and 
attributable risks for describing exposure-response relationships in medical research. Based on cumulative distribution 
functions, a new measure of correlation is proposed to quantify the association between exposure and response. The 
connection between the new and existing measures is discussed. The method enables the semi-parametric analysis of 
overall association and disparity by risk factors. Both grouped and continuous data situations are considered with two 
applications. The first example illustrates the relationships between the concentration index, relative and attributable 
risks. The second example demonstrates how the concentration index can assist in evaluating the association between 
the radiation dose and the incidence of leukaemia. Logistic regression based decomposition is compared with the new 
approach. We found the concentration index analysis useful not only for examining socioeconomic determinants of 
health, but also for assessing quantitative relations between exposures to health risks and ill-health outcomes.
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risks, GI = 1 representing perfect inequality. Typically, GI varies 
between 0 and 1, indicating the level of inequality in ill-health risks 
between groups. At the individual level, the total inequality is clearly 

i
i

2 0.5 0.5 d N 1 Y − = − 
 

∑ , by ranking di from 0 (alive) to 1 (dead) 

for the Lorenz curve, where in 1=  and Y  is the mortality rate. For 
grouped data, the GI actually reflects the degree of inequality under the 
current groupings.

Let Y(k) represents the Yi being reordered by exposure level X(k), 
where X(1) ≤ … ≤ X(k)≤ … ≤ X(p). We have ( k ) ( k )f n N= , where ( k )n  
is the number of observations in group k. The concentration curve is 
defined by plotting

( k )
j j

( k )
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against 
( k )
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F1 f
=

=∑  [17]. The CI is then given by
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which is twice the area between the equalitarian line and the 
concentration curve [17]. Here the groups are ranked by X instead of 
Y. Unlike GI, CI can be either positive or negative. If the exposure is 
harmful, 0 < CI ≤ GI. If it is protective, -GI ≤ CI < 0. The standard errors 
of GI and CI can also be estimated [16]. The absolute value of the ratio 

cov[Y ,F1]CI GI
cov[Y ,F ]

=

indicates the inequality explainable by the exposure [14]. In this context, 
the concentration curve, CI and the ratio between CI and GI are often 
used to analyze socioeconomic inequality of health [15-17]. Assuming 
a regression model 1Ŷ g ( Z)−=  and the residual ˆe Y Y= − , where Z 
represents the predictor(s) and ( )g ⋅  is a generalized linear link function, 
the GI and CI can be decomposed into a deterministic component and 
a residual component: [18]

2 2ˆcov[Y ,F*] cov[e,F*]
Y Y

+ ,

where F* is either F or 1 for GI or CI decomposition respectively. In 
this paper, we examine the situation Z = X.

Correlation measure

It is known that the above CI/GI ratio can overestimate the 
contribution of the exposure responsible for the health inequality [19]. 
A new correlation measure is proposed for assessing the exposure-
response relationship. The correlation between exposure and response 
can be examined by changes in the frequency proportions from being 
sorted by Y to being sorted by X. Let var[∙] denote the variance of a 
quantity. We propose a correlation coefficient between F and F1, 
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as an overall measure of association between the exposure and the 
ill-health response. Note that ρ assesses the correlation between exposure 
distribution and response distribution based on cumulative functions, while 
F and F1 are rearranged using  i ( k )f f= , and F,F1 F1,F=cov[ ] cov[ ]. If 
0 1ρ< ≤ , the proportional fractions ranked by Y and those ranked by X are 
positively correlated. Otherwise, 1 0ρ− ≤ <  implies a negative correlation. 
The coefficient of determination is then 

p
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2 i i
2 i 1

2

ˆf ( F F )
cov[F ,F1]

var[F ]var[F ]
ρ =

−
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,

which yields the proportion of disparity in Y explained by X. Let ε and 
ε1 represent the residual terms for F and F1 predicted by the ranked Y 
and those ranked by X. GI and CI are algebraically related to ρ. Similar 
to the GI and CI, ρ can be decomposed into a model component and a 
residual component:

2

cov[Y ,F ] cov[Y ,F1] cov[ , 1]
var[Y ] var[F ] var[F ]

CI GI Y cov[ , 1] .
4 var[Y ] var[F ] var[F ]

ε ερ

ε ε

= +

⋅ ⋅
= +

Risk assessment

Some basic properties of the CI measures are studied further in 
terms of risk assessment in this section. The relative risk (RR) may 
be considered as a ratio of the excess risk estimated by a rate ratio, or 
a density ratio of incremental change in ill-health in response to the 
change in exposure [20,21]. RR is thus the slope of the tangent line of 
the concentration curve, evaluated at a point Y(k), viz,

( k ) ( k ) ( k 1) ( k ) ( k 1) ( k )RR ( L L ) / ( F1 F1 ) Y / Y− −= − − =  .

Using the concentration curve, it equals to the magnitude of the risk 
in comparison with the expectation (i.e., the average risk) [22]. Clearly, 
the RR is slightly different from the usual case in epidemiology, based 
on the minimum level of exposure: ( k )1 ( k ) (1) ( k ) (1)RR RR / RR Y / Y= = . More 
generally, let ( k )m ( k ) ( m) ( k ) ( m)RR RR / RR Y / Y= = . The variance of RR(k)m can be 
derived as

2
( k ) ( k ) ( k ) ( m)

( k )m 2 3
( k ) ( m) ( m) ( m)

Y (1 Y ) Y (1 Y )
var RR

n Y n Y
− −

  = +   

(see the derivation in the first section of Appendix). Note that RR is 
monotonically increasing for the Lorenz curve by definition, but this 
is not necessarily the case for the concentration curve. Application of 
RR is more meaningful in the context of concentration curve, because 
it involves both exposure and response, whereas the Lorenz curve 
involves only the response.

In medical research, the RR is often approximated by the odds ratio 
(OR). Denoting the total number of ill-health events by i

i

D d=∑ , then 
we have

( ) ( )( k ) ( k ) ( k ) ( k )OR d ( N D) D(n d )= − − .

As classically defined, attributable risk (AR) is the percentage of 
cumulative proportion of total population developing a disease over 
a specified interval, caused by an exposure [23]. The AR also gives the 

Index 95% Confidence 
Interval

Logistic model decomposition 
(Contribution)

Model Residual
Colorectal 

polyps
GI
CI

0.073
-0.060

0.065 to 0.082
-0.069 to -0.051

0.036(49%)
-0.059(98%)

0.037(51%)
-0.001 (2%)

N = 976  Y  = 0.5 |CI/GI|=82% ρ = -0.583 ρ2 = 34%

Leukaemia
GI
CI

0.374
0.338

0.367 to 0.382
0.330 to 0.346

0.313(84%)
0.378(112%)

0.062(16%)
-0.04(-12%)

N = 61902 Y  = 0.614×10-3 |CI/GI|=90% ρ = 0.819 ρ2 = 67%

Table 1: Summary of the examples.
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proportion of ill-health events that can be avoided if the exposure is 
eliminated. When the exposure is continuous, the AR(k) can be viewed 
as the proportion of the incidence of ill-health that will be reduced if 
the exposure is reduced to X(k), rather than being totally eliminated 
[4,24]. In the case of grouped data, the AR(k) takes the form

( k ) ( k 1) ( k 1)
( k ) ( k 1)

( k ) ( k 1)

( L L )(1 F1 )
AR 1 L

F1 F1
− −

−
−

− −
= − −

−
,

which measures the health effect of a more relevant reduction in the risk 
rather than complete elimination of the risk. For example, a smoking 
cessation policy intends to reach a nominated target level X(k) rather 
than achieving an unrealistic zero smoking prevalence. The AR can 
take on negative values, if the AR is used for studying protective factors 
and the concentration curve lies above the diagonal line. As noted by 

Llorca and Delgado-Rodriguez [13], when Y = 0, AR =1 - RR. When the 
comparison standard is exchanged (the exposure of concern is changed 
from being harmful to being protective), AR = 1 - 1/RR [24,25]. The CI 
is in fact the weighted average of AR. The derivations of RR, AR and ρ 
for continuous data are given in the second section of the Appendix.

Examples

Colorectal polyps: To demonstrate the relationships between 
CI, RR and AR, let us consider the matched case-control study of the 
associations of vegetables, fruits, and grain intakes with colorectal 
polyps [24]. The results of the analysis are summarized in the upper 
part of Table 1. The total individual level inequality for the matched 
case-control design is 1 Y 1 0.5 0.5− = − =  and the GI is 0.073, showing 
that the case-control grouping reflects 15% (0.073/0.5) of the total 

Radiation 
dose X (1)

Incidence 
/1000 Y (2) i (3) k (4) f (5) Fi(y)a (6) Li(y)a (7) F(k)(x) (8) L(k)(x) (9) GI (10) CI (11) RRm (12) ORm (13) AR (14) RR

∧

 (15)
<250 0.244 1 1 0.132 0.132 0.053 0.132 0.053 0.002 0.002 1.000 1.000 0.602 1.000
250-499 0.290 2 2 0.167 0.299 0.132 0.299 0.132 0.007 0.026 1.187 1.187 0.537 1.354
500-749 0.593 5 3 0.164 0.733 0.474 0.463 0.289 0.007 -0.006 2.425 2.425 0.192 1.833
750-999 0.343 3 4 0.188 0.487 0.237 0.651 0.395 0.019 0.069 1.405 1.404 0.410 2.483
1000-1249 0.752 7 5 0.172 0.930 0.711 0.823 0.605 0.045 0.015 3.081 3.079 0.178 3.363
1250-1499 0.588 4 6 0.082 0.570 0.316 0.905 0.684 0.038 0.045 2.409 2.408 0.225 4.554
1500-1749 1.231 8 7 0.039 0.970 0.789 0.945 0.763 0.039 0.006 5.042 5.037 0.126 6.166
1750-1999 0.645 6 8 0.025 0.758 0.500 0.970 0.789 0.074 0.039 2.641 2.640 0.179 8.348
2000-2249 2.130 9 9 0.015 0.985 0.842 0.985 0.842 0.022 0.097 8.732 8.716 0.105 11.301
2250-2499 7.859 12 10 0.008 1.000 1.000 0.993 0.947 0.000 0.022 32.404 32.157 -0.037 15.295
2500-2749 3.534 10 11 0.005 0.989 0.868 0.998 0.974 0.024 0.024 14.507 14.459 0.012 20.694
≥2750 6.623 11 12 0.002 0.992 0.895 1.000 1.000 0.097 0.000 27.273 27.099 0.000 28.005
Total 0.614 1.000 0.374 0.338 2.513 2.512 0.338

GI: Gini Index; CI: Concentration Index; RRm: Rate Ratio rebased on minimum level of exposure; ORm: Odds Ratio rebased on minimum level of exposure; AR: Attributable 
Risk. acumulative sum with respect to i.  

Table 3: Concentration Curve and Index for the Radiation–induced Leukaemia Data, United Kingdom, 1935-1954.

Mean servings Xk Cases d Total n Rate Y
Cumulative proportions

Concentration index CI Attributable risk AR Actual RR Logistic mode 
RRF(k) L(k)

0 13 17 0.765 0.017 0.027 -0.0004 -0.5294 1.529 1.179
1 36 60 0.600 0.079 0.100 -0.0013 -0.2057 1.200 1.145
2 55 99 0.556 0.180 0.213 -0.0040 -0.1239 1.111 1.112
3 70 137 0.511 0.321 0.357 -0.0046 -0.0507 1.022 1.078
4 77 151 0.510 0.475 0.514 -0.0084 -0.0494 1.020 1.044
5 59 125 0.472 0.603 0.635 0.0004 -0.0096 0.944 1.010
6 54 102 0.529 0.708 0.746 -0.0087 -0.0551 1.059 0.976
7 33 74 0.446 0.784 0.814 -0.0003 -0.0063 0.892 0.941
8 33 64 0.516 0.849 0.881 0.0002 -0.0365 1.031 0.907
9 24 46 0.522 0.897 0.930 -0.0159 -0.0383 1.043 0.874
10 10 36 0.278 0.933 0.951 -0.0061 0.0122 0.556 0.840
11 6 18 0.333 0.952 0.963 -0.0032 0.0048 0.667 0.807
12 9 21 0.429 0.973 0.982 -0.0071 -0.0044 0.857 0.774
6 54 102 0.529 0.708 0.746 -0.0087 -0.0551 1.059 0.976
7 33 74 0.446 0.784 0.814 -0.0003 -0.0063 0.892 0.941
8 33 64 0.516 0.849 0.881 0.0002 -0.0365 1.031 0.907
9 24 46 0.522 0.897 0.930 -0.0159 -0.0383 1.043 0.874
10 10 36 0.278 0.933 0.951 -0.0061 0.0122 0.556 0.840
11 6 18 0.333 0.952 0.963 -0.0032 0.0048 0.667 0.807
12 9 21 0.429 0.973 0.982 -0.0071 -0.0044 0.857 0.774
14 4 15 0.267 0.989 0.990 -0.0010 0.0042 0.533 0.711
18 5 11 0.455 1.000 1.000 0.0000 0.0000 0.909 0.591

Total 488 976 0.500 -0.0603 -0.0603 1.000 1.000

Table 2: Concentration Index and Relative Risk for the Fruit and Vegetable Intake and Colon Polyps.
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inequality. According to the new coefficient of determination ρ2, 
about 34% of the disparity in polyp incidence is explained by the mean 
servings of fruits and vegetables (X). This result appears more plausible 
than the |CI/GI| ratio (82%) and the logistic model GI decomposition 
assessment (49%). The fitted logistic model is 

( ) ( )Ŷ exp 0.362 0.068X 1 exp 0.362 0.068X = − + −  .

The CI or total AR is negative (-0.0603), indicating the concentration 
curve is above the diagonal line and the fruit and vegetable intake is a 
protective factor. An increase in the fruit and vegetable intakes to the 
average (5 to 6 servings) could potentially decrease the number of colon 
polyps by 6%. Decrease in the fruit and vegetable intake to zero can 
potentially increase colon polyps by 53% ( (1)AR  -0.5294= , see Table 
2). In other words, the decreased levels of fruit and vegetable intake are 
associated with an increased risk of polyps among the matched pairs. 
As shown in Table 2, the RR decreases with an increased level of mean 
servings per day. Detailed AR and RR estimates are listed in Table 2, in 
comparison with the logistic model estimates. 

Radiation–induced leukaemia: The second example is taken from 
an investigation of leukaemia among patients treated with X-ray for 
ankylosing spondylitis at 81 British radiotherapy centres between 1935 
and 1954 [26]. The study aimed to determine the relationship between 
the doses of radiation given and the incidence of leukaemia. Details of 
radiation were recorded in the mean spinal-marrow dose (roentgens). 
The 38 leukaemia cases included definite, probable and presumptive 
diagnoses. The men-years at risk (61,902 in total) were used to estimate 
the incidence. We reanalyze the data using the proposed concentration 
curve approach. The GI and CI analyses are summarized in the lower 
part of Table 1. 

The total individual level inequality for the study design is 
1 Y 1 0.000614 0.999− = − =  and the GI is 0.374, showing that the 
study grouping reflects 37% (0.374/0.999) of the total leukaemia 
incidence inequality (see Table 3). Re-ranking Y by X (radiation 
dose), CI has the value 0.338. In accord with the new coefficient of 
determination ρ2, the radiation dose accounts for 67% of the leukaemia 
inequality. This result seems more plausible than the CI/GI ratio (90%) 
and the logistic model GI decomposition (84%). The fitted logistic 
model is 

( ) ( )Ŷ exp 0.001213X 8.643 1 exp 0.001213X 8.643 = − + −   .

A clear gradient is observed in the RR estimates (columns 12 
and 13 of Table 3). Specifically, radiation dose over 2,750 roentgens 
could increase the leukaemia risk by about 27 times above that at the 
minimum radiation level. From the AR calculation (column 14 of Table 
3), about 60% of leukaemia incidence in the spondylitic patients could 
be avoided, if the radiation exposure is reduced to the minimum level. 
If the radiation exposure level is reduced to the average level, 33.8% of 
the leukaemia incidence could be avoided. The logistic modelled RRs 
are listed in column 15 of Table 3.

Figure 1 shows that the concentration curve almost coincided with 
the Lorenz curve and the high radiation dose rankings explain the 
majority of leukaemia incidence disparity. The correlation coefficient 
ρ is 0.819, which means a high association between the leukaemia risk 
and radiation exposure; see Figure 2. 

Note that when the exposure is used for the CI estimation and also 
used as the predictor for the logistic model based decomposition, the 
factor contributions for the exposure in the decomposed CI based on 
the logistic model are 98% and 112% respectively for the colorectal 
polyps and leukaemia example in Table 1. This indicates that the 
regression based CI decomposition can over-estimate the contribution 
of the exposure if the exposure variable is used as the underlying 
variable and explanatory variable simultaneously.

Discussion
Applications of GI and CI for assessing risk factors can potentially 

provide more insightful information about the association between 
exposure and response in medical research [7,17]. The approach 
is appealing and straightforward, which summarizes RR, OR, AR, 
correlation coefficient and logistic regression model in a coherent 
manner. It can analyze three types of variables simultaneously: the 
exposure or underlying variable (X), the response or ill-health outcome 
(Y) and the predictors or determinants (Z). This feature is particularly 
attractive for analyzing the determinants of socioeconomic related health 
inequality [27]. The method brings together the inequality and relative 
risk analysis in a unified framework and enables researchers to assess 
overall exposure-response association. Our study has demonstrated 
that the concentration curves and indices are closely linked with 
RR, AR and regression analysis. The instrumental method provides 
another approach to investigate the structure of exposure and response 
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relationship. Different levels of exposure and response are modeled to 
allow a more detailed examination on the interplay between exposure 
and response in a graphical manner. The percentile based analysis is 
appropriate for skewed data and free of the underlying distribution. As 
demonstrated by the two examples, the method provides a powerful 
alternative for analyzing the cause - effect relationship for ordinal or 
continuous variables. It also allows further decomposition by multiple 
factors for identification of health determinants or adjustment of 
confounders using multivariate models [19,28]. A new variance 
estimate of rate ratio was derived using Taylor expansion without data 
transformation. The new correlation and determination coefficients are 
based on a semi-parametric approach to estimate factor contributions. 
Comparing the contribution estimates, this new method appears 
more plausible and robust than the |CI/GI| ratio and regression based 
decomposition. The logistic regression decomposition is a parametric 
model directly using the predictor information. If the model is chosen 
appropriately, the contribution estimates may be more accurate than 
the semi-parametric approach. There is empirical evidence that the 
exposure cannot be used simultaneously as the underlying variable 
for the CI and the predictor in the regression model 1Ŷ g ( Z)−= , as 
previously recommended [27]. This may overestimate the contribution 
of the exposure variable due to double-counting. 

Several limitations of the method should be noted. The 
concentration curve analysis is semi-parametric. The measure is 
relative rather than absolute. It does not use the exposure levels directly 
but the rankings instead. The same applies to RR, OR and AR. Use 
of spline regression to define knots of exposure categories might be 
helpful to address this shortcoming [9]. This limitation can also be 
addressed by jointly using logistic regression based GI decomposition 
as demonstrated in the examples. The GI and CI estimation by grouped 
data may underestimate the true association, because they overlook 
the within-group variation [29]. The coefficient of determination ρ2 
is a conservative measure of the exposure-response association based 
on the cumulative distributions. The CI is best used in a monotonic 
exposure-disease relation. With a non-monotonic situation (e.g. 
quadratic function), the positive and negative contributions may 
cancel out in the aggregate CI, although the concentration curve will 
reflect the detailed positive and negative areas, and OR and RR still 
remain valid.

In conclusion, the concentration curve approach provides a simple 
and useful alternative for risk factor analysis. It has desirable properties 
for assessing quantitative relationships between cause and effect. This 
approach is valuable for the overall assessment of exposure-response 
relationships, as the focus of health studies shifts from the proximal 
causes to the distal risk factors [30].
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where l = (1, 2) and pl indicates the probability of ill health events in nl observations. 
For l l lY = d n  within the domain (0, 1], 1 2r(Y) = Y Y . The first order Taylor expansion 
about Y is

( ) ( )( ) ( )( )1 1 1 2 2 2r Y = r(p)+ r ' p Y - p + r ' p Y - p  + remainder.

Assuming ( )      1 2p = E Y ,E Y , the second order approximation for ( )  E r Y  is 

( ) ( )
                         ≈              

1 1 1 2 21 1
2

2 2 22

E Y - E Y E Y E Y - E YE Y E Y
E r Y + - = = r p

E Y E Y E YE Y

The variance is 

( ) ( ) ( ){ } ( )( ) ( )( ){ }
( )

2 2

1 1 1 2 2 2

2
2

1 2 21 1 1 1 1 2 1 2
2 2 3 4

2 2 2 2 2

var r Y E r Y E r Y E r ' p Y E Y r ' p Y E Y

E Y Y E YY E Y var Y 2E Y cov Y ,Y E Y var Y
E

E Y E Y E Y E Y E Y

      = − ≈ − + −               
  −   −                            = − = − + 

                   

.
 

Because of the independence between Y1 and Y2, we therefore have

( )             ≈        

2 2
1 1 2 1 1 1 2

2 4 2 3
2 2 1 2 2 2

var Y E Y var Y p (1 - p ) p (1 - p )
var r Y + = + .

E Y E Y n p n p

Derivation of measures for continuous data

To lighten notations, when there is no ambiguity, we adopt the symbols similar 
to those for the discrete grouped data. Let f(Y) be the probability density function 
(pdf) of the continuous and non-negative ill-health random variable Y. The Lorenz 
curve of Y is obtained by plotting

( )
  

∫
y

0

1L(y) = Yf Y dY
E Y

on the ordinate, against the cumulative distribution function (cdf) F(y) along the 

abscissa, where the expectation ( )∞
   ∫0

E Y = Yf Y dY  exists [14]. By definition, 
′ ≥L (y) 0  and  ′′ ≥L (y) 0 . The health inequality may be measured by 

∫
1

0
GI =1 - 2 L(F(y))dF(y) .

We further define X, a continuous and non-negative exposure or risk factor of 
Y with pdf f(X) = f(Y). The cdf for X is 

∫ ∫
x x

0 0
F1(x) = f(X)dX = f(Y)dY .

Unlike F(y) in which f(Y) is integrated with respect to Y, F1(x) is given by 
integrating f(Y) with respect to X. The concentration curve of X can be obtained 
by plotting

  
∫

x

0

1L(x) = Yf(Y)dY
E Y

against F1(x) [16]. This definition means that RR may be measured by taking the 
first order differentiation of L(F1(x)) with respect to F1(x) as

′
  

dL(F1(x)) YRR = L (F1(x)) = =
dF1(x) E Y

,

which is the tangent of the concentration curve at a given value of x. In this case, 
OR is a function of Y,

  
  

1 - E Y
OR = .

E Y (1 / Y -1)  

The AR is 

AR =1 - L(F1(x)) - RR(1 - F1(x))

evaluated at F1(x) [13]. Health inequality attributable to X can be measured by CI 
in the form of

∫
1

0
CI =1 - 2 L(F1(x))dF1(x) . 

In this paper, F and F1 are rearranged using f(Y) = f(X). As a measure of 
overall association between the risk factor and ill-health, the correlation coefficient 
ρ between F and F1 is defined by

ρ
cov[F(y),F1(x)]

=
var[F(y)]var[F1(x)]

.

Since var[F(y)] = var[F1(x)] , we have

 ρ
cov[F(y),F1(x)]

=
var[F(y)]

.
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