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Introduction
Semiconducting metal oxide nanostructures are in the forefront 

of research due to their versatile properties exhibited in the nano-
scale regime. Zinc oxide (ZnO) is a very well-known inorganic II-VI 
semiconductor with high direct band gap ~3.4 eV and large excitonic 
binding energy of 60 meV at room temperature [1]. This high value of 
band gap makes ZnO a potential material for fabricating ZnO based UV 
laser [2]. ZnO has non-centro-symmetric structure and thus it possesses 
piezoelectric property. This is very useful in harvesting electrical energy 
from mechanical vibration [3]. Due to high band gap, UV emission is the 
characteristic emission of ZnO. However, during crystal growth several 
defect states (zinc and oxygen vacancies, zinc interstitials) are created 
which produces shallow energy levels within the valence band and 
conduction band of ZnO. Transition of carriers from these lower band 
gap energy states leads to visible emission from ZnO. Several researchers 
have reported blue, green, blue-green and violet photoluminescence 
from ZnO nanostructures due to specific type of defect states [4-10]. 
ZnO also exhibit ferromagnetism at room temperature [11]. This 
ferromagnetic and optoelectronic properties together makes ZnO a 
potential material in spintronic applications [12]. Nanoparticles are 
recently being used in bio-sensors, nanomedicine and also being used 
in clinical therapy [13-15]. Green synthesized ZnO NPs are found to 
be nontoxic to blood plasma and thus found potential element of 
nanoparticle based drug delivery. Gold, silver, TiO2, ZnO, CuO are 
found to exhibit antibacterial activity against various bacteria [16-18]. 
This antibacterial activity owes to the high surface to volume ratio of the 
nanoparticles and their specific charge transfer interaction mechanism 
with the bacterial cells. To understand the detailed mechanism of 
antibacterial activity of ZnO nanoparticles, thorough investigations 
have been reported in the existing literature. Recently, it has been 
reported that ZnO nanoparticles also exhibit negative activity against 
some bacteria [19-24]. Here in this mini review article I shall discuss the 
chemical growth of ZnO nanostructures and their antibacterial activity.

Crystal Structure
The unit cell of ZnO is wurtzite (Figure 1) having 
3.296 , 5.2065  a Å c Å= = with space group 4

6vC  [22]. However these lattice 
parameters may change due to lattice strain, and doping [23]. In the 
Wurtzite structure, Zn2+ and O2- ions are stacked alternately along the 
c-axis. The top surface is terminated with Zn2+ ions while the bottom
face is terminated with O2- ions. These two planes are basal polar planes. 
The growth rates of different planes are different and follow the following 

order: ( )0001 0111 0110 0111 (0001)R R R R R
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 This difference in 

growth rate together with the free energy of the systems leads to the 
variation in morphology of ZnO nanostructures [24].

Growth Methodologies and Morphology
Several methods have been reported in the literature to synthesize 

wide varieties of ZnO nanostructures. These methods include wet 
chemical method, electrochemical method, vapour-liquid-solid 
method, physical and chemical vapour deposition, dc and ac sputtering 
[25-31]. Each method has its advantages and certain limitations. In 
vapour-liquid-solid method, physical and chemical vapour deposition, 
dc and ac sputtering methods the growth of the nanostructures occur at 
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Abstract
Metal oxide semiconductor nanostructures are of keen interest to the researchers as they exhibit multifunctional 
properties compared to their bulk counterpart. Amongst several metal-oxide nanostructures zinc oxide is very popular 
because of its unique optoelctronic properties which are of wide importance in the field of nano-optoelectronic 
devices. Moreover, it also exhibit antibacterial activity which is very important in the field of medical science. This 
article briefly summarizes the wet chemical growth and anti-bacterial activity of several ZnO nanostructures with a 
view to provide the reader an overall feature of ZnO nanostructures.

Figure 1: Crystal structure of ZnO.
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high temperature, low pressure. Thus the film grown by these methods 
are very uniform with very good crystallinity. On the other hand in wet 
chemical method, the growth occurs at low temperature, thus there 
are possibilities of incorporation of defects within the crystal. But this 
method is very simple, cost effective and highly repeatable. 

Chemical Growth of ZnO Nanostructures
In chemical method the reaction can takes place either in 

aquatic media or in alcoholic media. Several soluble zinc salts and 
sodium hydroxide or potassium hydroxide are used in this process. 
Sometimes some additives are used to control the growth process. The 
nanostructures can be grown both template assisted and template free. 

Nanorods and nanopencils-like morphological structures are very 
commonly exhibited by ZnO. These types of ZnO nanostructures can be 
grown very easily by chemical method. Growth of ZnO nanorods onto 
Si and ZnO thin film has been reported by Vayssieres [32] by controlled 
hydrolysis of Zn(NO3)2. They used no surfactant and the growth 
occurred at a moderate temperature. Similar type ZnO nanorods are also 
reported by many researchers by hydrolysis of Zn(NO3)2 (Figure 2) [33]. 
However, the growth time, temperature and surfactant plays important 
role in determining the morphology of the grown ZnO nanostructures. 
By selective capping of the various facets of ZnO crystals it is possible 
to grow unidirectional growth of ZnO [34,35]. By varying the growth 
temperature and the growth duration the structure changes from 
nanorods, to monopods, bipods and nanoprism-like structures (Figure 
3) [36]. The pH of the solution is a key control factor of the growth rate 
of ZnO. Usually in basic media, due to the availability of more OH- 

ions, the growth rate of ZnO crystals is enhanced [37]. The reaction 
mechanism of nitrate based growth of ZnO is as follows:

3 2 2 2 3 2( ) .6 2 ( ) 2 6Zn NO H O NaOH Zn OH NaNO H O+ = + +
2 2

2 2 2 4( ) 2 2 2 ( ) 2Zn OH H O Zn OH H O Zn OH H+ − − ++ = + + = +
2
4 2( ) 2Zn OH ZnO H O OH− −= + +

Hollow tubular ZnO is also reported by few researchers [38,39]. 
However this type of morphology is not very commonly observed. This 
tubular structure can be formed by dissolution of the atoms from the 
core of nanorods [40]. Thus control of the dissolution rate is very much 
important in fabricating tubular ZnO. This includes the precise control 
of the reaction time, precursor concentration and growth temperature.

Another most interesting morphology exhibited by ZnO is 
nanobelts. Hydrothermal growth of ZnO nanobelts using sulphate salts 
in ethanolic media at 160ºC is reported by Zhang et al. [41]. Similar type 
of belt-like structure is also reported by Xi et al. in the reaction of zinc 
nitrate and NaOH in presence of EDA and ethanol [42]. Zinc acetate 
based ZnO nanobelts is reported by Samanta et al. [43] without using 
any surfactant. ZnO nanocrystals are polar in nature and the opposite 
charges reside on opposite sides of the crystal [44]. Thus the polar 
surfaces of ZnO can be treated as a charged parallel plate capacitor and 
possess additional electrostatic energy. So to reduce this surface energy 
it reconstructs in the following ways: (a) the nanobelts roll-over, (b) they 
form the spiral shape like DNA or (c) they can stack one upon another 
to reduce the surface charges. This leads to the stable structure of ZnO.

ZnO nanoparticles (NPs) and quantum dots (QDs) are very 
commonly observed in ZnO family. In QDs structure, the carriers 
are confined in a very small region. Thus the density of states and the 
energy bands are drastically modified. This leads ZnO NPs and QDs a 
potential material for nanoelectronic and spintronic memory devices. 
Dutta et al. [45] have reported the synthesis of ZnO QDs from zinc 

acetate in methanolic media. However if the reaction is performed in 
aquatic media then a layer of Zn(OH)2 is grown over the ZnO QDs. By 
varying the concentration of the nitrate ions, the sizes of the ZnO QDs 
was tuned from 13 nm to 30 nm. Wet chemical synthesis of ZnO NPs is 
also reported in the literature widely [46-50].

Antibacterial Activity of ZnO
The American Heritage Medical Dictionary 2007, defines 

antibacterial activity as the action by the external agent (drugs/foreign 
molecules) on the bacterial cell due to which the cell growth of bacteria 
is constrained. It is very important that the external drugs/foreign 
molecules used for the antibacterial activity must not affect the healthy 
cells of the body. Also the drugs must not be toxic. In gram-negative 
bacteria the cell wall is bi-layer type: the outer membrane is a thick while 
the inner one is a thin (~7-8 nm) plasma membrane of peptidoglycan 
[51]. However the cell wall of Gram-positive bacteria consists of a thick 
(~50 nm) peptidoglycan multilayer [51]. Within the cell wall the fluid 
(cytoplasm) content have several complexes of cellulose with 80% water 
and soluble ions, salts and nucleic acids. Due to the presence of these 
ions, the effective charge of the bacteria is usually negative. Cytoplasm 
controls the production of replica cells- its growth and metabolism and 
electrical conductivity of the cell. Nanoparticles of particle size ~50 
nm can be used to penetrate the cell wall, thus penetrate the cell and 
affect the conductivity of the cytoplasm of the bacteria. This results in 
the destruction of the bacterial cell. Several methods like disk diffusion 
technique, broth dilution and agar dilution technique, conductometric 
assay measurement technique have been reported in the literature to 
investigate the anti-bacterial activity of nanoparticles.

The study of anti-bacterial activity of ZnO is reported on several 
microbes like Neisseria,Gonorrohea, P. mirabilis, Klebsiella, Streptococcus 
mutans, Vibrio cholerae, E. coli, S. aureus, S. marcescens, C. freundii 
and on fungi like A. flavus, A. nidulans, Aspergillus niger and Candida 
albicans using T. harzianum and R. stolonifer [52-56]. Antibacterial 
activity of ZnO NPs on gram-positive and gram-negative bacteria is 
reported by Raghupathi et al. [56]. From their study it was found that 
smaller ZnO NPs are more efficient in antibacterial activity on S. aureus 
compared to large size ZnO NPs. The antibacterial activity of ZnO also 

Figure 2: ZnO (a) Nanorods and (b) Nanopencils. 
 

Figure 3: ZnO monopods and bipods. 

 



Citation: Samanta PK (2017) Review on Wet Chemical Growth and Anti-bacterial Activity of Zinc Oxide Nanostructures. J Tissue Sci Eng 8: 197. doi: 
10.4172/2157-7552.1000197

Page 3 of 4

Volume 8 • Issue 1 • 1000197
J Tissue Sci Eng, an open access journal
ISSN: 2157-7552

depends on the chemical concentrations. It has been observed that the 
ZnO NPs prepared by green synthesis method are more efficient than 
the NPs grown by chemical method [52]. The pH of the solution also 
plays an important role in the anti-bacterial activity of ZnO NPs. It has 
been reported that the antibacterial activity is more efficient at low pH 
of the solution [54]. The reason of antibacterial activity of ZnO NPs 
is yet not well understood. It has been found that the production of 
reactive oxygen species and aggregation of ZnO NPs in the plasma and 
membrane of a cell produces the anti-bacterial activity. However these 
need further investigations.
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