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Introduction
Cancer is becoming one of the main burdens of human being all 

over the world. The number of cancer patients is increasing because 
of the growth and aging of the population, as well as an increasing 
prevalence of established risk factors such as smoking, overweight, 
physical inactivity, and changing reproductive patterns associated with 
urbanization and economic development. GLOBOCAN estimated 
about 14.1 million new cancer cases and 8.2 million deaths occurred 
in 2012 worldwide [1]. From the most recent reported statistics, cancer 
is becoming a major public health problem in the United States and 
many other parts of the world. It is currently the second leading cause 
of death in the United States, and is expected to surpass heart diseases 
as the leading cause of death in the next few years [2]. Radiation 
therapy is playing an important role for effective treatment of all kinds 
of tumors [3-6]. External beam radiation therapy (EBRT) is currently 
utilizing x-ray or electron beam through linear accelerators (LINAC) 
[7-14]. Figure 1 displays the LINAC unit used at Ellis Fischer Cancer 
Center of University of Missouri. LINAC therapy allows the oncologist 
to deliver higher doses of radiation to the tumor with limited damage 
to the surrounding healthy tissue and/or organs [15]. During radiation 
therapy, multileaf collimator (MLC) device is used to shape radiation 
beams coming from LINAC, to conform to boundaries of the treated 
target (tumor). Despite the recent advancement in the design of 
MLC, there is still a small amount of radiation, (peripheral dose), is 
transmitted outside the boundaries of the treated target defined by 
MLC (Figure 2). Peripheral dose is the result of leakage and scatter from 
MLC. Peripheral dose counts for 2-10% of the maximum dose given to 
the patient, depending on the machine used and type of treatment. The 
existence of MLC designs reduces the peripheral dose by 6% to 50% of 
open field radiation that are harmful to the healthy tissues [16]. This 
small amount of leakage could cause serious damage to surrounding 
health tissues and severe side effects. According to New York State 
Department of Health, excessive exposure to radiation leakages will 
cause vomit, cataracts, sterility, secondary cancer, and even fetal death. 
There is a risk of fetal damage at doses as low as 0.05 Gy, and the risk 
becomes significant at doses between 0.1 and 0.5 Gy [17]. Followill et 
al. [18,19] estimated that the percentage likelihood of fatal secondary 
cancers attributable to a prescribed dose of 70 Gy can be as high as 4.5% 
for Intensity-Modulated Radiation Therapy (IMRT) with 18 MV photon 
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Abstract
Radiation therapy using external beam radiation therapy (EBRT) is playing an important role for effective 

treatment of all kinds of tumors. Peripheral dose is the result of leakage and scatter from multileaf collimators 
devices (MLCs), counts for 2-10% of the maximum dose given to the patient, depending on the machine used and 
type of treatment. The present review reveals that despite of the recent advancements in linear accelerators (LINAC) 
and MLC design and technology, the remaining small amount of leakage (peripheral dose) of these devices still has 
significant side effects on patient’s life span and quality of life after treatment. Based on the findings in this review, it is 
suggested that introduction of additional effective and patient-specific shielding techniques would have great impact 
on reducing risk of radiating healthy cells and hence adversely side effects on cancer patients.

Figure 1: Medical Linear Accelerator (LINAC) used for Radiation Therapy 
at Ellis Fischer Cancer Center University of Missouri, Columbia, MO USA.

beams and up to 8.4% for 25 MV photon beams. One could conclude 
from the reported survey that the level of leakage (peripheral dose) of 
existing treatment devices have significant side effects on patient’s life 
span and quality of life after treatment. Additional shielding or blocking 
devices should be developed to reduce the harmful effects of peripheral 
doses. 

Features of available Multileaf Collimator (MLC) 

The overall goal of radiotherapy treatment is a precise delivery 
of the recommended dose to a target volume [25]. The dosimetric 
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characteristic of the new 160 MLCTM mounted on a linear accelerator 
(ARTISTETM Siemens Medical Solutions) is determined by Tacke et 
al. Through the dose calculations measured by a diode detector (PTW 
Diode P, Germany), the maximum observed interleaf leakage was 
0.63% for a 100 × 100 mm2 field. Subramaniam et al. did a dosimetric 
comparison with 2.5 mm high definition MLC to the 5 mm millennium 
multileaf collimator (MMLC), for volumetric-modulated arc therapy 
(VMAT)-based lung stereotactic body radiotherapy (SBRT), the 
high dosage spillage, in case of flattening filter-free (FFF) beam, 
was maximum for 2 cc volume at 2.9% for high definition multileaf 
collimator (HDMLC) and 3% for MMLC [26]. According to Fogliata et 
al., the accuracy of photon dose calculation algorithms in regards to out-
of-field regions are often ignored regardless of its utmost importance 
for organs at risk and peripheral dose evaluation. The out-of-field 
(peripheral) dose is generated from three sources: leakage from the 
linear accelerator head shielding; radiation scattered from the LINAC 
head (mainly from flattening filter and collimating system); and internal 
scatter originating in the patient [27]. A new accelerator collimator, 
shown in Figure 3, containing a single pair of sculpted diaphragms that 
is orthogonally mounted to a 160 leaf of multileaf collimator (MLC). 

Dosimetric characteristics were evaluated by Thomson et al. [28]. They 
stated that the maximum transmission through the multileaf collimator, 
AgilityTM (Elekta AB, Stockholm, Sweden) which incorporates a full 
field, narrow leaf-pitch MLC), is 0.40% at 6 MV and 0.52% at 10 MV. 
When there is zero leaf gap, the off-axis intertip transmission is 2.2% for 
6 MV and 10 MV. Kragla et al. determined the dosimetric properties of 
unflattened megavoltage photon beams at 6MV and 10MV of the Elekta 
Precise LINACs, where the accelerator is equipped with 40 leaf pairs 
(isocentric leak width 1 cm) and backup jaws that allows for maximum 
field size of 40 × 40 cm2. The mean inter-leaf leakage was 1.7% ± 0.4% 
and 1.4% ± 0.3% for 6F* and 6U* beams (6F*, 6U*, 6F, 6U, 10F and 10U 
are the beam labels in reference [29], which are explained by Table 1). 
For 10F and 10U beams, it was reported that the inter-leakage is 1.7% ± 
0.3%, and 1.5% ± 0.3%, respectively [29]. Asnaasharia et al. compared 
dosimetric characteristics of two MLC systems, Elekta “Synergy S” 
and Radionics micro-MLC (mMLC), which are frequently used for 
stereotactic radiosurgery and radiotherapy. It was reported that the 
maximum leakage percentage of the Radionics mMLC and beam 
modulator (BM) were 1.2 % and 1.3% maximum, respectively [30]. 
Moreover, mMLC and BM leaf transmission possibly will contribute to 
out-of-field dose leakages which will negatively affect normal healthy 
tissues. Based on numerous studies, LoSasso stated that the average 
static leakage (mid-leaf and interleaf) from the MLC is approximately 
1.5% accounting for the open field dose for a beam of 6 MV and field 
size of 10 × 10 cm2 and for a field sizes of 20 × 20 cm2 the percentage 
leakage increased 20% [31]. Hong et al. presented investigated research 
in regards to planning and delivery of large IMRT fields using LINAC 
and MLC technology at 15 MV beams. With Varian 2100EX series, the 
utilization of film dosimetry estimated the scatter and leakage from 
MLC contributed approximately 4% of the total dose for the treatment 
field [32]. Podder et al. investigated the physical characteristics such as 
the interleaf leakage, transmission through the leaves and the tongue 
and groove effect of two linear accelerators (BrainLAB’s Novalis and 
Elekta’s Synergy-S Beam Modulator). It was determined that the tongue 
and groove effect of the Novalis is 23% ± 0.9% which is smaller than the 
Synergy-S of 25 ± 1%. The interleaf leakage and leakage from the leaves 
directly for synergy-S is 1.6 % ± 0.07% and 0.9% ± 0.04%, respectively, 

Figure 2: (a) 160 MLC with a certain shape open field.
Figure 2: Siemens 160 MLC [20].

Figure 2: (a) 160 MLC with a certain shape open field.

 
Figure 2: (b) 160 MLC dimensions and ranges.

 
Figure 3: An illustration of the AgilityTM collimator featuring the leaves and 
the sculpted diaphragms from the patient’s eyen view [28].
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whereas for the Novalis it is 2 ± 0.08% and 1.3 ± 0.05% [33]. Garcia-
Garduno et al. utilized GafChromic EBT radiochromic to measure 
dosimetric characteristics. The measurements were conducted using a 
Novalis linear accelerator, m3-mMLC that has 26 pairs of tungsten alloy 
leaves of several different width dimension [34]. The result shows a 
transmission percentage of the m3-MLC is 0.93 ± 0.05% with a leakage 
of 1.18 ± 0.11%. Belec et al. performed Monte Carlo calculations of dose 
distributions of the Varian CL2300 linear accelerator that has a 6 MV 
photon beam. The transmission percentage was determined to be 1.3% 
and the leakage percentage was determined as 2.4% [35]. The Siemens 
160 MLC developed in 2009, is equipped with 160 leaves with a tungsten 
leaf thickness of 5 mm over a 40 × 40 cm field. It provides incredibly 
accurate conformity to the actual tumor shape for homogeneous 
dose coverage [20]. The 160 MLC was found to improve dosimetric 
conformity and IMRT delivery efficiency compared to the old model 
58-ML [36]. However, the newly developed MLC still has a 2.75% of 
transmission from inter leaf, intra leaf and through jaws and 0.2% of 
maximum leakage [20]. Leaking dosage from MLCs measurements 
conducted by Arnfield, Mark et al. are described for two tungsten 
alloy MLCs: a Mark II 80-leaf MLC on a Varian 2100C accelerator and 
a Millennium 120-leaf MLC on a Varian 2100EX accelerator. MLC 
leakage was measured by film for a series of field sizes. Measured MLC 
leakage was 1.68% for a 10×10 cm field for both 6 and 18 MV for the 
80-leaf MLC. For the 6 MV field, the 1.68% leakage consisted of 1.48% 
direct transmission and 0.20% leaf scatter [37]. It should be mentioned 
here that significant inaccuracy in the detectors measurement for the 
radiation dosage were reported [38]. Lárraga-Gutiérrez et al. concluded 
that statistically there is a significant difference in RT values amongst 
different detectors ranging from 3.5 to 12.5%. This variability in 
measurement could impact dosimetry of IMRT treatment by up to 1.78 
Gy to the healthy tissue surrounding the target for a treatment of 60 Gy. 
This level of dose leakage to healthy tissue could cause severe health 
risk for patients [38]. Furthermore, most dosimetry measurements only 
focus on parts of leaking through the MLCs. According to Victor Tello’s 
report, the primary x-ray transmission through the MLCs are nearly 
9.5%, with 2% through the leaves, 3% through interleaf transmission, 
jaws 1% and cerrobend blocks 3.5%. These data are for the MLCs that 
have 40 pairs of leaves and width of 1cm with 6-7.5 cm of tungsten alloy 
[39].

Possible side effects from leakage generated at linear 
accelerator (linac) and other sources 

Most of the currently used multileaf collimator (MLC) devices have 
leakage in the range of 2% to 9.5% of the full radiation dose. In case 
of using 7000 cGy dose to treat typical cancer patients, their healthy 

organs and tissues will be exposed to a range of radiation from 140 cGy 
up to 665 cGy. These level of exposure is more than sixty times what 
the human body can tolerate (10 cGy) with acceptable adverse side 
effects. Many papers have reported about Side effects after radiation 
therapy have been reported by many investigators [40-45]. Different 
tissues have different radiation tolerance, for example, for orbital 
tumors, whereas orbital bones, muscle, and fat can tolerate relatively 
high doses; the lens, eyelashes, retina, and lacrimal system are more 
radiosensitive [40]. Side effects such as dry eye, eyelash loss, cataract, 
neovascular glaucoma, radiation retinopathy, and optic neuropathy 
are all potential local complications of orbital irradiation [16,41-45]. 
On EU Scientific Seminar 2013, R. Padovani, presented the current 
status of dosimetry and radiation risk assessment in diagnostic 
and interventional radiology and future research and regulatory 
actions. Pathologies such as ESKD (end stage kidney disease), IBD 
(inflammatory bowel disease), CAD (coronary artery disease) and HT 
(heart transplant), requires frequency radiological examinations [46]. 
The existence of large cumulative individual doses is confirmed by 
this simple analysis of 6 months of radiological records in a hospital 
(Udine, 2013): (i) 2.4% of CT adult patients have received a DLP of 
more than 6700 mGycm (corresponding to approximately 100 mSv 
of effective dose for an adult standard man), (ii) a 28 years old man 
with 8 CTs has received 210 mSv. A study from Mei-Kang Yuan et al., 
has associated patients with several head and neck CT examinations 
with an increased risk of cataracts [47]. As stated by Mike Hanley from 
www. Xrayrisk.com, it is currently estimated that 62 million CT scans 
are obtained in the United States each year [48]. A study published 
2004 suggested that radiation exposure from medical imaging may 
be responsible for 1-3% of cancers worldwide [49]. Occurrence of 
cancer within an irradiated field that was previously treated, clinically 
persuades medical experts that it is due to radiotherapy (RT) [50]. Little 
compared quantitatively the cancer risk estimates derived from recent 
life span study (LSS) cancer data with cancer incidence and mortality 
risks investigated by a patient population that underwent substantial 
radiation doses due to treatment for malignant and non-malignant 
conditions. M. Little minimally updated the studies relating to solid 
cancer and leukaemia from recently published reviews. It was reported 
that for solid cancers the ratio of LSS risks: RT risks ranges from 0.52 
to 31.89 (Table 2), whereas for leukaemia the ratio of risks ranges from 
1.72 to 524 [51-57]. Yuan et al., utilized information from 2 million 
random surveys of patients enrolled in the Taiwan National Health 
Insurance Research Database [58-60]. Among 2776 patients who had 
neck tumors and CT scans were conducted on the patients, the exposed 
patients exhibited higher overall incidence of cataracts (0.97%), 
where further stratification of the quantity of CT studies revealed that 
cataract incidence gradually increased with increased frequency of CT 
studies (0.79%, 0.93% and 1.45%, respectively) (p=0.0001, adjusted 
for trend) [60]. Sinnott et al. discussed radiation exposure relative to 
the thyroid stemming from diagnostic imaging and treatment and 
potential risks pertaining to the thyroid in childhood exposure due to 
its sensitivity to radiation at an early age [61]. It showed that radiation-
related cancer occur more frequently in children than adults because 
children tissues are growing and cells are dividing more rapidly when 
exposing children to the mutagenic effects of ionizing radiation [61]. A 
radiological accident [62] occurred at the Bialystok Oncology Centre 
(BOC) in Poland in 2001 that negatively affected 5 patients undergoing 
radiotherapy. The patients’ dosage were significantly higher than 
required which caused itching and burning sensations. Due to the 
severity of the over exposure, surgery was conducted in order to relieve 
the pain or to treat the injuries stemming from the radiation overdose. 
According to Taylor et al. radiotherapy in most developed countries 

MUW 6 MV SLH 6 MV MUW 10 MV

  FF FFF FF FEE FF FEE

Quality index 
(TPRzono) 0.686° 0684° 0.681 0.664 0.735 0.714

Ds/Dio (10 x 10 cm2) 1. 1. 1. 1.320 1. 1.

Relative dose rate 1 2. 1 2. 1 2.30

Beam label in this work sr 611 6 F 6U 10 F IOU

 Table 1: A Relative dose rate: ratio of maximum dose rate of FFF beam and the 
maximum dose rate of the clinically used beam. b TP820/10 matched for 10×10 
cm2 field size in reference conditions.
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Reference             2nd cancer Age at Ist   Pt cancer Cases 
Controls cancer range(mean)      

Age 
at 2s 

cancer,  
(mean)

Dose to  
Dose to 

controls, 
average

Dose to 
controls, 
maximum

Study ERR 
Gy'(95%CI)

BEIR VII  
ERR Ratio

Travis et al. [22] Breast Hodkins disease 105 266 13-30(22) 41 25 61     0.15  
(0.04-033) 11 7.34

Inskip et al. [23] lung Breast 61 120 35-72(50) 68 6 23     0.20  
(-0.62-1.03) 1.17 5.87

Gilbert et al. [24] lung Hodkins disease 227 455 9-81(49) 59 24              
60+

    0.15  
(0.057-0.39) 1.43 9.56

Boice et al. [8] Bone sarcoma 
soft tissue cervix 15 155 <45-

65+(45-54) 67 22              
10+

     0.02  
(4.03-0.21) 

            
NA          -

Boice et al. [8] sarcoma cervix 46 598 <45-
65+(45-54) 67 7             

10+
    -0.05  

(-0.11-0.13)
             

NA          -

Rubino et al. [25] sarcoma Breast 14 98 35-77(55) 62 19 80     0.05  
(<0-1.18)

            
NA

           
-

Morton et al. [26] esophagus Breast 252 488 28-88(59) 74 7 45     0.08 
(0.04-0.16) 0.61 7.64

    van den Belt-
Dusebout et al. [27]                                                                                                                                             

                                                                                                                                                      
                                                                                                                                                      
                                                            

                           
Stomach Testis & Hodkins disease 42 126 20-50+(34) 51 11 40      0.84  

(0.12-15.6) 0.43 0.52

Boice et al. [8] Colon cervix 409 759 <45-
65+(45-54) 68 24              

40+
     0.00  

(-0.01-0.02) 0.36            
-

Boice et al. [8] Rectum cervix 488 901 <45-
65+(45-54) 68 45              

60+
  0.02  

(0-0.04) 0.1 5.04

Boice et al. [8] uterine carpus cervix 313 469 <45-
65+(45-54) 68 165            

200+
(NA)  

 
             

NA         -

Boice et al. [8] ovary cervix 309 560 <45-
65+(45-54) 68 32              

60+
    0.01  

(4.02-0.14) 0.32 31.89

Boice et al. [8]  Bladder cervix 273 520 <45-
65+(45-54) 68 45             

60+
    0.07  

(0.02-0.17) 1.38 19.78

Table 2: Excess relative risks/Gy for second solid cancers among survivors of first cancer predominantly treated in adulthood [58] compared with risk in a similar (age, sex, 
follow-up matched) Japanese atomic bomb survivor subpopulation, via BEIR VII models [59].

are received by 50 percent of women with breast cancer, and in a 78 
random trails of 40,000 women, the beneficial effect of radiotherapy 
was offset by 30% increase in heart disease death rate due to ischaemic 
heart disease. Within the UK, majority of women receive tangential 
radiotherapy that delivers mean heart doses of approximately 1-2 Gy 
from the left-sided and 1 Gy from right-sided radiotherapy where in the 
right tangential radiotherapy, the heart received scattered irradiation 
only [63-67]. Based on the findings, statistics and discussions reported 
in the present review, it is suggested that introduction of additional 
effective and patient-specific shielding techniques would have great 
impact on reducing risk of radiating healthy cells by peripheral doses 
and hence adversely side effects on cancer patients. At present time, 
King Abdulaziz University in Saudi Arabia and University of Missouri 
in USA are collaborating in developing the new technology for the 
additional patient-specific shielding techniques.

Conclusion
The following conclusions can be drawn from the present review:

1-	 Radiation therapy using external beam radiation therapy (EBRT) 
is playing an important role for effective treatment of all kinds 
of tumors.

2-	 Peripheral dose is the result of leakage and scatter from multileaf 
collimators devices (MLCs), counts for 2-10% of the maximum 
dose given to the patient, depending on the machine used and 
type of treatment.

3-	 The present review reveals that despite of the recent advancements 
in linear accelerators (LINAC) and multileaf collimators devices 
(MLCs) technology, the remaining small amount of leakage of 

these devices still has significant side effects on patient’s life span 
and quality of life after treatment.

4-	 Based on the findings in the present review, further research 
and development are recommended for establishing additional 
shielding devices that covers the patient’s critical area around the 
treated target in order to maintain the fetal peripheral dose below 
acceptable levels.
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