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Abstract
Spinal cord injury (SCI) can result in serious respiratory compromise, impaired cough ability and respiratory 

failure. Complications include atelectasis and pneumonia. Respiratory failure is the primary cause of morbidity 
and mortality in high cervical cord injuries. Various methods have been used to assist coughing in SCI, including 
manual and mechanical techniques. Physical therapists can apply certain exercises and maneuvers to augment tidal 
breathing and expiratory effort, such as respiratory muscle training. For patients with vital capacities <10 to 15 mL/
kg, noninvasive methods such as abdominal binding, the pneumobelt, and face mask-applied ventilators are used to 
maintain adequate respiration. Phrenic nerve and diaphragmatic pacing provide increased patient mobility, comfort 
and lower health care costs; breathing pacemakers have increased survival and improved quality of life in individuals 
with upper cervical cord and brain stem lesions. Tracheostomy should be used only for those patients that have 
severe bulbar impairment and cannot successfully use airway clearance methods. Even patients with tracheostomy-
assisted ventilation can be eventually weaned off respirators, provided they meet criteria for spontaneous breathing. 
Peak expiratory flows should exceed 160 L/m to assure expulsion of airway secretions and the negative inspiratory 
pressure should exceed -20 cm H2O (variables measured with the tube cuff inflated) before the patient is decannulated. 
Appropriate vaccinations should be provided for any individual with compromised respiratory function, particularly 
with regularly scheduled influenza and pneumococcal pneumonia vaccines. Management of the physically impaired 
patient can be a major challenge for family, leading to adverse physical and psychological consequences. Long-term 
management requires a multidisciplinary approach that includes respiratory, physical and occupational therapists, 
nutritionists, social workers, psychologists, and home health agencies, all of whom contribute to key aspects of 
maintaining optimum respiratory function. Life satisfaction is a major consideration in this group of individuals, but 
it may have a more positive outlook than one would think in someone with significant physical and psychological 
challenges.
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Introduction
Approximately 17,000 new cases of spinal cord injury (SCI) occur 

each year, affecting more than 282,000 people in the U.S [1]. More 
than half of spinal cord-injured individuals experience an injury at 
the cervical level [2]. Mortality rates for individuals with cervical cord 
lesions are 9-18 times higher, respectively, than for those of the same 
age in the general population [3]. Respiratory disorders are the leading 
cause of death in cervical cord injuries (SCIs) [4-6], although mortality 
rates have decreased by as much as 79% for patients with complete 
tetraplegia by the 1970s [7] thanks to improved care. Respiratory 
illnesses comprise 20-24% of deaths during the first 15 years after injury 
[8,9]. Several factors adversely influence mortality, including level of 
SCI, older age, preexisting cardiopulmonary disease, concomitant 
injuries, and delayed recognition of and attention to pulmonary 
problems [8,9]. A prospective study found that independent predictors 
of all-cause mortality included diabetes mellitus, a history of heart 
disease, tobacco consumption, and FEV1 at entry into the study [8]. In 
contrast to prior retrospective studies, level and completeness of injury, 
age, and injury in earlier years were not directly related to all-cause 
mortality. The authors concluded that as individuals with SCI survive 
longer, comorbid conditions and personal behavior, such as smoking, 
increasingly determine mortality.

Pathophysiology
The degree of respiratory impairment in patients with SCI depends 

on the level of injury, although partially functioning segments may 

contribute to improved function [10,11]. Patients with neurological 
complete lesions at C1 and C2 cannot breathe on their own. Individuals 
with complete C3 and C4 tetraplegia have impaired ventilation due to 
diaphragmatic paralysis and are typically ventilator dependent in the 
acute stage, though a significant proportion of individuals with C4 
tetraplegia are ultimately able to successfully wean off the ventilator. Low 
cervical cord lesions (C5-C8), will impair function of the intercostal, 
parasternal, and scalenes, and but leave the diaphragm, trapezii, 
sternocleidomastoid, and the clavicular portion of the pectoralis major 
muscles intact. As the phrenic nerve origins are from C3 to C5, the 
diaphragmatic force generation will remain intact in lower cervical 
injuries even as other chest wall muscles lose function [12]. However, 
when breathing against an incremental threshold load, inspiratory 
muscles have limited capacity to generate pressure against the load [13]. 
This finding, as well as a higher tension-time index of the diaphragm 
compared to that of control subjects, provide evidence for diaphragm 
fatigue [12]. With inspiratory resistive training or phrenic stimulations, 
however, diaphragmatic strength and endurance may improve [14,15] 
along with lung function [16].
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effort against an occluded airway, and is referred to as the P0.1. It 
reflects neuromuscular drive, and is unaffected by cortical input, as 
the subject is unaware that the airway is blocked until (relatively) long 
after the airway has been occluded. Because there is no flow at the time 
of occlusion, P0.1 is unaffected by airway resistance, but is influenced 
by lung and chest wall volume and compliance. Neuromuscular drive 
as measured by P0.1 increases with CO2 rebreathing. In this regard, 
studies have shown conflicting results in persons with quadriplegia, 
with some demonstrating ventilatory response to hypercapnia in 
SCI to be the same as in able-bodied controls [25], but most others 
showing blunted responses [26,27], Despite the blunted response to 
hypercapnia, normoxemic tetraplegic individuals exhibit the ability 
to compensate for an increased mechanical load, such as breathing 
against an inspiratory resistance, as shown by an increase in P0.1 [25]. 
Neural inspiratory drive (Edi) as defined by the moving integrated 
average of the diaphragmatic electromyogram, and measured by 
esophageal electrode, also increases with added inspiratory load [27]. 
Similarly, ventilatory and P0.1 responses to hypercapnia do not change 
with assumption of posture from supine to semi-recumbent or seated 
in which a shortening of the resting length of the diaphragm would 
reduce its force-generating ability [28-32]. The rate of rise of the Edi 
response to hypercapnia is significantly higher in seated SCI patients, a 
change not seen in control subjects [33]. Under loaded conditions, the 
intensity of central neural output in SCI patients is preserved to achieve 
adequate tidal volume (Vt) as in healthy controls, but the inspiratory 
duration is markedly shortened, perhaps in an attempt to minimize 
energy requirements [34].

In this connection, patients with high SCI exhibit an intact sensation 
of “air hunger” to hypercapnia or reduced Vt. Manning and coworkers 
showed that “air hunger” correlated significantly with Vt and end-tidal 
partial pressure of carbon dioxide (PetCO2) independent of each other, 
suggesting that the sensation of “air hunger” is independent of afferent 
information from the chest wall [28].

The diaphragm and other skeletal muscles serve purposes other 
than respiration. In patients with low cervical injury, in addition to 
serving as the major inspiratory muscle, the diaphragm functions also 
as a trunk extensor [35]. When performing forward trunk flexion, 
these patients exhibit continuous and augmented diaphragm electrical 
activity and abdominal pressures [36]. Thus, during posture imbalance 
the diaphragm may fatigue as a result of overriding its inspiratory 

During the acute period, forced vital capacity (FVC) in tetraplegia 
is markedly reduced as a result of diaphragmatic weakness, but FVC 
as well as other lung volume subdivisions recover over the next several 
weeks to months [17,18]. Linn et al. [18] reported that in subjects 
with complete-motor lesions, FVC ranged from near 100% of normal 
predicted values in the group with low paraplegia, to less than 50% in 
those with high tetraplegia. Incomplete lesions mitigated FVC loss in 
tetraplegia. For subjects with low tetraplegia (C6 - C8), a one-vertebra 
rise in lesion level predicted an additional nine percentage points FVC 
impairment. For those with paraplegia estimated effects of level were 
reflected as a slightly more than one percentage point FVC decrement 
per one- vertebra rise in level (Figure 1) Impaired function of the 
diaphragm in the acute stage of injury in mid-to-low cervical and 
high thoracic SCI is due to the mechanical inefficiency associated with 
paradoxical (dyssynchronous) rib cage movement and unfavorable 
changes in thoracoabdominal compliance. The time course of recovery 
of pulmonary function varies in people with SCI and may only be 
weakly predicted by the initial degree of impairment and the injury 
level [18]. Reduction in lung volume results in decreased lung and chest 
wall compliances [19-21], which further increase work of breathing and 
contribute to dyspnea and respiratory failure (Figure 2).

Patients with tetraplegia exhibit a rapid, shallow breathing pattern 
[22]. Rib cage motion is paradoxical because of a reduced anteroposterior 
diameter of the upper rib cage [23-26]. This paradoxical rib cage motion 
is caused by paralysis of the rib cage inspiratory muscles, particularly 
the parasternals and external intercostals which ordinarily provide 
stability to the rib cage.

Ventilatory drive in individuals with SCI can be assessed by recording 
the airway occlusion pressure (P0.1 or P100) response to hypercapnia 
during CO2 rebreathing. The occlusion pressure is the airway or mouth 
pressure measured 0.1 seconds after the subject initiates an inspiratory 

Figure 1: Correlation of forced vital capacity (FVC) and forced expiratory 
volume in one second (FEV1) with level of spinal cord injury [18].

Figure 2: Diagram illustrating the expiratory action of the clavicular portion 
of the pectoralis major. The muscle fibers run caudally and laterally from the 
medial half of the clavicle to the humerus. Consequently, if the arms are fixed, 
contraction of these fibers on both sides of the chest displaces the clavicles 
and the manubrium sterni in the caudal direction. As a result, the upper part 
of the rib cage moves caudally as well and compresses the upper rib cage. 
Exercising this portion of the clavicle augments the cough effort and may 
increase inspiratory capacity.
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function [35]. Paralysis of the abdominal muscles results in ineffective 
cough and clearance of secretions. To assist in cough, during forced 
expiration, tetraplegic individuals can recruit the clavicular portion 
of the pectoralis major (motor innervation C5 to C7) to compress 
the rib cage [37], with enough force to even cause dynamic airway 
collapse, as in able-bodied persons (Figure 2). Both repetitive isometric 
contractions of the pectoralis conducted over several weeks [38,39] 
and paired magnetic stimulation of abdominal muscles [40] improve 
or retain abdominal muscle force generation. With paralysis of the 
major respiratory muscles, individuals with tetraplegia can use the 
sternocleidomastoid and other accessory neck muscles (trapezii, platysma, 
mylohyoid) to sustain brief periods of spontaneous breathing [37].

Secondary immune deficiency is a serious complication that 
may lead to chronic and recurrent infections after SCI [41]. Immune 
dysfunction and infectious complications are more prevalent than 
in persons with paraplegia. The role of autonomic dysreflexia is an 
intriguing neurogenic mechanism contributing to post-traumatic 
immune suppression, thought to be related to the release of 
immunomodulatory glucocorticoids and norepinephrine into the 
blood and immune organs with each dysreflexic episode [42]. These 
authors and others showed previously that splenic B-cell numbers and 
antibody production were reduced early after high level SCI [43,44]. 
It has been suggested that assessment of heart variability by Holter 
monitoring can predict infectious complications [45,46], although this 
concept requires additional research.

Respiratory Impairment- Clinical Aspects
As respiratory complications are among the most common 

adverse systemic events following cervical SCI, identification of factors 
that would predict morbidity, mortality and increased length of stay 
is important. In a study of 109 patients (motor injury complete in 
nearly 60%) Aarabi et al. [47] found associations between pulmonary 
complications and younger age, sports injuries, the American Spinal 
Injury Association (ASIA) Impairment Scale (AIS) grade at admission 
[47], ascending neurological level, and lesion length on MRI studies. 
Patients with AIS grades A, B, and C were 10, 2.6, and 1.7 times as 
likely to have a moderate to severe pulmonary complication compared 
to those with AIS grade D injury.

Bronchial hyperresponsiveness

Individuals with cervical SCI exhibit bronchial hyperresponsiveness 
to histamine that can be blocked with ipratropium chloride [48,49] 
and oxybutynin chloride, an antimuscarinic agent administered 
to reduce urinary frequency due to bladder spasticity [50]. Airway 
hyperresponsiveness reflects unopposed cholinergic bronchoconstrictor 
tone resulting from disruption of upper thoracic ganglia. As a result 
of these changes, patients with high SCI benefit from nebulized β2-
agonist bronchodilator therapy. As in able-bodied individuals, smoking 
adversely affects lung function as reflected by reduced values of forced 
expiratory volume in one second (FEV1) and peak expiratory flow 
(PEF) [51]. 

Acute respiratory distress syndrome

Acute respiratory distress syndrome (ARDS) and acute lung injury 
(ALI) are common complications after acute SCI. A large database 
assessment of more than 37,000 admissions with SCI conducted 
between 1988 and 2008 evaluated the relationship between SCI and 
ARDS [52]. ARDS was observed in 32% of more than 12,000 admissions 
of SCI with evidence of open vertebral column fractures (VCF), in 21% 
in those with closed VCF, in 9% of patients without fracture, and in 

2.4% in patients with closed fracture but no SCI. The overall prevalence 
of SCI ARDS or ALI in all SCI patients was 17% and 11% in patients 
with cervical cord injuries. SCI was a greater risk factor for ARDS and 
acute lung injury (ALI) and was significantly greater than in patients 
with spinal trauma without SCI [odds ratio (OR) 4.9], although the 
study was completed just before the new Berlin classification of ARDS 
which no longer includes ALI as a subcategory of the condition [53]. 
The presence of sepsis or cardiac arrest further increased risk of ARDS 
(OR 8.6). As expected, in-hospital mortality rates were much higher 
in patients with ARDS/ALI than in those without (OR 6.5). Mean 
hospital length of stay was 4 times as long in SCI patients than in those 
without SCI. Hispanic and native American males were at a higher risk 
of developing ARDS/ALI, findings similar to that in traumatic brain 
injuries [54].

Recovery of respiratory function after SCI

Recovery of respiratory function has been studied in monkey 
models [55]. Destructive changes in the anterolateral columns as well 
as the phrenic motoneurons contributed to the apneas. A delayed form 
or respiratory paralysis within 30 to 60 minutes was caused by edema 
and centrifugal pressure from the expanding central cord lesion leading 
to secondary ischemia as seen on photomicrography. Durotomy 
performed within 2 hours after injury reversed respiratory dysfunction 
as long as respiratory pathways remained viable. Nevertheless, many of 
the animals still exhibited impaired breathing as noted by irregular and 
paradoxical breathing patterns

Recovery of respiratory function in humans, at least to some degree, 
may occur within months after SCI. Ledsome and Sharp [17] found that 
in patients with functionally complete transection of the cord between 
segments C5 and C6, the VC was 30% of predicted one week following 
injury. Patients with an FVC of <25% predicted had a high incidence of 
respiratory failure requiring assisted ventilation, particularly seen with 
C5 or higher injuries. The VC increased significantly within 5 weeks of 
injury and had approximately doubled after 3 months. An incidental 
finding was that of a high incidence of hypoxemia, even in the absence 
of hypercapnia. This can be attributed to an elevated diaphragm with 
resultant increase in closing volume, de-recruitment of alveoli and 
ventilation-perfusion mismatching [56]. Axen and colleagues [57] found 
that VC increased by an average of 29% in 36 tetraplegic individuals 
after 10 months following injury. The improvement in lung function 
was attributed to at least partial recovery of phrenic nerve function. 
These authors observed simultaneous improvement in shoulder and 
upper arm muscles with some segmental innervation in common 
with the diaphragm. Brown et al. [58] serially measured lung volume 
subdivisions in 5 complete persons with quadriplegia over the course 
of one year: mean inspiratory capacity and expiratory reserve volume 
increased by 47% and 245%, respectively. A concomitant improvement 
in transdiaphragmatic pressure indicated some spontaneous recovery of 
diaphragm innervation, a conclusion similar to that of Axen et al. [57]. 
Bluechardt and colleagues [19] found that FEV1 and FVC increased by 
40% and 33%, respectively, between 3 and 7 months, changes attributed 
to improved diaphragmatic and accessory respiratory muscle function 
[58-63]. As might be expected, approximately 80% of SCI patients (65% 
of those with complete cervical motor injuries) meet testing standards 
for acceptability and reproducibility according to American Thoracic 
Society guidelines [64,65]. 

Following high cervical cord injury, ipsilateral excitatory input to 
the phrenic motoneurons from the medulla is removed and rhythmic 
phrenic activity ceases on the side of injury. However, latent contralateral 
excitatory premotor input to phrenic motoneurons can be strengthened 
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over time after cord hemisection leading to functional recovery of 
activity. This neuroplasticity can mediated through neurotrophins 
such as brain-derived neurotrophic factor (BDNF) acting through 
tropomyosin related kinase receptors (TrkB). One group is currently 
conducting a study to determine if functional recovery of rhythmic 
phrenic activity is enhanced by an increase in TrkB.FL signaling in 
phrenic motoneurons and to determine whether time-dependent 
changes in TrkB signaling following cord hemisection mediate the acute 
enhancing effect of intrathecally and intrapleurally administered BDNF 
on functional recovery [66]. Unfortunately, intrathecal BDNF has been 
associated with significant adverse effects that preclude its therapeutic 
use. As an alternative, the group is also studying locally implanted 
mesenchymal stem cells genetically engineered to produce BDNF, 
combined with a novel targeted approach to increase expression of 
TrkB in phrenic motor neurons using adeno-associated virus designed 
to promote functional recovery after spinal cord injury.

Management of Respiratory Complications Following SCI

Tracheostomy-assisted ventilation
Patients with acute SCI should be monitored in the intensive care 

unit because of the potential for cardiorespiratory complications. 
Patients with complete SCI at the C5 level and above typically require 
airway protection and assisted ventilation at least initially [5,67,68]. 
Even as many as 79% patients following acute complete injuries at 
C6 or below may require intubation and half of them may progress 
to tracheostomy [67], the purpose of which is to facilitate removal of 
airway secretions to prevent atelectasis, hypoxemia and pneumonia. 
Mechanical ventilation corrects hypercapnia and hypoxemia resulting 
from weak respiratory muscles. Because several months may pass 
before recovery of neurological function is sufficient enough to sustain 
spontaneous breathing, most patients with cervical SCI will require 
a tracheostomy shortly after injury. In a retrospective study of 69 
individuals with cervical SCI (65% with high SCI), Guirgis et al. [69] 
found that early tracheostomy was found to significantly reduce the 
duration of mechanical ventilation in patients with both high and low 
cervical spinal cord injuries Patients with a low cervical SCI spent a 
longer time in the ICU on average. Mortality was significantly lower 
among high CSCI patients who underwent an early tracheostomy, 
although this was not the case for patients with low CSCIs. 

Impaired bulbar function, which when coupled with absent 
abdominal muscle contractility, may lead to poor cough generation, 
retained airway secretions, atelectasis and pneumonia, although this 
finding is rare in high SCI individuals, unlike in other neuromuscular 
disorders such as amyotrophic lateral sclerosis. Retrospective studies 
suggest that early application of tracheostomy (prior to day 7 following 
SCI) facilitates respiratory management, shorter time on mechanical 
ventilation, fewer airway complications (related to prolonged 
intubation), and earlier discharge from the intensive care unit [70,71]. 
Tracheostomy also appears to reduce the working of breathing during 
weaning trials [72], particularly when the cuff is deflated [73], and 
shortens time to decannulation. Cuff deflation may also reduce 
respiratory infections and improve swallowing function.

With respect to tracheostomy-assisted mechanical ventilation, tidal 
volumes between 15 and 20 mL/kg are generally recommended, for 
the purpose of relieving air hunger and preventing atelectasis [74,75]. 
The assumption is based on the concept that high volumes improve the 
production of surfactant, prevent the collapse of the airway, promote 
recruitment, and are better tolerated by the patient, although the 
evidence for this recommendation is based on retrospective studies 

and case series [76,77]. Peterson [78] reviewed 42 patients with SCI and 
found that those who were ventilated with >20 mL/kg were weaned 3 
weeks earlier than those ventilated with smaller tidal volumes. Higher 
tidal volumes have been safely utilized during weaning of patients 
with tetraplegia [79], although larger randomized controlled trials 
are needed to determine whether higher Vts translate to improved 
outcomes in this unique patient population. In the absence of acute 
lung injury from other causes, higher tidal volumes don’t seem to cause 
ventilator-associated lung injury in people with tetraplegia, possibly 
because lung volumes and compliance are already reduced and are likely 
to reverse with application of high tidal volumes. Nevertheless, the peak 
airway pressure must be kept below 40 cm H2O to avoid volutrauma. In 
addition, high airway volumes and pressures could potentially lead to 
hemodynamic instability in patients with autonomic dysfunction and 
hypotension. In the case of non-invasively ventilated patients, breath 
stacking is another way to prevent or reverse atelectasis (see below).

Airway protection becomes necessary when the SCI has occurred 
with traumatic brain injury and the Glasgow Coma Score is 8 or less. 
Variables considered important in determining the need for airway 
management include the FVC, volume of respiratory secretions and 
gas exchange, which allow accurate prediction of such management in 
80% or more of patients [80]. Table 1 summarizes important clinical 
and physiologic variables to consider in this regard. Tracheostomy 
facilitates suctioning for caregivers, and reduces dead space physiology 
and hypercapnia. Of course, it has its own associated complications, 
including suction trauma, granulation tissue, stomal infections, 
tracheal stenosis, tracheomalacia, and probably the most devastating of 
all (while rare), tracheovascular fistulas that may result in catastrophic 
hemorrhage. Other issues include hypocapnea related to bypassing of 
anatomic dead space of the upper airway. The resultant respiratory 
alkalosis may result in hypokalemia, cerebral vasoconstriction and 
ischemia, and seizures which may complicate associated head injury. 
Later on, to the extent that there is recovery of respiratory muscle 
function, the patient may be bridged on to noninvasive ventilation. 
When used in conjunction with manual and machine-generated 
cough-assist techniques, or phrenic nerve and/or abdominal muscle 
stimulation, the patient may get by without a tracheostomy entirely [81]. 

Noninvasive ventilation

Bach and colleagues [82-84] have published their experience 
describing the eventual decannulation of tetraplegic patients for 
conversion to full-time support with noninvasive positive pressure 
ventilation (NIPPV) after initial intubation for mechanical ventilation. 
In one of their series, 7 of 23 patients who initially had been supported 

Guidelines for weaning from assisted ventilation
•	 Patient is cooperative and not agitated or delirious; no need for use 

of sedation.
•	 Afebrile, stable vital signs.
•	 Arterial oxygen saturation > 95% and paCO2 < 40–45 mm Hg, while 

breathing room air.
•	 Fraction of inspired oxygen no more than 25% and PEEP < 5 cm 

H2O.
•	 Chest imaging with no or resolving abnormalities  
•	 Minimal airway secretions.
•	 Negative inspiratory pressure <−20 cm H2O.
•	 Vital capacity > 10–15 mL/kg of ideal weight.
•	 Stable hemodynamic status (that is, normal intravascular volume 

balance and not requiring inotropic agents or vasopressor
•	 Ability to tolerate physical therapy or use of noninvasive mechanical 

ventilation 

Table 1: Guidelines for weaning from assisted ventilation.
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with tracheostomy-assisted ventilation were converted to using 
continuous NIPPV (with no free time) for a mean of 7.4 years (range 
1 to 22 years) [73]. Determinants for initiation of NIPPV included 
younger age, intact bulbar function and mental status, and absence 
of parenchymal disease such as pneumonia. NIPPV would also be 
indicated in SCI patients with obstructive sleep apnea syndrome, 
particularly in those with high cord injuries. Bach and his group [82-88] 
have continued to manage neuromuscular patients with unmeasurable 
VC without tracheostomies for many decades. Patients have generally 
preferred NIPPV to tracheostomy-assisted ventilation for comfort, 
safety, swallowing, speech, and aesthetic reasons. Absence or resolution 
of bulbar impairment, however, is a requisite for NIPPV.

Another method that has been used is glossopharyngeal breathing 
(“frog breathing”), a technique that was initially devised for and taught 
to patients with acute poliomyelitis with respiratory compromise in the 
1950s and 1960s [89]. In this method, the patient gulps small amounts 
of air (40 to 200 mL) into the lungs in sequences of 6-9 breaths in a row, 
and then exhales or coughs. This method is a substitute for sighing, and 
can be used to augment tidal breathing, prevent atelectasis, and clear 
airway secretions.

Pneumobelts (cyclically inflatable abdominal binders) may have 
certain advantages as a choice for interim or permanent ventilation of 
individuals with high SCI without severe bulbar impairment. During 
inflation the device displaces the diaphragm cephalad, allowing it to 
become mechanically more efficient. Placing its upper border two 
fingerbreadths below the costophrenic junction avoids paradoxical 
expansion of the chest cause by enclosure of the lower thorax [90]. 
Miller [91] described 12 of 21 patients with high tetraplegia who 
were able to progress within days up to 4 hours of continuous use of 
a pneumobelt, and thereafter to 12-hour or all day use. This enabled 
independence and mobility, safety and health, improved speech, and 
general appearance (no tracheostomy). Disadvantages included pump 
noise, stomach gas, and position difficulties. Use of the pneumobelt 
requires that the individual be sitting up. 

Cough assist techniques

Assisted coughing can replace the function of the paralyzed 
expiratory muscles by increasing the pressure below the diaphragm. 
This is usually performed by an assistant working with the patient, 
although some lower SCI patients with intact hand function can learn 
to perform the technique on themselves. It consists of a sharp inward 
and upward application of pressure to the upper abdomen just below 
the diaphragm, designed to expel large airway secretions, much like a 
Heimlich maneuver. It is most effective in the supine position. Assisted 
coughing is indicated when the cough effort is noted to be ineffective 
[88]; a good index to monitor is when the peak expiratory flow (PEF) 
falls below 160 L/m [83,86,88]. Other indications include retained 
secretions heard on auscultation, radiographic evidence of atelectasis, 
postoperatively when the patient is recovering from anesthesia, and 
a reduction for the need of tracheal suctioning to reduce suction 
trauma. Absolute contraindications to manual assisted coughing 
include unstable angina or acute myocardial infarction, extensive chest 
trauma, including broken ribs and flail chest, elevated intracranial 
pressure or known intracranial aneurysm, cystic or bullous lung 
disease which could potentially result in pneumothorax from sudden 
increases in intrathoracic pressure. Relative contraindications include 
spinal misalignment, abdominal injury or ileus, skin hypersensitivity 
and poor integrity, bronchospasm and chest drain. Staff and/or family 
members should be trained in and be assessed for competence for the 
procedure before performing the technique unsupervised. Factors to 

consider before applying manual assisted cough techniques include 
spinal stability, size of the patient’s chest, whether the patient is in bed or 
wheelchair, thickness and quantity of airway secretions, the experience 
of available staff, and the upper body strength of the staff member [92]. 

Many techniques have been devised to assist a patient’s cough, 
and experienced staff may modify these methods according to their 
expertise and for maximum effectiveness [92]. These techniques have 
the advantage of achieving airway clearance in patients who do not 
have tracheostomies; indeed, use of these methods may avoid the 
need for tracheostomies, even in patients with low or unmeasurable 
vital capacities and poor cough effort. Cough procedures may be 
performed as often as needed, and if available, in conjunction with 
chest insufflation and mechanical cough devices. Patients should 
be monitored for dyspnea, pain, sputum appearance and quantity, 
breath sounds, and presence of any change in neurological signs and 
hemodynamic compromise (cardiac arrhythmias or hypotension). To 
assess the effects of the manual cough assist, measurements of FVC 
and PEF should provide useful information. The assisted cough is 
considered to be effective if the patient can generate a PEF of 270-360 L/
min or more, the patient expresses relief of dyspnea and congestion, the 
cough sounds are stronger than an unassisted cough, and the patient is 
able to swallow or expectorate secretions, or the latter can be removed 
with just shallow tracheal suctioning [92]. 

The use of an abdominal binder is also used to augment the cough 
effort. Julia et al. [93] found that depending on the number of straps in 
an abdominal binder, the peak expiratory flow increased by 19% to 28% 
in supine tetraplegic patients. In 13 seated patients with C5-C7 SCI, 
West and colleagues [94] found increases in VC, inspiratory capacity, 
maximal expiratory mouth pressure, transdiaphragmatic pressure 
(Pdi, difference between esophageal and gastric pressures), and cardiac 
output, while decreases occurred in residual volume and functional 
residual capacity (Figure 3).

Glossopharyngeal breathing and air stacking are additional 
approaches in which breaths are stacked, usually 3 to 6 in a row, before 
exhalation or coughing.

Mechanically assisted coughing (insufflation-exsufflation) employs 
a technical respiratory method (cough-assist device) by which air is 
blown into the lungs and then suctioned out rapidly (Figure 4). The 
insufflation-exsufflation pressures are adjusted to a range of positive 

Figure 3: Static lung volumes and capacities in unbound and tight-bound 
conditions in abdominal binding for SCI (left panel; n=13) and able-bodied (right 
panel; n=8). TLC=total lung volume; IRV, inspiratory reserve volume; VT, tidal 
volume; ERV, expiratory reserve volume; RV, residual volume; IC, inspiratory 
capacity; FRC, functional residual capacity; VC, vital capacity; Δ, binding-
induced change (i.e., mean difference ± SD between values in unbound and 
tight-bound). Note the decrease in RV and FRC, and the consequent increase 
in IC and VC in tight-bound vs. unbound for the SCI group. Also note the 
decrease in FRC and increase in IC in tight bound vs. unbound in the able-
bodied group; the increase in IC, however, was at the expense of a decrease in 
ERV, such that VC remained unchanged [94].
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and negative 30-40 cm H2O and are applied alternatively in sequence. 
Expiratory flows generated can reach 600 L/min [88]. In effect, this 
method is a form of suctioning out airway secretions without resorting 
to intubation or tracheostomy. The cough device can be applied through 
a face mask or (in those patents that require an airway) tracheostomy. 

High frequency chest wall oscillation (HFCWO) has been shown to 
be effective in helping to clear secretions from the lungs of patients with 
cystic fibrosis, bronchiectasis, COPD, blunt chest trauma and some 
neuromuscular disorders. Individuals with SCI are at increased risk for 
development of pulmonary complications related to airway clearance 
and may benefit from this device. HFCWO uses a pressurized vest to 
transmit high frequency oscillations to the chest (Figure 5). This action 
mobilizes secretions which can be cleared by cough or by suction in the 
case of intubated patients. HFCWO treatment has been shown to be 
safe in patients with lung and chest wall injuries [95]. 

Respiratory muscle training

Various regimens of respiratory muscle training (RMT) are available 
to improve respiratory function in individuals with cervical SCI. Studies 
evaluating the outcomes on respiratory function and quality of life are of 
different designs accounting for variable outcomes. Most investigations 
have assessed the effects of RMT on maximal inspiratory and expiratory 
muscle strength (MIP and MEP, respectively); surprisingly, only a 
few have reported changes in the VC and none have reported on the 
effects on FEV1. An extensive Cochrane meta-analysis by Berlowitz 
and Tamplin [96] provided details on 11 randomized studies with 212 
individuals studied [19,97-105]. Different types of RMT were reviewed, 
including inspiratory muscle training, expiratory muscle training, 
combinations of both, isocapnic hyperpnea and therapeutic singing. 
Training was compared to control conditions, including no training, 
sham training, and alternate interventions. Eight of the 11 studies were 
conducted in seated position, 2 in seated and supine postures, and one 
in supine position only. Risk bias was assessed by a number of domains: 
sequence generation, allocation concealment, blinding, incomplete 
outcome data, selective outcome reporting, and other sources of bias. 
Only 4 studies reported the method of randomization, and 4 studies 
described allocation concealment or blinding, or both. The meta-
analysis of the 11 studies showed statistically significant effects of RMT 
for 3 outcomes: VC, MIP and MEP, with mean differences of 0.4 L, 10.5 
cm H2O and 10.3 cm H2O, respectively. There was a high coefficient 
of variation for all 3 measurements in both able-bodied controls and 
even more so in the cervical SCI cohort with differing injury levels and 
severity [106], reducing the power of smaller studies to find statistically 
significant treatment effects. 

A more recent study investigated the effects of RMT combined with 
abdominal drawing-in maneuver (integrated training group, ITG) on 
pulmonary function in 37 patients with SCI (level: C4-T6) over a 8-week 

period [107]. By the end of the study, in the ITG, FVC had increased 
by more than 3 times as much as in the RMT alone group (0.47 L vs. 
0.15 L), suggesting another technique for augmenting breathing in such 
patients.

Effects of body position and selective muscle stimulation to 
enhance respiratory function; phrenic nerve pacing

The association between body position and respiratory performance 
is a significant one, with implications for improved lung expansion, 
improved cough and reduction in dyspnea [108-110]. Supine posture 
produces the highest spirometric values [29,110]. Because individuals 
with SCI spend much of their time seated in a wheelchair, how variation 
of seated posture affects respiratory function is also important, 
particularly with respect to rehabilitation and patient comfort. To 
simulate standing position, a seating arrangement designed to simulate 
standing position by eliminating ischial support on the back part of 
the seat resulted in increases of 12% and 25% in the FVC and peak 
expiratory flow, respectively [111]. An increase in lumbar lordosis 
induces a decrease in thoracic kyphosis, enabling the thoracic cage to 
expand more during inspiratory efforts [30], in turn resulting in greater 
cough effort. In the seated position, abdominal contents displace the 
diaphragm cephalad, placing it at a mechanical disadvantage [112-
114], quite the opposite of what is observed in able-bodied persons. 
Trendelenburg positioning, when used in conjunction with other 
components of multimodal chest physiotherapy (referred to as chest 
optimization), is associated with increases in duration of spontaneously 
breathing trial, alveolar ventilation, cardiac output, CO2 elimination 
and respiratory compliance [115].

The reduction in FVC and associated dyspnea in sitting position 
can be reversed with an abdominal binder that forces the diaphragm 
cephalad, increases its resting length and appositional zone along 
the abdominal wall, thereby increasing its force generation. These 
actions result from expansion of the lower portion of the rib cage 
during inspiration is greater when a passive mechanical support is 
applied to the abdomen by the binder [116,117]. Because the binder 
opposes shortening of diaphragmatic fibers, it places them in a more 
advantageous position of their length-tension curve and thereby 
exerts a greater force on the lower ribs. A meta-analysis of 11 studies 

Figure 4: Cough assist machines used to clear airway secretions and to help 
expand the chest to maintain compliance of the chest wall and prevent loss of 
lung volume (courtesy of Respironics, Murrysville, PA).

Figures 5: Examples of commercially available thoracic vests that provide 
vibratory action through the chest wall to help mobilize secretions. Panel C 
shows an intubated patient being fitted for HFCWO treatment. The vest type 
being fitted is the “wrap type” of vest. This allows for positioning of the vest 
so it does not interfere with chest tubes or lines (panels A-C courtesy of Hill-
Rom, Chicago, Illinois, Vest® airway clearance systems; panel D courtesy of 
RespirTech inCourage Airway Clearance System, St. Paul, MN).
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concerning the effects of abdominal binding on lung function suggested 
that VC usually increases, especially in the seated posture, while 
functional residual capacity decreases (Figure 5) [118]. Chest vests 
can also be used for airway clearance for patients experiencing airway 
clearance dysfunction, secretion retention and/or ineffective cough due 
to immobility, deconditioning or muscle weakness.

Phrenic nerve and diaphragmatic pacing provide increased patient 
mobility, comfort and lower health care costs [119,120]. Breathing 
pacemakers have increased survival and improved quality of life in 
individuals with upper cervical cord and brain stem lesions [121-
126]. Electrical stimulation of abdominal muscles by radio frequency 
generator has been shown to be effective in augmenting respiratory 
function. In a study of 10 upright individuals with injury level of C5-
T7, Langbein et al. [125] showed that during electrical stimulation 
through surface electrodes, spirometric values increased by 11% to 
15%. Subjects with the lowest FVC and FEV1 values exhibited the 
greatest improvement when electrical stimulation was applied during 
forced expiration. The authors suggested that subjects with spirometric 
values of >80% predicted were not likely to benefit from this procedure. 
DiMarco and colleagues [126] described the outcome in a 52-year-old 
man with C5-6 incomplete tetraplegia who had epidural electrodes 
implanted at the time of hemilaminectomies at the T9, T11 and L1 
levels. During combined stimulation of T9 and L1 levels, the patient 
was able to generate airway pressure and PEFR to 132 cm H2O and 7.4 
L/s, respectively. His caregiver requirements for airway clearance were 
eliminated as he was able to trigger the device independently.

Weaning off mechanical ventilation

The success rate in weaning off tracheostomy-assisted mechanical 
ventilation (with the ultimate goal of decannulation) is approximately 
40% in patients with cervical injuries above C4, and more so in injuries 
below C5 [127]. Respiratory assessment before and during weaning 
includes arterial blood gases to evaluate oxygenation and carbon dioxide 
elimination, VC and effectiveness of cough and ability to expel airway 
secretions [128]. Peak expiratory flows should exceed 160 L/m to assure 
expulsion of airway secretions and the negative inspiratory pressure 
should exceed -20 cm H2O (both variables measured with the tube cuff 
inflated) [88]. In a study of 26 ventilator-dependent tetraplegic patients, 
Chiodo et al. [129] found that failure to wean off the ventilator could 
be predicted by diaphragm needle electromyography (EMG) recorded 
during negative inspiration force generation. Fluoroscopic examination 
of the diaphragm and bedside spirometry were not as good predictors 
of weaning ability, failing to predict accurately in 44% and 19% of cases, 
respectively. Any outliers that may have been expected to wean based 
on ASIA examination (i.e. C4 or lower neurological levels) were also 
predicted not to wean by needle EMG.

Before the weaning trial, tracheal secretions should be cleared 
(either by gentle suctioning or use of cough assist devices), the patient 
should be positioned in the supine or Trendelenburg position, and 
bronchodilators delivered by nebulization [115]. Methods used in 
weaning have included spontaneous breathing or T-tube trials, pressure 
support and synchronized intermittent mandatory ventilation (SIMV) 
[71,130-133], of which the T-tube has shown the greatest success with 
weaning [131-132]. The majority of these weaning trials have been 
performed in able-bodied individuals. During spontaneous breathing 
trials the patient gradually spends more time breathing on his own as 
respiratory muscle function slowly improves. Patient should be able to 
breathe spontaneously for at least 48 hours before being discontinued 
from assisted ventilation. Other criteria that should be fulfilled before 
extubation are listed in the Table 1. Once these precautions are taken 

into consideration, patients with SCI make take weeks to months to 
successfully come off assisted ventilation [134,135].

Long-term respiratory management
For patients with compromised or limited respiratory function, deep 

breath generating methods have been advocated to prevent atelectasis 
and maintain normal chest wall and lung mechanics. Application of 
sighs with noninvasive ventilation and use of insufflation-exsufflation 
devices to “stretch” lung and thoracic cage volumes have been useful 
in this regard [83,86,88]. Cough assist devices, both manual and 
mechanical, are useful in promoting airway clearance in patients both 
with and without tracheostomies. Methods used to augment inspiratory 
effort, such as strengthening of chest wall muscles, RMT training, 
phrenic nerve stimulation have all been used with varying degrees of 
success in the prevention of respiratory complications, and have been 
summarized above.

Appropriate vaccinations should be provided for any individual 
with compromised respiratory function, particularly with regularly 
scheduled influenza and pneumococcal pneumonia vaccines. The latest 
recommended immunization schedule for adults aged 19 years or older, 
including those with potential immune compromise related to chronic 
respiratory disorders, have been approved by the Advisory Committee 
on Immunization Practices (ACIP), as well as several other professional 
organizations [136]. Changes in the 2018 adult immunization schedule 
from the previous year’s schedule include the use of recombinant zoster 
vaccine (RZV) for individuals aged 50 years or older, and the use of an 
additional dose of measles, mumps, and rubella vaccine (MMR) in a 
mumps outbreak setting.

Conclusion
It is vital that patients have sufficient social and caregiver support 

to provide optimum respiratory care in the community. Management 
of the physically impaired patient can be a major challenge for family, 
leading to adverse physical and psychological consequences. Long-
term management requires a multidisciplinary approach that includes 
respiratory, physical and occupational therapists, nutritionists, social 
workers, psychologists, and home health agencies, all of whom 
contribute to key aspects of maintaining optimum respiratory function. 
Life satisfaction is a major consideration in this group of individuals, 
but it may have a more positive outlook than one would think in 
someone with significant physical and psychological challenges. Bach 
and Tilton [137] found that the majority of ventilator-assisted persons 
with tetraplegia were significantly more satisfied with their housing, 
family life and employment than were spontaneously breathing 
tetraplegic individuals. Krause [138] found that, over a 15-year period, 
life satisfaction in SCI individuals improved starting at least 2 years 
after injury.

Ventilator-dependent individuals with more limited functional 
abilities than spontaneously breathing SCI seem to appreciate that their 
quality of life is closely tied to family lives and personal relationships; 
then use of a ventilator takes on a positive aspect in permitting 
maintenance of social ties.
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