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Introduction

Karin Erdmann, an Oxford mathematician, is an expert in homological 
algebra and representation theory, particularly modular representation theory. 
The role of vector spaces in algebraic systems is examined by representation 
theory. One can use linear algebra to analyse "abstract" algebraic systems 
when the vector spaces are finite-dimensional since this enables one to directly 
describe the elements of the algebraic system via matrices. Through collective 
activities, symmetry can be studied in this way. Studying irreversible processes 
is another option. An obvious framework for this is provided by algebras and 
their representations.

Description

There are symmetry in both mathematics and science. Understanding 
all the potential causes of an abstract collection of symmetries is the goal of 
representation theory. The structure of electron orbitals was partially explained 
by representation theory in the nineteenth century, and the foundation of 
quantum chromodynamics is representation theory from the 1920s. The 
Langlands program, a series of conjectures that have shaped a significant 
portion of number theory over the past forty years, is centered on p-adic 
representation theory [1].

One essential issue is expressing all the continuous symmetries of a 
finite-dimensional geometry, the irreducible unitary representations of each Lie 
group. This is equivalent to identifying all of a quantum-mechanical system's 
finite-dimensional symmetries. We've come a long way with this significant 
issue, thanks in large part to the efforts of the highly qualified academics at 
MIT. String theory, statistical mechanics, integrable systems, tomography, and 
many other branches of mathematics and their applications all depend on the 
representation theory of infinite-dimensional groups and supergroups. Vertex 
algebras, quantum groups, infinite-dimensional Lie algebras, representations 
of real and p-adic groups, Hecke algebras, and symmetric spaces are among 
the topics of study for this group [2].

Scalars commute with everything in algebra, which is a ring that also 
doubles as a vector space. Path algebras are a significant construction: Take 
a coefficient field K and a directed graph Q, sometimes known as a quiver. 
The vector space over K with all pathways having basis in Q is then the path 
algebra KQ. In the resulting algebra, the product of two basic elements is 
either their concatenation, if one exists, or zero, if there is no such thing as a 
concatenation. In other words, if we start with a group, we automatically have 
algebra; we then take the vector space with the group's basis labelled and 
extend the group multiplication to a ring structure [3].

The representations of groups when the coefficients are included in the 
complex numbers have been researched for a very long time and have various 

uses. The algebras and their representations are substantially more challenging 
to comprehend when coefficients, for instance, are in the integers modulo 2. 
The representations have a "finite type" for some groupings. Although they have 
"infinite type" virtually invariably, these are well understood. These are often 
"wild," meaning there is no chance of a classification of the representations, 
with the exception of a few exceptional "tame" occurrences. For module 
2 arithmetic and when the symmetry is based on dihedral, semidihedral, or 
quaternion 2-groups, the identical circumstances precisely occur. When n is a 
power of two, dihedral 2-groups are symmetries of normal n-gons [4].

Such tame circumstances were categorized (some time ago) by looking 
at these group symmetries in the larger setting of algebras. It was just found 
out that this is a little portion of a much larger cosmos. In particular, surface 
triangulations can be used to create algebras, in which the triangulations from 
the group setting appear as special instances.

The crystal in the Andrew Wiles Building's north wing, which houses Oxford 
Mathematics, can be seen as a triangulation of a surface with boundary. The 
reader will have to draw the quiver. We build algebras from the path algebra 
of such a quiver by enforcing explicit relations that resemble the triangulation. 
Despite the fact that the quiver can be arbitrary big and intricate, the algebras 
are simple to describe. These are what we refer to as weighted surface 
algebras. Together with A. Skowronski, we created this. We demonstrate how 
these algebras give group representations a more comprehensive setting [5].

Starting from the fact that weighted surface algebras generalize group 
algebras with quaternion symmetry, these algebras are periodic of period 
four (with one exception).The relationships that resemble triangles can be 
degenerated, making the algebraic sum of two arrows around a triangle 
equal to zero. Multiple new algebras are created as a result. The resulting 
algebras closely resemble group algebras with dihedral symmetry when all 
such relations are degenerated. We get algebras that share characteristics of 
group algebras with semidihedral symmetry if we degenerate relations around 
some but not all triangles. On these, work is already underway.

Conclusion

The classification of algebraic varieties, particularly the birational 
classification, and the theory of moduli, which takes into account how algebraic 
varieties change when one changes the coefficients of the defining equations, 
are among the areas of research that our group is interested in. One potential 
approach to classification is provided by the Minimal Model Program. Hodge 
theory, which connects the topology of an algebraic variety with harmonic 
functions, is another field of active research. One of the seven Clay Millennium 
Problems with a $1,000,000 reward is the Hodge Hypothesis. Active fields that 
have linkages to theoretical high energy particle physics, particularly string 
theory, include the study of the derived category, Calabi-Yau manifolds, and 
mirror symmetry. A number of faculty members in our department have made 
noncommutative algebraic geometry, a generalization with connections to 
representation theory, an important and active area of study. New study into 
algorithmic strategies for resolving polynomial problems has been stimulated 
by the development of high-speed computers, with numerous intriguing 
practical applications.
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