
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122(2010) - 117

Journal of Computer Science & Systems Biology - Open Access Research Article
OPEN ACCESS Freely available online

doi:10.4172/jcsb.1000067

JCSB/Vol.3 Issue 5

Rendering for 3D Animation Based on Octree
Guofeng Qin* and Nan Jiang

CAD Research Center, Tongji University, Shanghai 200092, China

*Corresponding author: Guofeng Qin, CAD Research Center, Tongji University,
Shanghai 200092, China, E-mail: gfqing@tongji.edu.cn

Received October 19, 2010; Accepted December 16, 2010; Published December
18, 2010

Citation: Qin G, Jiang N (2010) Rendering for 3D Animation Based on Octree. J
Comput Sci Syst Biol 3: 117-122. doi:10.4172/jcsb.1000067

Copyright: © 2010 Qin G, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License,which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
In order to improve capability of some traditional algorithms for 3D virtual reality animation, this article comes up with

a new improved algorithm, which can improve traditional ones and is more suitable for 3-D graphic environment. There
are two steps. The first step is to break down the entire 3-D scene and then setup the Octree structure. The second step
is to transform the Octree onto 2-D plane, and write down nodes which are modified and then render the modified ones.
Many experiments demonstrate the superiority of the algorithm. Especially, in the process of blanking, the quadrants are
shown from far to near and achieve 3-D display more effectively, according to the given object and the location of view.

Keywords: Octree; Blanking algorithm; 3-D; Neighborhood nodes

Introduction
Now days, computer animation technology is widely utilized in

virtual reality for industry, joy games, GIS, education and many other
fields. It gives “life” feeling to virtual human in computer animation. A
key technology is rendering in 3D environment. 3D graphic rendering
are relative to the motion controlling, motion path planning and 3D
graphic displaying (Geng and Zhou, 1996; Ma et al., 2006). 3D graphic
rendering algorithms are affecting time cost and memory resource,
which are essential factors of computer animation.

A fast search Octree algorithm is used for finding the 4 pairs of
feature points to estimate the viewing direction uses on effective two
level database, which is based on matching the object contour to
the reference viewing directions. The initially best matched viewing
direction is calibrated by searching for the 4 pairs of feature points
between the input image (Lee et al., 2010).

In industry design and 3D film, 3-D animation design is necessary
for last practicing. An Octree-based (numerical control) NC simulation
(Oct-OAC) system is developed for end milling. Oct-OAC has a
geometric modeling module to simulate the geometry of material
removal process. Every object in the machining environment such
as cutter, instantaneous work-piece, swept volume, etc. is stored as
Octree, an inexact representation of solid. Using this module, one can
predict the geometry of the material removed at any instant of time
and update the geometry of the blank subsequently. Optimization of
cutting parameters using Oct-OAC is achieved through optimization
module using a mechanistic model for computation and prediction of
the cutting forces at any instant. The basic input for this module is the
geometry of the contact surface between the cutter and work-piece
which comes from the geometric modeling module using an Octree-
based solid modeler. The mechanistic modeling module can predict
the instantaneous cutting forces from the instantaneous contact
geometry and other process parameters like material combination of
cutter-work-piece, parameters defining cutter geometry, and current
cutting parameters such as N and f. Using this prediction, it will modify
the cutting parameters for maximizing the material removal rate.
This way, the mechanistic modeling module does what an adaptive
controller will do with the help of force sensing. Therefore, the NC
program optimization done using the Oct-OAC system is actually off-
line adaptive control (Karunakaran et al., 2010). For the computer
animation processes, modeling, tracking and rendering are essential.
Rendering plays a crucial role in the entire animation production
process and blanking is the key to rendering (Zhou and Yang,

1993). A parallel geometric multi-grid algorithm for solving variable-
coefficient elliptic partial differential equations on the unit box is
studied with utilizing highly non-uniform, Octree-based, conforming
finite element discretizations. This Octrees are 2:1 balanced, that is,
we allow no more than one Octree-level difference between octants
that share a face, edge, or vertex. This parallel algorithm input is an
arbitrary 2:1 balanced fine-grid Octree and whose output is a set of
coarser 2:1 balanced Octrees that are used in the multi-grid scheme.
The overall scheme is second-order accurate for sufficiently smooth
right-hand sides and material properties (Sampath and George, 2010).

 There are many traditional algorithms which are easy to operate,
such as Z-buffer algorithm but it often takes more time to calculate,
they are not suitable for animation rendering. Depending on the
different classification of several traditional blanked algorithms are
introduced in brief. The rendering important function in computer
animation can be seen Figure 1. Firstly, the 3D model will be
constructed, then the models will be integrated for animation, lastly,
the 3D rendering will be processed in an assembly animation scene.

By the method of object in space

(1) Graphic formula: According to analytic theory, we can determine a
given point in the front or back of the plane, through the standard
equation of the plane. The Graphic formula uses this theory to
determine observable points on the surface. If the point locates

various environmental
information

represent and preprocess of
3D scene

Generate virtual scene

3D rendering in
animation scene

Generate the model
used for animation

3D model

Figure 1: Octree of 3-D object and the number.

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBiros%2C+George%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr

Citation: Qin G, Jiang N (2010) Rendering for 3D Animation Based on Octree. J Comput Sci Syst Biol 3: 117-122. doi:10.4172/jcsb.1000067

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122 (2010) - 118

on the back side, the surface is not visible and should be hidden;
the other hand is visible.

(2) Ray tracing: This method requires analysis of every point on the
display screen, each point must be given to reflect the brightness
of the object surface reflectance properties and characteristics of
the color parameters.

By the method of image space

(1) Z-buffer: First, we should build a large buffer to store all the values
of color on 2-D plane along the Z-axis, as a result, it is called
Z-buffer. The number of cells in Z-buffer is equal to the number of
pixels on the screen and they are correspondence.

(2) Scan Line Algorithm: Set the screen with the color of the back-
ground, sort the object from far to near from their point of view,
so it creates a priority list of depth. And then draw objects from far
to near, as a result that the near object covers the far one.

Because of the traditional algorithms’ insufficiency in animation
rendering, referring to some applications of Octree in the field of
blanking, an improved Octree algorithm was studied to be suitable
for computer animation rendering (Li and Lu, 2001; Xiao et al., 1998).

Octree

Construction of octree

The composite Octree algorithm is suitable for organizing
the 3-D scene and blanking. Objects Octree is a hierarchical data
structure that this data structure greatly simplifies the hidden surface
elimination (Yamaguchi et al., 1984; Sampath and George 2010). In
the Octree structure, objects have been arranged in a certain order
according to space, it is showing as Figure 2.

First, build an external cube that contains all 3-D objects and then
divide the cube into eight equal sub-cubes (Hengshan et al., 2005). If
the child has the same unit cube, which means that the cube is full or
empty, we can stop dividing the cube. For the inconsistent sub-cube
unit, it requires further decomposition and then split it into eight
sub-cubes, until all the sub-cube is the same or it has reached the
required decomposition of precision. According to this method, we
can divide a scene to an Octree structure.

After the Octree structure has been build, we should map it to the
plane, we should test its visibility. For a given observation of a certain
direction, some sub-cubes are visible and others are invisible. When
the sub-cube with one side is visible, we call the space the front node;
on the contrary, if the sub-cube with one side is invisible, call it the
back node. The child or children in the back of the tree behind the
front ones will be covered by the front ones.

The relationship between 3-D structure and 2-D structure is
shown as Figure 3. Looking through the perspective directions, the
sub-cube in front of the plane, such as 0 、1、2、3 will be mapped
firstly. When the plane has not been completely occupied, it should
be divided into four surfaces. When the front ones are empty, the
back ones will be mapped in instead of them.

According to the Figure 3, for the observer, node 0 1 2 3 are
front nodes, node 4 5 6 7 are back one. When traverse the Octree
by the order from front to back, the back node will be eliminated. In
the way, node 0 1 2 3 will be first traversal in front of node 4 5 6 7.
According to this order to travel all the Octree, children of node 0 1 2
3 will must be traversal in front of children of node 4 5 6 7.

Data structure

Construct the following structure according to the 3-D scene
showing as Figure 4.

Comment :
 Entire occupied
 Part occupied
 Empty

The data structure of Octree can be seen as follow.
Struct tOctree{

Int id;
Status status;

Int color;
Struct tOctree * children[2][2][2];
Boolean flag;
};
Struct tQuadtree{
Int id;
Status status;
Int color;
Stuct tQuadtree * children[2][2];
Boolean flag;
};

Figure 2: Octree of 3-D object and the number.

6

1

2 3

0

4 5

7

Viewing
direction

Figure 3: Releationship between Octree and quadtree.

6

1

2 3

0

4 5

7

0 1

3 2

Figure 4: The structure of Octree.

20 21 22 23 24 25 26 27

250 251 252 253 254 255 256 257

0 1 2 3 4 5 6 7

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBiros%2C+George%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122(2010) - 119

Journal of Computer Science & Systems Biology - Open Access Research Article
OPEN ACCESS Freely available online

doi:10.4172/jcsb.1000067

JCSB/Vol.3 Issue 5

When construct the Octree, the key is to transform the coordinate in
the space to the path from root to nodes in the Octree, including two
facts, one is structural path when construct the Octree and the other
is query path when travel the Octree. We should meet the following
two needs: (1) With the storing type of the Octree, we need to find
the corresponding code stored in the node according to the starting
point. (2) In the display of the 3-D object, under the condition of
given viewpoint position, determine the different display order, so as
to achieve the blanking effect. First of all, a problem to be solved is
that given coordinates of any point of space objects (x,y,z), find the
linear Octree encoding of the location.

According to Figure 4, encode the Octree, linear Octree encoding
is to overcome the general lack of Octree encoded to form a highly
efficient coding method. Linear Octree encoding only stores the
location information of the leaf nodes. Leaf node is encoded as
address code, address code is commonly used in the implicit leaf
node location and size information. For dividing an 2n × 2n × 2n
Octree, use the characteristics of octal code. In the Octree model, the
location of a node can be uniquely determined by an octal number.
Given any point

Vq(xqzq) in space, its path in the Octree is Pq = Pn-1

Pn-2 … P1 P0.

1

8
0

8
−

=

=∑
n

i
i

i
Q P

Pi
is the octal number, Pi ∈ [0, 7], i ∈ [0, n - 1]. Pi

indicate the number
between the siblings of the node. By this way, we can express the full
path in the Octree from P0 to Pn-1.

We will quote a shift calculation, calculating the encoding of any
point in the Octree through shift operations.

zn-1 yn-1 xn-1 Pn-1 = zn-1 2
2 + yn-1 2 + xn-1,

yi xi Pi = zi 2
2 + yi 2

2
 + xi

y0 x0 P0 = z0 2
2 + y0 2 + x0

0z 0y 0x 2
0 0 0 02 2P z y x= + +

In order to calculate zi, yi, xi, what we need do is to do some shift
calculate on the zq, yq, xq. In the implementation, the logical bit
operation can be completed. When we know a point (zq, yq, xq), we
can find the back point (zm, ym, xm) through the viewing direction and
then find its corresponding path in Octree easily.

By calculating the number of Octree levels, we can not only find
this leaf node in Octree, but also calculate the size of leaf nodes.

L × W × H = (a/2n) × (b/2n) × (c/2n)

‘n’ means decomposition frequency, ‘a’ mean Length, ‘b’ means
Width, ‘c’ means Height.

Blanking algorithm for animation rendering

When the viewing direction has been changed, one frame will
have large amount similar with the front one. Shown as Figure 5, the
red squares occupy 2B and 3B in picture a. After it has changed, they
occupied 2C and 3C in picture b and the other part stay unchanged.
In this condition, we can only change 2B, 2C, 3B, 3C.

In order to achieve this goal, now, we define the value of flag in
the data structure of the Octree. If one node in Octree have been
changed, set the value of the flag of this node with 1, otherwise set
it 0. If one node changed, set the flag of all it parents node with 1,

until the root node. Till here, we have got the Octree structure of
next frame, according to this structure and when the frame and the
next frame is the same, we can skip the romance and keep the color
of the picture unchangeable; if the next frame has change, map it
onto plane.

The blanking Algorithm for Animation Rendering can described
as follow.

Input: position value (zi, yi, xi) of points, i ∈ [0, n -1]; the viewing
direction.

Output: set color of the planes

Procedures of the blanking Algorithm:

(1) Initialize the 3D scene, getting the orientation value of the view
point;

(2) Judge the orientation value of the new view point by comparing
with the old view point. If the view point has been changed, re-
rendering of the scene will be started and go to step (3), else go
to step (12);

(3) Construct Loops for each plane of the quad-tree, define the front
and back node corresponding to the plane;

(4) Judge whether the front node is an entity. If the front node is not
an entity, go to step (5), else go to (6);

(5) Sub-divide the front node;

(6) Judge whether the front color is empty. If the front color is not
empty, go to step (7), else go to (8);

(7) Assign the color of the front node to the plane;

(8) Judge whether the back node is an entity. If the back node is not
empty, go to step (9), else go to (10);

(9) Assign the color of the back node to the plane;

(10) Set empty to the color of the plane, go to (3);

(11) Sub-divide the back node, go to (8);

(12) Keep up with the same data of color, end the rendering program.

The process flow of the improved Octree algorithm can be seen in
Figure 6.

Experiment and result analysis

The experiment is operated on the platform that is AMD
Turion(tm) 64 Mobile, Technology MK-36 1.60GHz, 1.00GB Memory,
Windows XP SP3 and the develop tool is VS2008. The max depth of

Figure 5: Before and after the 2D graph change.

 A B C D

a b

1

2

3

4

 A B C D
_

http://dx.doi.org/10.4172/jcsb.1000067

Citation: Qin G, Jiang N (2010) Rendering for 3D Animation Based on Octree. J Comput Sci Syst Biol 3: 117-122. doi:10.4172/jcsb.1000067

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122 (2010) - 120

the Octree is 6. The number of the balls in the scene can be controlled
by the blank keyboard. Stat the time used to render the whole scene.

Time of the process is calculated in Micro-second (us). The details of
the Octree experiment can be seen in Figure 7.

The results of the improved Octree algorithm compared with the
common Octree algorithm also can be seen in Table 1 and in Figure
8.

In the above data, the max depth of the Octree is 6, so the scene
is simple to render. The number of nodes in Octree is not so large
to maintain, the different between the common algorithm and the
optimized one is not very clear. When there are 80 balls in the scene,
the common algorithm is 7.8us slower than the optimized one; in the
experience, there are 200 balls in the scene, the difference is more
than 41us. It is clear above. But the time to render both grows quickly
with the number of balls increasing, because it takes a long time to
maintain the structure of the Octree.

Because the Octree make good use of physical correlation in
space, this method has more advantages compared with others.

(1) Reduce the space of storage: In general, this method provides

Figure 7: Octree Experiment.

Figure 8: Compare the two sequences.

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Number of Balls

Ti
m

e
C

on
su

m
in

g
(u

s)

Compare of Two Sequences

Common

Optimized

Figure 9: Animals’ motion animation rendering.

Method (us) Number of Balls
20 40 60 80 100 120 160 180

Common 31.3 57.8 96.8 140 181 243 376 395
Optimized 31.3 51.6 78.1 132 170 218 329 359

Table 1: Time consuming.

Figure 6: The flow chart of Octree algorithm.

Initialize Graph

Viewing Direction
Changed?

Root.fla
g == 0

NO

Every Plane

Find Front and Back

NO, CIRCLE

TRAVEL OCTREE

Front.flag == 0
&&

Back.flag == 0

JUDGE

Front is
Entity?

Front is
Empty?

Front
Color

Set Color of the plane

NO

Back is
Entity?

YES

Back is
Empty?

YES

YES

Back
Color

NO

Empty

Divide the Sub-
cube

NO

YES

NO
NO

Color Stay The
Same

YES

YES

YES

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122(2010) - 121

Journal of Computer Science & Systems Biology - Open Access

www.omicsonline.com

Research Article
OPEN ACCESS Freely available online

doi:10.4172/jcsb.1000067

JCSB/Vol.3 Issue 5

a storage mechanism for the compression of space objects.
Under the condition that consistency in the pixel is great, it can
effectively reduce the amount of physical storage space required.

(2) Facilitate to achieve set operations: In other methods, we need to
spend a lot of computing resources for set operations. However,

by using the Octree, translate the set operations, such as and,
delivery, into simple operations of the element.

(3) Conducive to physical operation of display: the Octree has the
characteristics of a hierarchical structure and has order. As a
result, it is suitable to remove hidden surface and so on.

However, there are also disadvantages about this method. In
small scene, it will take a long or more time to construct an Octree.
And when the objects in scene are very small, we need a deeper
Octree to organize the scene, so it will take up a great memory and
more time to maintain the memory. Here is to be improved.

Appliction of improved octree algorithm

The improved Octree algorithm is tested with many projects.
Their results verified its good performance, including saving up
memory and decreasing time cost. There are three samples. The first
one is animals motion animation rendering, its time can decrease
about 11% time cost and save up about 8% memory with the improve
Octree algorithm. The rendering details of animals’ motion animation
can be seen in Figure 9. The second one is Human motion animation
rendering, its time can decrease about 12.5% time cost and save
up about 9.5% memory with the improve Octree algorithm. The
rendering details of Human motion animation can be seen in Figure
10. The third one is city planning animation rendering, its time can
decrease about 13.5% time cost and save up about 10.5% memory
with the improve Octree algorithm. The rendering details of city
planning animation can be seen in Figure 11. There exists difference
among three samples because there are different number objects in
the rendered scene, and the different objects have their different
geometric graphic model, including surface grid and vertex. All in
all, the memory will be saved up more, and the time cost will be
decreased more if the objects are more and their models are more
complicated.

With experience of animals’ motion animation rendering, human
motion animation rendering and city planning animation rendering,
their results indicate if there are 2000 surfaces in scene, it will take
10 seconds to render the models by the common Octree algorithm,
but it will take 8.7 seconds by the improved Octree algorithm,
which decrease about 13% time; if there are 4000 surfaces in scene,
it will take 15.8 seconds to render the models by the common Octree
algorithm, but it will take 13.5 seconds by the improved Octree
algorithm, which decrease about 14.5% time ; if there are 6000
surfaces in scene, it will take 28.9 seconds to render the models by
the common Octree algorithm, but it will take 24.2 seconds by the
improved Octree algorithm, which decrease about 15.5% time; if
there are 8000 surfaces in scene, it will take 31.2 seconds to render
the models by the common Octree algorithm, but it will take 26.3
seconds by the improved Octree algorithm, which decrease about
15.7% time. With increasing number of surface in scene, the linear
tendency will become gradual, which describes ability and effect of
the improved Octree algorithm is non-linear. The details of these
results can be seen in Figure 12.

Conclusion

For the traditional algorithms’ insufficiency in animation
rendering, an improved Octree algorithm was studied to be suitable
for computer animation rendering. The entire 3-D scene was be
divided into break down the entire 3-D scene and then setup
the Octree structure. Second, transform the Octree onto a 2-D
plane structure by the improved Octree structure. The experience

Figure 10: Human motion animation rendering.

Figure 11: City planning animation rendering.

Figure 12:

35

30

25

20

15

10

5

0

Tim
e (s)

2000 4000 6000 8000

Common Octree algorithm

Improved Octree algorithm

Surface number of models

http://dx.doi.org/10.4172/jcsb.1000067

Citation: Qin G, Jiang N (2010) Rendering for 3D Animation Based on Octree. J Comput Sci Syst Biol 3: 117-122. doi:10.4172/jcsb.1000067

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(5): 117-122 (2010) - 122

verified the result of the improved Octree algorithm, the time cost
is decreased about 41us for 200 balls rendering from the common
algorithm. By experience of animals’ motion animation rendering,
human motion animation rendering and city planning animation
rendering, their result indicate the improved Octree algorithm can
decrease the rendering time, but its rendering ability and effect
ability and effect is non-linear. In the future, the stabilization of the
new Octree algorithm still should be optimized.

Reference

1. Geng G, Zhou M (1996) A Simple Algorithm for Transformation from an 3D
Object to an Octree. Journal of Northwest University 26: 4.

2. Hengshan Wu, Duan X, Chenyang LI (2005) Algorithm for neighbor searching
of leaf-coding quadtree. Computer Application in chinese 25: 2624-2626.

3. Karunakaran KP, Shringi R, Ramamurthi D, Hariharan C (2010) Octree-based
NC simulation system for optimization of feed rate in milling using instantaneous
force mode. International Journal Of Advanced Manufacturing Technology 46:
465-490.

4. Lee YL, Abraham A, Kim DH (2010) 3D OBJECT RECOGNITION USING
OCTREE MODEL AND FAST SEARCH ALGORITHM. Neural Network World
20: 359-369.

5. Li J, Lu Y (2001) Study of Hiding Technology about 3D Drawing. Journal of
LiaoNing Provincial College of Communications in chinese 3: 4.

6. Ma Z, Ma J, Dai L (2006) An algorithm for hidden surface based on linear
Octrees. Ningxia Engineering Technology in chinese 5: 3.

7. Sampath RS, George B (2010) A parallel geometric multigrid method for finite
elements on Octree meshes. SIAM Journal on Scientific Computing 32: 1361-
1392.

8. Xiao L, Gong J, Xie C (1998) A new algorithm for searching neighbors in the
linear quadtree and Octree. Journal of acta geodaetica cartographica sinica in
chinese 3.

9. Yamaguchi K, Kunii TL, David RF, Francisco RA (1984) Computer-integrated
manufacturing of surfaces using Octree encoding. IEEE Computer Graphics
and Applications 4: 60-65.

10. Zhou D, Yang R (1993) An optimal construction algorithm for linear Octrees. J
Computers in chinese 16: 4.

http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=3Apei21ppCMkOieN@jJ&name=Shringi R&ut=000273471000004&pos=2
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=3Apei21ppCMkOieN@jJ&name=Ramamurthi%20D&ut=000273471000004&pos=3
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=3Apei21ppCMkOieN@jJ&name=Hariharan C&ut=000273471000004&pos=4
http://en.cnki.com.cn/Article_en/CJFDTOTAL-NXGJ200603007.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-NXGJ200603007.htm
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBiros%2C+George%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7922&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7922&rep=rep1&type=pdf
http://c.wanfangdata.com.cn/periodical-chxb.aspx
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYamaguchi%2C+K.%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKunii%2C+T.L.%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bRogers%2C+David+F.%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bRodriguez%2C+Francisco+A.%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr
http://adsabs.harvard.edu/abs/1984ICGA....4...60Y
http://adsabs.harvard.edu/abs/1984ICGA....4...60Y

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Octree
	Construction of octree
	Data structure
	Blanking algorithm for animation rendering
	Experiment and result analysis
	Appliction of improved octree algorithm

	Conclusion
	Reference
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Table 1

