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Introduction
Survival/reliability analysis plays an important role in medicine, 

epidemiology, engineering, biology, sociology, economics, and 
many other fields. The outcome of survival studies is the time to the 
occurrence of a certain event, which is referred to as the survival 
time, failure time, lifetime data, or event time, e.g., the recurrence 
of an illness, death, failure of equipment, births, and divorces. In 
medical studies, the response variable (survival time) is measured in 
patients from a specific initial point, e.g., the date of diagnosis, type of 
treatment, or date of a transplant procedure, until the occurrence of 
a well-known event, such as the cessation of symptoms, deterioration 
in the condition of the patient, or death. During life testing analysis 
in engineering studies, mechanical or electronic components are often 
placed in an operating state and subjected to life tests in a laboratory 
setting, where they are observed until each fails and the time to failure 
is recorded for each component [1,2]. Life data analysis can be used 
for modelling and interpreting life data related to crowd disasters, 
terrorism, crime, war, disease spread, and patterns in the evolutionary 
dynamics of populations to obtain a good overall picture of the actual 
system’s behaviour [3,4].

In reliability analysis, life testing must be performed to study the 
failure-time distribution of newly designed equipment. A sample of 
lifetime data must be taken, where each component operates under 
certain conditions during a specified time interval until it fails, or not, 
but this type of testing is very expensive for manufacturers. There are 
two types of lifetime data: complete data and censored data. Complete 
data comprise the simplest type of life data where the failure time of 
each component in the sample is known. These data are obtained by 
recording the exact time when each component fails. Censoring occurs 
when a component included in life testing fails during observations but 
the exact time of failure is unknown. The time intervals for these failures 
are called interval censored data. In addition, censoring occurs when 
some components are still operating after a life testing experiment has 
been terminated. The observed operating times of these components 

are called right censored data or suspensions [5]. An important task in 
survival analysis is selecting the best model to represent the distribution 
of the failure time variable and to determine the dependencies of the 
failure time variable on other independent variables, such as gender, 
age, weight, temperature, pressure, or diabetes.

The principal tasks in reliability modelling analysis are: selecting 
the model, parameter estimation, and model validation. The Weibull 
distribution model was proposed by Waloddi Weibull [6] and it has 
many applications in various fields, such as industry and medicine. 
Many models have been derived from the two-parameter Weibull 
distribution, which are called Weibull models [7]. The Weibull family 
of distributions comprises the most widely used statistical models 
for lifetime data in survival analysis. Weibull models are applied to 
many human diseases such as Hodgkin’s disease and cancer data [8]. 
Different Weibull models exhibit a wide variety of shapes and thus 
they can represent various characteristics for reliability functions. 
Finite mixture distributions have numerous applications, which 
range from the length distributions of fish to the DNA content in the 
nuclei of liver cells [9]. They are also employed in reliability analysis 
for modelling heterogeneous lifetime data, which means that it is 
important to study the mathematical properties of Weibull mixture 
distributions (WMDs). Weibull models are well known in reliability 
modelling. Three-parameter Weibull, Weibull mixture, and competing 
risk models are used frequently for modelling life data. Modelling life 
data using Weibull models involves five main steps: collecting a sample 
of life data, plotting the data and interpreting the plot, preliminary 
model selection, parameter estimation, and goodness of fit tests to 
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Abstract
This paper presents a simulation study of a finite Weibull mixture distribution (WMD) for modelling life data 

related to system components with different failure modes. The main aim of this study is to compare two analytical 
methods for estimating the parameters of WMD models, the maximum likelihood estimation (MLE) method using the 
expectation-maximization (EM) algorithm, [A1] and the non-linear median rank regression (NLMRR) method with the 
Levenberg-Marquardt algorithm. To perform this comparison, the Monte Carlo simulation technique is implemented 
to generate several replicates for complete failure data and censored data based on samples of different sizes 
that follow a two-component WMD. This study showed that MLE using the EM algorithm yields more accurate 
parameter estimates than the NLMRR method for small or moderate complete failure data samples. This method 
also converges faster than the NLMRR method for large samples that include censored data.

Mathematics Subject Classification (2010): 62N05 90B25 60K10.

Reliability Analysis for Monte Carlo Simulation Using the Expectation-
Maximization Algorithm for a Weibull Mixture Distribution Model
Emad E. Elmahdy*
Department of Mathematics, Science College, King Saud University, Riyadh 11451, P.O. 2455, Saudi Arabia

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679



Citation: Emad E. Elmahdy (2016) Reliability Analysis for Monte Carlo Simulation Using the Expectation-Maximization Algorithm for a Weibull Mixture 
Distribution Model. J Appl Computat Math 5: 310. doi:10.4172/2168-9679.1000310

Page 2 of 7

Volume 5 • Issue 3 • 1000310
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

number of reliability analysis can be performed using the generated 
data sets and this process may be repeated many times. The Monte 
Carlo simulation method is very important for exploring the design 
of reliability tests because it allows us to optimize a model with respect 
to its parameters, thereby defining many reliability indices, such as 
a CDF, reliability function R(t), probability density function, mean 
time to failure of a component for non-repairable systems, or hazard 
function (failure rate) h(t). The Monte Carlo simulation method helps 
us to study the influence of sample size, which may include censored 
data in reliability analysis methods. Thus, many experiments can be 
executed using life data samples with different sizes for complete and 
censored data.

In this study, the effects on analysis methods for estimating mixing 
parameters of generated WMD lifetime data samples with different 
sizes are examined. Two methods are investigated, i.e., MLE using the 
EM algorithm and non-linear median rank regression (NLMRR) with 
the Levenberg-Marquardt algorithm, where the objective function 
must be of the least squares type with no constraints. The objective 
of this study is to compare the performance of MLE using the EM 
algorithm and the NLMRR method. The remainder of this paper is 
organized as follows. A critical review of WMDs are provided and 
two methods for estimating the parameters of WMD are introduced: 
MLE using the EM algorithm and NLMRR. Monte Carlo simulation is 
employed to compare the performance of the two proposed estimation 
methods. Monte Carlo simulation is used to generate two types of data: 
complete failure data and failure data with heavily right censored data 
for samples of different sizes that follow the two-component WMD. 
the results are summarized and the conclusions of this study are given.

Estimating the Parameters of a WMD Model
Several methods can be applied to estimate the parameters for 

WMD models. The graphical method can be used for modelling 
complete and censored life data. For a WMD model, the graph of the 
data points on WPP is as a concave upward curve with a cusp [11] or 
it is S-shaped, which indicates the existence of batch problem (mixture 
of failure modes). Elmahdy et al. [10,11] proposed an algorithm to 
estimate the parameters for WMD with complete/censored life data 
by using MLE with the EM algorithm. This iterative algorithm can be 
summarized in two steps: the E step estimates the joint likelihood of the 
observed failure times or censored life data set that follow WMD; and in 
the M step, the expectation is maximized over the unknown parameter 
values, where the resulting values for the estimated parameters are 
used in the next E step. This process is repeated many times until 
convergence is obtained with sufficient accuracy. Elmahdy et al. [10] 
also introduced a new approach for modelling actual life data using 
different Weibull models, such as three-parameter Weibull, Weibull 
mixture, and Weibull competing risk models. This approach is efficient 
for grouped and ungrouped samples of different sizes that include a 
heavily censored life data set and few exact failure times.

Finite Weibull mixture model

Finite Weibull mixture models are univariate models. The finite 
Weibull mixture model describes the density f(t|θ) as a combination of 
m weighted densities, which can be written as follows.

=1
( | ) = ( | , )

m

i i i i
i

f t f tθ ω β α∑ 				                    (1)

θ=(ω1,ω2,….,ωm,α1,α2,….,αm,β1,β2,…,βm)is the parameter vector of 
an m-mixed Weibull distribution where ωi > 0, αi > 0, and βi > 0 denote 
the mixing weight, scale, and shape parameter of sub-population 
i respectively, 

=1
= 1m

ii
ω∑ . The probability density function of the 

select the candidate model. Most of the approaches that apply Weibull 
modelling to reliability testing for life data initially rely on graphing 
the cumulative distribution function (CDF) on Weibull plotting paper 
(WPP), where the CDF for complete or censored lifetime data is 
calculated using a ranking method, such as the median rank method, 
Kaplan-Meier, or Benard’s median rank [6,10]. The resulting graph 
may have different shapes, i.e., a straight line represents the two-
parameter Weibull model (standard Weibull model), a convex shape 
indicates the competing risk model or classic Bi-Weibull, an S-shape 
that approaches a straight line as the data points become smaller, a 
concave shape with a cusp and a steep slope followed by a shallow slope 
indicates the existence of two sub-population distributions (simple 
mixture distribution) [10,11], and a concave shape with a vertical 
asymptote and a right asymptote or a line that curves downward at the 
lower end represents the three-parameter Weibull model. Moreover, 
different Weibull mixture models of two and three failure modes can 
include batch effects, as described in [6,7]. Several methods can be 
employed to obtain parameter estimates for different Weibull models, 
such as graphics, moments, maximum likelihood estimation (MLE), 
Bayes estimators, Monte Carlo simulation methods, and MLE using the 
expectation-maximization (EM) algorithm [12-16]. After estimating 
the parameters for the selected Weibull models for specific sample 
data, it is necessary to examine the goodness-of-fit for each. Statistical 
measures for goodness-of-fit, such as confidence prediction bounds 
and r-squared denoted by r2 and ( )( )2ln L θ− , where ( )( )ln L θ  is the 
natural logarithm of the MLE function, are employed to determine the 
best Weibull model for modelling life data [11].

When a scientist studies a specific phenomenon, it is necessary to 
repeat an experiment several times to obtain a sample of measurements 
or observations of this phenomenon. The aim is to make a general 
statement about the phenomenon. It is possible that the observations 
obtained in an experiment may follow a specific pattern, which is known 
as the probability distribution of a population in probability theory. 
Monte Carlo simulation is an important technique for generating 
a random variable that follows a specific statistical probability 
distribution. Monte Carlo simulation differs from ordinary analytical 
methods. In analytical methods, the life process of a component or 
a system is described by a mathematical model such as exponential, 
Weibull, gamma, or log-normal. The required reliability indices are then 
estimated. In the Monte Carlo approach, the actual process is simulated 
on a computer and the desired reliability indices are estimated after 
observing the simulated process for some time. Thus, the simulation is 
considered to be a series of real experiments where the events occurring 
at specific times are determined by random processes, which follow 
appropriate probability distributions. An important problem with the 
Monte Carlo simulation method is that various events are constrained 
in that simulation so they must conform with certain distributions. The 
simplest way to achieve this for a given event is by selecting a random 
number from a large set of numbers that belong to the appropriate 
distribution and making the event “occur” at the moment indicated 
by the number selected [17]. This method requires the generation and 
storage of several sets of numbers with distributions that correspond 
to all of the time distributions involved in the process, but the process 
can be simplified using a single set where the numbers are distributed 
uniformly between 0 and 1. A number selected randomly from this set 
can then be simply converted into a number from a set with an arbitrary 
distribution using the appropriate CDF. Basically, the Monte Carlo 
method is a probabilistic method, which is included in many computer 
software libraries such as Weibull++ and SuperSMITH Weibull (SSW) 
to generate samples from different Weibull models [6,18]. Thus, a large 
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standard Weibull model (two parameter Weibull distribution) for sub-
population i is given by:

1( | , ) = exp , > 0;i i i
i i i

i i i

t tf t tβ βββ α
α α α

− −( )( ) [ ( ) ] 		                (2)

therefore,
1

=1
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m
i i i

i
i i i i

t tf t β ββθ ω
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− −∑| = ( )( ) [ ( ) ] 		                  (3)

In reliability analysis, the survivor (reliability) function R(t|θ) and 
the hazard (failure rate) function h(t|θ) of a WMD can be defined as 
follows.
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MLE using the EM Algorithm for estimating WMD model 
parameters

In this section, MLE is introduced by using the EM algorithm to 
estimate the parameters for WMD models. Given a grouped ordered 
time-to-failure and censored data random sample t1,t2,….,tn of n 
identical units of a certain product are obtained from a reliability life 
testing experiment. During the experiment, it is noted that r units failed, 
where tj, j=1,2,…,Fe are the ordered failure times of these units, whereas 
the remaining n units survived (suspended), where tk, k=1,2,…,S are 
the ordered censored times of the suspension units. Let nj denotes the 
number of units that failed in the jth group of the exact failure data and 
nk denotes the number of suspension units that did not fail in the kth 

group of censored data points. Consequently, 
=1

=
Fe

j
j

r n∑ is the number 

of failure units and 
=1

S
'

k
k

n n=∑  is the number of surviving units, where 
n=r+n’ is the sample size in the test experiment.

The EM algorithm for estimating parameters is a general method 
for optimizing a log-likelihood function [16]. Given a current estimate 
θ(h) we define the expectation of a log-likelihood function for grouped 
data that include exact times-to-failure and censoring as follows.

( ) ( ) ( )
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of a unit that belongs to subpopulation i given that it survived until 
time tk.

The EM algorithm is based on two main steps. The E step estimates 
Q(θ,θ(h)) and the M step selects { }( 1) ( )= ( )h hArg max Q

θ
θ θ θ+ ,  by equating 

the first derivatives of Q(θ,θ(h)) with respect to each parameter with 
zero, thereby obtaining the following recurrence relations.
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These two steps are repeated alternately until ( 1) ( ) 0h hθ θ+ − → , 
which will be accurate if we select a good initial estimate of θ(h), and 
thus Pi(tj,θ

(h)), Pi(tk,θ
(h)) will be obtained by solving Eq.(9) numerically 

using the Newton-Raphson method. After updating Eqs.(7),(8), and 
(9) many times, we can obtain MLE estimates of ( 1)h

iω
+ , ( 1)h

iβ
+  and 

( 1)h
iα
+  for sub-population i.

Similarly, for complete and grouped ordered time-to-failure data, 
the last three equations can be written as follows.
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As stated above, Eqs.(10), (11), and (12) can be solved numerically 
to estimate the parameters of the WMD model for complete lifetime 
data.

Algorithm 1: Proposed algorithm for estimating the wmd model 
parameters

The proposed algorithm for estimating the parameters of the WMD 
for modelling life data that include censored data can be summarized 
as follows:

Step 1: input given data tj, tk,nj,nk

Step 2: initialize parameters (0) (0) (0) (0)= ( , , )i i i iθ ω α β ,

define a convergence tolerance ε>0

Step 3: let h=0

Step 4: compute pi(tj,θ
(h)) and pi(tk,θ

(h))

Step 5: let h=h+1

Step 6: compute ( 1) ( 1) ( 1) ( 1)= ( , , )h h h h
i i i iθ ω α β+ + + +

Step 7: if 
( 1) ( )

( 1) <
h h

i i
h

i

θ θ ε
θ

+

+

− , stop, ( 1)ˆ = h
i iθ θ +  where ˆ ˆˆ ˆ= ( , , )i i i iθ ω α β

Step 8: if 
( 1) ( )

( 1) > ,
h h

i i
h

i

θ θ ε
θ

+

+

−  goto step 4

Step 9: compute the log-likelihood function l
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Step10: display the estimated parameters ˆ ˆˆ ˆ= ( , , )i i i iθ ω α β  and l

Note: This algorithm was executed using MATLAB code. It also can 
be modified to estimate the parameters for a WMD model of complete 
failure data by making slight changes to some of the steps as follows:

Step 1: input given data tj, n

Step 4: compute pi(tj,θ
(h))

NLMRR for estimating the WMD model parameters

In this section the optimization can be implemented using the 
Levenberg-Marquardt algorithm. The Levenberg-Marquardt algorithm 
is a non-linear iterative optimization method that can be used to 
minimize the sum of squares for the residuals due to error, SSR [18-20]. 
When regression analysis is applied to the WMD model to estimate 
its parameters, MATLAB program can be used for non-linear median 
rank regression, which is based on the modified Levenberg-Marquardt 
algorithm and median rank method. Estimates of the parameters in 
Eq.(4) are required to fit lifetime data with the WMD model. These 
parameters can be evaluated by using SSR, which can be defined as:

2

=1

ˆ= ( )
n

i i
i

SSR R R−∑ 				                 (13)

where ˆ
iR  denotes the approximated value of the reliability function 

which can be calculated using Eq.(4), and Ri is the actual value of 
the reliability function at ti, which can be determined by plotting a 
probability graph for the given lifetime data on WPP using various 
methods, such as the median rank method, Kaplan–Meier, or Benard’s 
median rank [6,10]. The required parameter estimates θ are the values 
that minimize SSR.

Eq. (13) can be written as:
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 and E’ is the transpose of E

Marquardt techniques depends on finding the gradient of SSR with 
respect to the set of parameters θ as follows:

1 ( . ) = . . ( ) = .
2

'
' ''E E X R X R X Eθ

θ
∂

− + −
∂

			               (15)

where X is m×n matrix including the partial derivatives of R with 

respect to the parameters, = RX
θ
∂
∂

, and E is n×1 matrix including the 

error at each data point. The gradient method can be used to determine 
the best direction of moving in the θi space to obtain the smallest sum 
of squares for the residuals due to error as follows:

1 = . .
'

i i X Eθ θ κ+ + 				                  (16)

Where κ is a control variable adjusts how far to move in the 
direction opposite to the gradient for updating the parameter values, 
but this method can not specify how far to move for finding the optimal 
solution. Levenberg-Marquardt technique treats this problem by 
using Gauss-Newton method. This method assumes that R(θ) can be 
expanded in θi space by using Taylor series about θ0 as follows:

0 0( ( .( ) ...R R Xθ θ θ θ+ − +) = ) 			                (17)

By taking under consideration only the linear terms in the above 
equation and assuming that θ are the exact parameter values i.e there’s 
no error, therfore by the aids of Eq. (15) , one can deduce that:

0 0.[ ( .( )] = .
' '

X R X X Rθ θ θ+ −) 			                 (18)

Consequently, the updating formula of Gauss-Newton method can 
be written as:

1
1 = ( . ) . .

' '

i i X X X Eθ θ −
+ + 				                 (19)

The Levenberg-Marquardt algorithm combines these two methods 
through the following general formula:

1
1 = ( . . ) . .

' '

i i X X I X Eθ θ λ −
+ + + 			                 (20)

where λ is the scaling parameter which balances the gradient-steepest-
decent and Gauss-Newton methods. The optimal solution is obtained 
by adjusting λ and taking a good initial values for the parameters. 
The Levenberg-Marquardt algorithm is a stable, efficient and easily 
programmable.

Monte Carlo Simulation Study
In this section, analytical methods are compared for modelling the 

same system of components (units) using the Monte Carlo simulation 
technique. Monte Carlo simulation is based on the generally accepted 
belief that the probability distribution parameters obtained from 
simulations approximate their “true” values extremely well if the trials 
(replicates) are sufficiently long. Monte Carlo simulation method can 
be used to generate samples of different sizes from Weibull mixture 
models with given initial parameters [6,18]. But, before considering 
the Monte Carlo simulation technique, some concepts related to 
the estimator are defined and how one can choose a good estimator. 
An estimator is a mapping or a function from the data space to the 
parameter space, where the data space is the set of all possible values 
for a random sample with a certain size, and the parameter space is the 
set of all possible values of a parameter. The estimator is considerd as 
a sample statistic because it depends only on a given sample. It’s also 
considerd as a random variable for a random sample, and thus its value 
varies among samples according to its sampling distribution. Often, 
four major criteria are used to assess the performance of the estimator: 
bias, standard deviation, mean squared error, and efficiency.

Criterion for unbiasedness

A sample statistic is an unbiased estimator if the mean or expected 
value of all possible values for the statistic equals the true or target value 
of the population parameter that the statistic attempts to estimate. If 
the mean or expected value of a statistic, which is produced by repeated 
random sampling from a given population, differs from the target that 
needs to be estimated, then bias is said to exist. Let θ=(θ1, θ1,…..,θi,….,θm) 
be the parameter vector of an m-mixed Weibull distribution. If îθ  is 
used to estimate the parameter θi, where θi∈θ, then the bias is defined 
as follows.

ˆ ˆ( ) = ( )i i ibias Eθ θ θ− 				                (21)

The mean squared error (MSE) of the estimator îθ  is given by
2ˆ ˆ( ) = [( ) ],i i iMSE Eθ θ θ− 				                 (22)

which after some algebra can be written as
2 2 2ˆ ˆ ˆ ˆ( ) = [( ) ] [ ( )] [ ( ) ] .i i i i iMSE E E Eθ θ θ θ θ− + − 		                (23)

Thus, the following relation can be deduced
2ˆ ˆ ˆ( ) = ( ) [ ( )]i i iMSE V biasθ θ θ+ 			                   (24)
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Suppose that  and  are two estimators, for the same parameter θ. If 
1 2
ˆ ˆ( ) < ( )MSE MSEθ θ , then 1̂θ  is said to be more efficient than.

The comparison between the two analytical methods for estimating 
the parameters of WMD models, the maximum likelihood estimation 
(MLE) method using the expectation-maximization (EM) algorithm 
and the non-linear median rank regression (NLMRR) method with the 
Levenberg-Marquardt algorithm will be investigated in the following 
applications by using MATLAB program.

Applications
The Monte Carlo simulation method can be used to determine the 

best estimator for each parameter of the WMD among the proposed 
estimation methods. In this section, the use of the Monte Carlo 
simulation method is described to generate data samples of different 
sizes, which followed the two-component WMD. The aim of this study 
was to compare the performance of NLMRR using the Levenberg-
Marquardt algorithm and MLE with the EM-algorithm. The simulation 
experiment was based on 1000 Monte Carlo trials (replicates) 
employing samples of sizes 10, 50, 100, and 500 failures, and 500 
Monte Carlo trials with a sample size of 1000 and 5000 failures. In this 
experiment the WMD true parameters are choosen as ω1=0.3, β1=0.6, 
α1=39, ω2=0.7, β2=2.3, α2=234 [21]. The two methods were compared 
using effective statistical measures, i.e., average parameter estimate, 
mean bias, standard deviation, and root mean squared error (RMSE). 
Tables 1-3 show the average parameter estimates obtained using the 
two methods for complete and censored samples, respectively. Tables 
2 and 4 present the RMSE estimates obtained by the two methods for 

complete and censored samples, respectively. Tables 1 and 3 show 
clearly that for small or moderate complete and censored samples 
(50 or less), respectively, the bias estimates for the average parameter 
estimates based on the true values obtained using NLMRR method were 
very large and highly skewed compared with the bias estimates with 
the MLE method. In addition, Table 1 shows that for large complete 
samples (more than 100), the NLMRR method converged faster than 
MLE with the EM algorithm. By contrast, Table 3 shows that for large 
samples that included censored data, MLE with the EM algorithm 
converged faster than the NLMRR method. Table 2 shows that for 
complete large samples, the RMSE values estimated using MLE with 
the EM algorithm could be smaller or larger than those estimated using 
the NLMRR method. A method that obtains smaller RMSE values is 
more suitable for parameter estimation, and thus both methods were 
reasonable for obtaining a suitable goodness of fit in different cases. 
Table 4 shows that for large samples that included censored data, the 
RMSE values estimated using MLE with the EM algorithm were smaller 
than those estimated using the NLMRR method. Thus, in general, we 
can say that MLE using the EM algorithm yields low bias, variance, and 
RMSE values for small, moderate, and large sample sizes with censored 
data compared with the NLMRR method, and thus efficient parameter 
estimates were obtained for the WMD model in these cases. Using the 
Monte Carlo simulation method, one can modify the parameters of the 
specified life distribution and repeat simulations until an acceptable test 
plan is obtained. Figure 1 compares the CDFs for simulated complete 
failure data that followed the WMD obtained using the NLMRR 
method and MLE with the EM algorithm. In addition, Figure 2 shows 
the results obtained using failure data with heavily right censored data 

Sample size Average estimates of parameter vector
NLMRR MLE through EM algorithm

10 (0.4337, 2.8238, 2.60E+18, 0.567, 7.6407, 8.00E+17) (0.3393, 3.1393, 38.2735, 0.6607, 4.9121, 247.97)
50 (0.3772, 0.7216, 446.2381, 0.6228, 3.403, 2.00E+17) (0.2483, 0.9175, 24.6031, 0.7517, 2.4119, 230.541)
100 (0.3493, 0.6805, 58.6739, 0.6507, 2.6795, 232.0602) (0.2380, 0.7647, 23.3483, 0.762, 2.2127, 229.064)
1000 (0.3043, 0.6182, 42.393, 0.6957, 2.3342, 232.2282) (0.2610, 0.6362, 29.4686, 0.739, 2.1826, 230.0765)
5000 (0.2960, 0.6119, 38.3756, 0.7040, 2.2984, 233.3096) (0.2943, 0.5997, 37.7418, 0.7057, 2.2791, 233.1497)

Table 1: Average parameter estimates: NLMRR versus MLE with the EM algorithm. WMD true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.

Sample size Root mean squared Error of parameter vector
 NLMRR MLE through EM algorithm

100 (0.1421, O. 4119, 43. 2610, O. 1421, 0.9470, 19. 9987) (0.1090, O. 2911, 24. 5614, O. 1090, 0.4786, 19. 1756)
1000 (0.0608, 0.0633, 18. 5997, 0.0608, O. 2053, 6. 2323) (0.0646, 0.0753, 15. 5897, 0.0646, O. 2286, 7. 9292)
5000 (0.0360, 0.0329, 10.7732, O. 0360, O. 1001, 2.7935) (0.0180, O. 0179, 4. 4775, 0.0180, O. 0646, 2.5813)

Table 2: RMSE values: NLMRR versus MLE with the EM algorithm. WMD true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.

Sample size Average estimates of parameter vector
NLMRR MLE through EM algorithm

10 (0.2739, 11.5846, 1.31E+19, 0.7261, 12. 6615, 2.02E+17) (0.2887, 2.4142, 55. 8487, 0.7113, 15.3347, 154. 047)
50 (0.3556, 1. 5458, 2.00E+17, 0.6444, 5. 1881, 1. 05E+12) (0.3214, 0.9615, 66242.4005, 0.6786, 5. 1926, 206. 8489)
100 (0.3595, 0.903, 844341. 8693, 0.6405, 4. 0972, 1. 69E+06) (0.3322, 0.7445, 111. 3323, 0.6678, 3. 8833, 213. 2534)
1000 (0.3555, 0.6296, 91.4168, 0.6445, 2. 5049, 219. 5502) (0.3248, 0.607, 57.4823, 0.6752, 2. 3976, 228. 2388)
5000 (0.3360, 0.6018, 63.4317, 0.6640, 2. 3736, 228. 1733) (0.3143, 0.5951, 45. 5719, 0.6857, 2. 3292, 232. 8567)

Table 3: Average parameter estimates NLMRR versus MLE with EM algorithm for right censored life data. WMD true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, 
α2=234.

Sample size Root Mean Squared Error of parameter vector
 NLMRR MLE through EM algorithm

100 (0.2818, 1. 8905, 2.6114E+07, 0.2818, 6. 1644, 5.1928E+07) (0.2218, 0.3316, 277. 6568, 0.2218, 5. 2142, 51.0034)
1000 (0.2126, 0.0936, 132. 4833, 0.2126, 0.9970, 31.6453) (0.1137, 0.0654, 57. 2177, 0.1137, 0.5653, 16. 0803)
5000 (0.1239, 0.0431, 71. 3515, 0.1239, 0.3676, 15. 6561) (0.0466, 0.0254, 18. 3145, 0.0466, 0.1926, 6. 1047)

Table 4: RMSE values: NLMRR versus MLE with the EM algorithm for right censored life data. WMD true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.
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that followed the WMD. Each figure is divided into 4×2 subfigures, 
where those on the left show the results obtained using the NLMRR 
method and those on the right illustrate the results produced by MLE 
with the EM algorithm. In each subfigure, the solid black line denotes 
the true parameter line, the red dashed line is the average, and the 
blue lines represent the simulated lines based on several replicates. In 
Figures 1 and 2, the WMD models obtained using both methods for 
small, moderate, and large sample sizes with complete/censored data 
are compared. It was found that the WMD functions obtained using 
MLE with the EM algorithm based on complete failure data samples 
with small or moderate samples sizes and with large sample sizes that 
included censored data yielded the best fit. Thus, we conclude that the 
performance of MLE with the EM algorithm was much better for small 
or moderate complete failure data samples and large life data samples 
with a heavily censored data than the NLMRR method at estimating 
the WMD parameters.

Conclusion
One of the aims of this paper is to apply algorithms that are stable, 

efficient and easily programmable for different Weibull models by using 
Matlab codes or any other specified programs that may be not found 
in libraries of some statistical packages software such as SPSS. These 

methods can be also extended and applied for different probability 
distribution models which are important task in reliability modeling. 
In this study, the CDFs obtained using MLE with the EM algorithm and 
the NLMRR method for simulated complete failure data or simulated 
failure data with heavily right censored data that followed the WMD 
model are compared. To perform this comparison, the Monte Carlo 
simulation method was used to generate data samples of different sizes, 
which followed the two-component WMD model. This simulation 
experiment was based on several Monte Carlo trials (replicates) for 
complete/censored failure samples with small, moderate, and large 
sizes. It was found that MLE with the EM algorithm achieved the lowest 
bias, variance, and RMSE values for small or moderate complete failure 
data samples. Moreover, for large samples that included censored 
data, MLE using the EM algorithm converged faster than the NLMRR 
method. Therefore, efficient parameter estimates for WMD models 
using MLE with the EM algorithm are obtained.
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(a) n 10 (b) n 10

(c) n 100 (d) n 100

(e) n 1000 (f) n 1000

(g) n 5000 (h) n 5000
Figure 1: Comparison of the CDFs obtained for simulated complete failure data that followed the  
WMD model with the following true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234. Figure 1: Comparison of the CDFs obtained for simulated complete failure 

data that followed the WMD model with the following true parameters: ω1=0.3, 
β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.

(a) n 10 (b) n 10

(c) n 100 (d) n 100

(e) n 1000 (f) n 1000

(g) n 5000 (h) n 5000

Figure 2: Comparison of the CDFs obtained for simulated right censored failure data that followed 
 the WMD model with the following true parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.Figure 2: Comparison of the CDFs obtained for simulated right censored 

failure data that followed  the WMD model with the following true 
parameters: ω1=0.3, β1=0.6, α1=39, ω2=0.7, β2=2.3, α2=234.
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