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Abstract

Background
Many tools are available to estimate prediction quality, but none are available to assess the ability, of a predictive

model to identify completely missing or unknown prognostic factors, designated as ghost factors (GFs). However,
it may be possible to predict whether a subject carries a GF.

Methods
To simulate the presence of a GF, a significant prognostic factor and all variables correlated with it were

removed prior to model analysis. Public datasets and simulated data were used. A predictive statistical model was
developed to assess the relationship between the presence of a GF and the predictive capacity of a given model
based on the correlation between predicted outcome and GF presence. Five statistical models were compared using
this procedure.

Results
After evaluating 6 real databases, the only statistical method consistently able to identify subjects with GFs was

the use of optimized regression models. Using simulated, linearly correlated data, optimized regression models
exhibited up to a 92% success rate, whereas conventional linear models had less than 53% success. Random forest
and classification tree models had the highest success rates compared to the other evaluated models.

Conclusions
Model-based outcome prediction was assessed with respect to the presence of GFs. As GFs are unknown, only

subjects who are carriers of significant unknown prognostic factors can be identified. As complex models
outperformed linear models in identifying GF presence, we assume that the associations between GFs and
outcome-predictive factors are also complex and not linear.

Keywords: Completely missed prognosis factor; Blind man’s bluff
test; Random forest; Linear models; Optimized regression; Goodness-
of-fit; Confounding effect

Abbreviations
GF: Ghost Factor; ROP: Regression Optimized; CART:

Classification and Regression Tree; LR: Logistic Regression; RF:
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Background
Numerous studies have not been submitted for publication or have

been rejected for publication because they were inconclusive. There are
many causes for unexpected or inconclusive results. However, real
situations may occur where negative results could be attributed to an
important but unidentified factor in the original data. Randomization

can be used to balance risk factors between randomized groups but
cannot control their effects. Thus, if a risk factor has a specific negative
effect on an experimental treatment (interaction), inconclusive results
may be produced. In this case, stratification is required, but it can only
be used if the prognostic factor is known. For example, the results of an
inconclusive phase 3 study comparing the probability of event-free
survival in stage III melanoma are analyzed. The control group was
treated with chemotherapy, and the experimental group was treated
with a promising targeted therapy that had demonstrated a very high
level of success in phase 2. The data collected do not include
information to indicate the presence of a genetic mutation that
specifically blocks the mechanism of action of the targeted therapy.
This genetic mutation does not modify the response to chemotherapy.
Thus, a significant interaction between the genetic mutation and the
treatment exists. By randomization, an equal number of patients in
each of the 2 study groups have this specific genetic mutation. As the
genetic mutation is not yet known, information regarding its presence
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is not collected in the trial, and no interaction test is performed.
Therefore, the inconclusive results of the trial are caused by a factor
that was never identified or analyzed. We call this completely missing
factor a Ghost Factor (GF). Another example is a case in which the
diagnostic performance of a model is unsatisfactory. It cannot be
discerned whether the diagnostic insufficiency is a problem of
goodness-of-fit (GOF) due to model choice or due to a lack of analysis
of an important predictor in the data. For example, an analysis of data
related to survival from the sinking of the Titanic using 3 well-known
factors (sex, age, ticket class level) produces a maximum sensitivity of
84.3% and a maximum specificity of 72.13%, regardless of the
conventional prediction model used (logistic regression (LR) or
random forest (RF)).

Thus, the existence of unknown information within the data that
could explain all survival and all mortality is questioned. It is shown
that most misclassifications can be explained by the testimonies of
surviving passengers [1] and that the use of this information
extensively increases prediction quality.

Conversely, numerous studies have published hypotheses that were
actually not conclusive because their data did not account for primary
etiologic factors but rather for confounding factors. Identifying new
prognostic factors represents a real challenge that many researchers
aim to solve. We assume that all factors are correlated in real life (i.e.,
in biological data), particularly factors obtained from the same subject.
Such relationships can be rather complex, and they result from
multiple events. We hypothesize that this complex information can be
used to identify additional missing information, which may or may not
be confounding, in analyzed datasets. The concept of a GF differs from
the notion of latent variables. In statistics, latent variables are variables
that are not directly observed and measurable [2] but rather are
inferred from other variables that are directly measured. Thus, a latent
variable is correlated with other factors. Latent variables are used to
reduce the dimensionality of data for enhanced interpretation. This
concept also differs from the problem of missing data and imputation
methods [3,4]. Indeed, imputation methods are based on the
hypothesis that a predictor has already been collected, but not for all
subjects.

This concept also differs from the problem of study-specific missing
covariates that can be simulated or imputed (e.g., covariates observed
in some studies but missing in other studies) [5]. Here, the covariate is
unknown and was not identified elsewhere.

Here, a potential gap exists in the data, but this gap is unknown.
Many tools, such as analyses of R², discrimination measures, Brier
Score, and heterogeneity of random effects, are available to estimate
prediction quality [6]. However, no tools are currently being used to
assess the ability of a predictive model to identify a completely missing
or unknown prognostic factor.

We hypothesize that the information included within a set of
predictors can facilitate the retrieval of another predictor that is
directly observable and measurable. Because we suppose that this
important prognostic factor is unknown, we are able to identify
whether subjects are carriers of this GF, but we are not able to exactly
identify the true missing information.

To test this hypothesis, 3 steps are required. For simplicity, we
assume that the GF is either a binary factor (Yes/No) or a continuous
factor with a threshold effect that can be transformed into a
dichotomous factor. First, we must prove that it is possible to identify
subjects who are carriers of the GF [6]. Second, identifying the

presence of the GF must increase the prediction quality of outcome Yˆ
for all types of predictive models. Third, the GF must be applicable to
real data.

The objectives of the current paper were focused on answering the
following 2 questions: i) Is it possible to identify subjects who are GF
carriers? ii) If yes, what statistical model best achieves this objective?

Materials

Blind Man Buff Test (BMB test)
To answer the first question, we developed a statistical procedure

called the Blind Man's Bluff (BMB) test [6,7]. To simulate a GF, a
significant prognostic factor that was correlated to outcome Y was
removed from a public dataset. We also removed all other predictors
correlated with the GF from the initial dataset to minimize
confounding effects. Using a simulated dataset, we controlled for
confounding effects to assess the role of such confounding effect on the
success of the BMB test. In the second step, we assessed the
relationship between the predicted outcome Yˆ and the GF. We
assumed that in the case of a significant association, the tested model
was able to take into account the GF when predicting the outcome.
Fisher’s exact test was performed for a binary GF, and a Wilcoxon
signed-rank test was used for a continuous GF.

Datasets
Real public datasets (Table 1): The objective of public dataset

selection was to facilitate the verification of the results by all interested
parties. As such, the number of predictors had to be limited, and the
data had to be easily accessible. All of the data can be loaded using the
references provided. Moreover, all of the variables are described on the
website. Six public databases with binary outcomes (2 prostate cancer
databases [9,10] 1 pharyngeal cancer database [11], 1 prematurity
database [12], 1 ICU database [13], and 1 benign breast disease
database [14]) were selected. To simulate a GF, the “X-ray” factor was
removed from the prostate cancer dataset *9], and the “Smoke” factor
and 2 variables (“RACE” and “PTL”) that were correlated to minimize
the confounding effect were removed from the low birth weight dataset
prior to analysis [12]. Similarly, the "DPROS", “COND”, “WT” and
“SER” factors were removed from the prostate cancer dataset (PCS)
[10], the pharyngeal cancer dataset [11], the benign breast disease
matched casecontrol dataset (BBDM13)[14] and the ICU dataset [13],
respectively. Table 1 presents the GF and the remaining factors that
were used to develop each dataset.

Simulated datasets: We simulated datasets by evaluating a binary
outcome Y distributed as a logistic function. The prevalence was set at
30% for all of the simulations, creating approximately 2 controls for 1
case. This situation optimizes the power of statistical testing. For each
dataset, 500 subjects were simulated with 5 predictors following a
binomial distribution. To assess the impact of the statistical level of
correlation between the GF (X1) and the outcome (Y), we used
statistical correlation levels with p-values equal to 0.01, 0.02, 0.04, 0.06,
0.08 or 0.1. To assess the impact of confounding factors between the
GF (X1) and the other predictors (X2, X3,X4, X5), we set a statistical
correlation level with a p-value equal to 0.5 for X4 and X5. For X2 and
X3, the statistical correlation levels with X1 were set to (0.01; 0.01),
(0.04; 0.04), (0.1; 0.1), (0.01; 0.1), (0.01; 0.04), and (0.04; 0.1). To assess
the false positive rate, we also simulated a situation in which X1 was
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correlated to Y with a p-value of 0.5, and X2, X3, X4, and X5 were
correlated to X1 with p-values of 0.5.

Dataset Source Ghost
factor

Outcom
e

Other predictors included Ghost factor
~ Other
predictors
included
(error rate)

ROP RL RF CAR
T

DA

Benign
Breast
Disease 1-3
Matched
Case-
Control
Study
(BBDM13.D
AT)

Hosmer and Lemeshow (2000) Applied
Logistic. Regression: Second Edition,
page 245.

https://www.umass.edu/statdata/data/
bbdm13.txt

WT Final
diagnosis

AGMT+HIGD+AGLP+DEG Adjusted R²

0.004108

0.043

(*)

0.96

(NS)

0.011

(*)

0.67
1

(NS)

0.88
2

(NS)

ICU.DAT Hosmer, D.W., Lemeshow, S. and
Sturdivant, R.X. (2013) - https://
www.umass.edu/statdata/data/icu.txt

SER Vital
Status

GENDER+CRN+SYS+PRE
+LOC

Misclassificat
ion rate :
0.35

0.020
(*)

0.04
9

(*)

0.02
8

(*)

0.05
8

(NS)

0.03
4

(*)

Prostate
Cancer

http://www.agrocampus-ouest.fr/math/
livreR/cancerprostate.txt

Xrays Y AGE+ACID+GRADE+SIZE Misclassificat
ion rate :
0.3585

0.003
(**)

0.15
9

(NS)

0.00
2

(**)

0.38
4

(NS)

0.116

(NS)

Low birth
weight

https://www.umass.edu/statdata/statdata/
data/lowbwt.txt

Smoking LOW AGE+LWT+PTL+HT+UI
+FTV

Misclassificat
ion rate :
0.3757

0.031
8 (*)

0.03
5

(*)

0.02
0

(*)

0.00
2

(**)

0.05
9

(NS)

Prostate
Cancer
Study
(PCS.DATA
)

Hosmer and Lemeshow (2000) Applied
Logistic Regression: Second Edition.

https://www.umass.edu/statdata/data/
pros.txt

DPROS CAPSUL
E

AGE+RACE+VOL Adjusted R²

0.004469

0.034
(*)

0.96
0

(NS)

0.09
4

(NS)

0.67
1

(NS)

0.88
1

(NS)

Pharynx
(PHARYNX
.DAT)

"The Statistical Analysis of Failure Time
Data, by JD Kalbfleisch& RL Prentice,
(1980), Published by John Wiley & Sons -
https://www.umass.edu/statdata/statdata/
data/pharynx.txt

COND TX SEX+TX+GRADE
+T_STAGE+N_STAGE

Adjusted R²

0.05577

0.043
(*)

0.84
4

(NS)

0.00
8

(**)

0.22
3

(NS)

0.00
8

(**)

Table 1: Real public datasets.

Three hundred datasets were simulated for each of these situations,
which led to 108,300 (37*300) simulated samples. The simulations
were performed using R statistical software. All simulation programs
are available from the authors upon request.

Comparison of statistical models
The performance of 5 statistical models, including parametric and

non-parametric models, was assessed. Two parametric and linear
model (LR, discriminant analysis (DA)) and 3 nonparametric and
nonlinear models (classification and regression tree (CART), RF [15]
and the regression optimized (ROP) model) were compared. The ROP

[6,7] model is based on a tree on which each node is a set of risk scores
including linear combinations of predictors. It is nonparametric
because coefficients are not estimated but rather systematically
screened from a range of all possible values. It is nonlinear because it
acts as a type of decision tree. Coefficient selection depends on an
algorithm that tests all possibilities of combinations, for which a patent
has been filed. ROP model results are presented as a decision tree that
is easy to understand, interpret and use. A detailed example able to
verify the results and performance levels presented in this paper is
presented in Figure 1. Additional examples are available from the
authors upon request.
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Figure 1: Prostrate cancer dataset. Outcome=’Y’. Predictors=‘AGE’; “ACID”; “SIZE’; ‘GRADE’.

Results

Performance with real databases (Table 1)
Conventional statistical methods (LR, CART, DA and RF) allowed

us to identify subjects with GFs in 2/6, 1/6, 2/6 and 5/6 datasets,
respectively. The ROP model demonstrated success for all of the
datasets (Table 1). Thus, a significant relationship was noted between
the outcome that was predicted by the model and the GF. An example
of the ROP model, including risk scores and thresholds, is presented in
Figure 1.

Performance with simulated databases
The RF and ROP models exhibited the best performance in the

BMB test. The proportion of success for the BMB test increased with
the level of correlation between the GF and the outcome from 19% to
92% (Figures 2A-2C). The ROP model consistently demonstrated the
best performance compared to the other models.

For high levels of correlation between the GF and the outcome
(p=0.01; p=0.02; Figure 2A), the rate of success (positive BMB tests)
varied from 76% to 92% for the ROP model, from 66% to 89.3% for the
RF model, from 40% to 55.3% for the CART model, from 27.7% to
43.7% for the LR model and from 26% to 52.3% for the DA model.

For intermediate levels of correlation (p=0.04 and p=0.06, Figure
2B), the rate of success (positive BMB tests) varied from 46% to 71.3%
for the ROP model, from 43% to 62.3% for the RF model, from 26.7%
to 41% for the CART model, from 19.7% to 41% for the LR model and
from 21.7% to 48% for the DA model.

For insignificant levels of correlation (p=0.08 and p=0.1, Figure 2C),
the rate of success (positive BMB tests) varied from 31.3% to 69.7% for
the ROP model, from 31.3% to 39.7% for the RF model, from 23% to

32% for the CART model, from 22% to 38.3% for the LR model and
from 20.7% to 41% for the DA model.

For the scenarios wherein no statistical correlations were noted
between X1 and Y or between X1 and the other predictors (all p-
values=0.5), the rate of success was equal to 6.3% with a 95%
confidence interval (CI) of [3.86% -9.71%] for the ROP model, 3.3%
with a 95% CI of [1.61% -6.05%] for the RF model, 12% with a 95% CI
of [8.55% -16.22%] for the LR model, 9% with a 95% CI of [6%
-12.82%] for the CART model and 9.3% with a 95% CI of [6.29%
-13.21%] for the DA model.

Discussion
The BMB test results showed that outcome Yˆ in the ROP and RF

models was linked to a GF. Consequently, the model made it possible
to identify patients for whom a prognosis factor was not collected. As
the GF is an unknown factor, the only way to prove this concept is to
remove a real and known predictor from a dataset and allow the
removed predictor to play the role of a GF. The challenge is then to
retrieve subjects who are carriers of the GF.

Model performance
In real databases, no significant linear correlations were observed

between the GF and the other evaluated variables; all other predictors
correlated with the GF were previously removed from the analyzed
data. Thus, there is no linear confounding effect. Our hypothesis was
that all data are linked in a biological system. Therefore, some
information related to the GF persisted within the remaining factors. A
given biological value is the result of millions of other values, but the
nature of these associations is mostly unknown. We hypothesize that a
non-linear relationship may be involved and therefore linear models
are not suitable to assess how one predictor is associated with others.
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This hypothesis is consistent with the finding that nonlinear models
(i.e., the RF and ROP models) outperformed linear models in the BMB
test.

To verify this hypothesis, we simulated data with linear correlations
between the GF and outcome as well as between the GF and other
predictors (confounding effect). A logistic function was used to
simulate data. We hypothesized that linear models would exhibit
comparable performance in the BMB test to nonlinear models, such as
the ROP and RF models, in cases of linear correlation. The results
obtained using simulated data did not confirm our hypothesis.
Surprisingly, linear model performance, such as that of the LR model,
was not comparable to the performance of the ROP and RF models.
The nonparametric models tended to perform better due to the degree
of complexity of the model itself.

In the ideal situation, wherein 2 confounding factors correlated with
the GF with a p-value of 0.01 (R²=0.02), the rates of success in the
BMB test for the linear models did not exceed 50%, whereas the
success rates were 90.7% and 81.7% for the ROP and RF models,
respectively. The differences in performance between the linear (LR,
DA) and nonlinear (ROP, RF, CART) models decreased when the
correlation between the GF and the outcome decreased. For
correlation level p-values equal to 0.1 (R²=0.006) between the GF and
the outcome as well as between the GF and the other predictors, the
differences in performance were less than 10% (33.3% for ROP, 23.3%
for LR; Figure 2C).

Figure 2A: Performances to the BMB test according to different
levels of correlation (p=0.01 and p=0.02) between the ghost factor
and the outcome [Pp(X1,Y) ], between the ghost factor and the other
predictors [Pp(X1,X2)-Pp(X1,X3) ].

Figure 2B: Performances to the BMB test according to different
levels of correlation (p=0.04 and p=0.06) between the ghost factor
and the outcome [Pp(X1,Y) ], between the ghost factor and the other
predictors [Pp(X1,X2) -Pp(X1,X3) ].

The results from the case in which all correlation level p-values were
set to 0.5 are interesting. The ROP and RF models provided lower rates
of success compared with the other models. This result indicates that
the proportion of false positive tests was greater for the linear models.
We noticed that the 95% CIs for the ROP and RF models included a
5% threshold (considered the threshold of randomness), whereas the
other models excluded this threshold. These results demonstrated that
obtaining a p-value of less than 0.5 for a linear correlation test is an
interesting finding that could lead to the identification of new
prognosis factors for RF and ROP models. Of all the tested models,
both linear and nonlinear, the ROP model consistently demonstrated
the best ability to identify patients with GFs and appeared to fit the
data. The solutions that were proposed by the ROP models revealed a
portion of the complexity of the relationship between predictors. The
risk coefficients for a given factor changed between branches, thus
indicating a different role according to each subgroup of subjects.

Perspective Conclusion
The next objective of our research is to demonstrate that adding

outcome Yˆ from the ROP model as a covariate in the LR or RF models
significantly increases prediction quality up to the attainment of a
perfect prevision with sensitivity and specificity equal to 100%. These
results could demonstrate that outcome Yˆ from the ROP model
represents the missing information needed for a perfect prevision and
therefore contains a GF.
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The development of an algorithm that does not use predicted
outcome Yˆ is ongoing. This algorithm uses several subgroups defined
by the ROP model. The first results we obtained are impressive and
prove that information from a complex model can actually be used to
increase the prediction quality of conventional models.

As a consequence, it will be possible to identify the nature of this
new information by investigating its relationship with different
molecular mechanisms of pathology.
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