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Introduction
Let we are considered in cylindrical domains QT=Ω × (0,T), where 

Ω ⊂ Rn, n ≥ 2 is a bounded Lipschitz domain, T>0, degenerate non-
linear parabolic equations

ut−div(ω(x)|Du|p−2Du)=0              (1.1)

u|Γ(QT)=h,        (1.2)

where Γ(QT)=(Ω¯ × {0}) ∪ (∂Ω × [0,T]) denote the parabolic boundary 
of QT, h : QT→R continuous function, ω(x)-Makenxhoupt weight 
function [1].

To regularity of solutions to the degenerate parabolic non-linear 
operator introduced by DiBenedetto et al. [2,3]. Let ( )w TC Qα  weighted 
space, where norm following:

( )

( ) ( ) ( ) ( )
(x)

1 2
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f z w x f z w x
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where the parabolic metric is defined as

( ) ( ) ( )
1

2
1 1 2 2 1 2 1 2, max , ,0 1p px t x t x x t t α

α
α − −  − = − − < < 

Main Results
We are now ready to state our result which concerns regularity for 

solutions to the problem (1.1), (1.2).

Theorem 2.1

Let’s consider problem (1.1), (1.2)and let u(x,t) solve this problem. 
Let Q0

T ⊂ QT be a bounded space time cylinder such that (interior 
regularity)

Q0
T ∩ Γ(QT )=∅. Then ( )'

(x)w Tu C Qα∈  and

( )'
(x)

'
(x)(x, t) (n,p,w(x),Q ,Q , (x) ( ),osu(x, t) )

w T
T T wu C Q

u c h Cα
α

∈
≤ ∈ Ω  (2.1)

Theorem 2.1 concerns optimal interior regularity. We also establish 
optimal regularity up to initial state. In particular, in this case we prove 

( )w TC Qα  estimates on ( )0,rQ T=Ω × ) for every Ω, ⊂ Ω. We doing 
remark that in this case TQ  is not a compact subset of QT .

In this context hold following result [1-12].

Theorem 2.2

Let u(x,t) solve problem (1.1), (1.2) and(Initial time regularity)

(x)(x) ( )wh Cα∈ Ω , 'Ω ⊂ Ω
' ' (0,T)TQ X=Ω , ( )'

(x)w Tu C Qα∈

And 

( )'
(x)

'
(x)(x, t) (n,p,w(x),Q ,Q , (x) ( ),osu(x, t) )

w T
T T wu C Q

u c h Cα
α

∈
≤ ∈ Ω  (2.2)

We also can be is considered obstacle problem similarly to problem 
(1.1), (1.2). In the case of linear uniformly parabolic equations [4]. 
Optimal regularity problem of the solution is considered [5].

We are study weak solutions from 1,
1 2 (x)(t t , W (Q ))P p

w TL  space. In the 
space

1,
(x)W ( )p

w Ω  the norm denote the space of equivalence classes of 
functions f with distributional gradient Df, both of which are pth power 
integral on QT . Let

1,
(x) ( )W ( ) ( )

(x)f(x) (x)p
w LP LP

f w w D f
ΩΩ Ω

= +

be the norm in 1,
(x)W ( )p

w Ω .

Given t1<t2 we denote by 1,
1 2 (x)(t t , W (Q ))P p

w TL  the space of functions 
such that for almost every t, t1 ≤ t ≤ t2 the function 

x → u(x,t) belongs to 1,
(x)W ( )p

w Ω and 1,
1 2 (x)(t t , W (Q ))pP

TwL
u

2

1

1

(w(x) (x, t) (x) (x, t)
t P

p p

t

u w Du dxdt
Ω

 
= + ≤ ∞  
 
∫ ∫

We say that a function u(x, t) is a weak solution to (1.1), (1.2) in 
an open set

QT ⊂ Rn+1 if whenever Q0
T=Ω0 × (t1,t2) ⊂ QT with Ω0 ⊂ Ω ⊂ Rn and 

t1<t2 then 1,
1 2 (x)(t t , W ( ))P p

wu L∈ Ω  and

'

2
(w(x) ) 0

T

p

t
Q

Du DuD u dxdtϕ ϕ
−

− =∫               (2.3)

for all nonnegative '
0 ( )TC Qϕ ∞∈ .
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Abstract
In this paper we prove regularity of solutions of degenerate parabolic nonlinear equations. We also the proof of 

a removability theorem for solutions to degenerate parabolic nonlinear equations.
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Using Theorem2.1 we are able to establish sharp removability 
conditions for compact sets. We of cylinders introduced

}{ 1 2
0 0 0 0(x , t ) (x, t) R : ,n p p

TQ x x r t tλ τλ+ −= ∈ − < − <

And a concave modulus of continuity ψ(·). We let ψ: R+ → R+ 
be a concave modulus of continuity, i.e., concave non-decreasing 
function such that ψ(1)=1 and ( ) ( )

0
0 lim 0

r
rψ ψ

→
= = . We also 

define Hausdorff measure as follows. We let for fixed δ,0< δ<r0 and 
}{1 (ri)

i i, ( , (.);E) (x , t )n
riE R L Qψδ ψ+⊂ =  be a family of cylinders such that

(ri)
i i(x , t )riE Qψ⊂ ∪ and 0 < ri < δ for i=1,2,..

Using this notation we let

}{(.) (ri)
i i i( , (.);E)0

(E) lim inf (r ) : (x , t )n
i riL

H r E Qψ ψ

δ ψδ
ψ

↓
= ⊂ ∪∑

where the indium is taken with respect to all possible coverings L(δ,ψ(·); 
E) of E.

Theorem 2.3 

Let QT be a cylindrical domain and let E ⊂ QT be a closed set. Let 
u(x,t) is a weak solution to eqn. (1.1) in QT \E and that (x)(x, t) (Q )w Tu Cα∈  

Assume also that Hψ(·)(E)=0. Then the set E is removable, i.e., u(x,t) 
can be extended to be a weak solution in QT .

Similarly result the fundamental work [6], under assumption 
Holder continuity of the solution can be found [7-12].

Proof of theorem 2.1 

We assume Q,T ⊂ QT such that Q0
T ∩ Γ(QT )=∅.

We define function

[ ] [ ]0, 0,X X T
osc h osc h

Ω ∞ Ω
=

Then [ ] [ ]0, 0,X X T
osc h osc h

Ω ∞ Ω
= . Let ¯u be the unique solution to

2(w(x) ) 0p
tu div Du Du−− = in Ω × (0,∞) 

u¯(x,t)=h¯(x,t) on Γ(Ω × (0,∞)).

By the uniqueness ¯u=u in Ω × [0,T] and hence ¯u is an extension 
of u. Let

R=max{1,diamΩ,T1/2}. As clearly

T ≤ (ψ(R))2−p  Rp ≤ R2.

Whenever R ≥ 1. By maximum and minimum principle implies that

( ), ,
Qr Qr Qr

oscu oscu c T oscu≤ ≤ Ω                 (2.4)

We may assume that ' '
, ( ,T)TQ xγ τ= Ω , where Ω0 ⊂ Ω and τ>0. We 

let R be

a number subject to the restrictions

R ≤ dist (Ω0,∂Ω),τ ≥ Rp max{osch,ψ(R),s · R}2−p.

QT

As so ψ(1)=1, we see that these conditions are satisfied if we take
21 1 1 1 2

' ' 2( , ( , )),max ( ,T, ) , , , ,
p P

pP P r P
QT

R dist T osch Sτ τ τ
− −  ≤ Ω ∂ Ω ∂Ω Ω 

 
Taking correspondingly λ it follows that (R) (z)R TQ Qλψ ⊂ whenever z 

∈ Q0
T,τ.

Now we prove that the following holds whenever '
Tz Q∈  

(r)
0, (z ) Qr

2 (r)
(r) ( )

2
c
T r

QT QT

QTQ

oscu oscu
osc u oscu Rλψ

λψ
ψ ψ

− ∩
≤ = ≤ ≤

This completes the proof of Theorem 2.1.

Proof of theorem 2.2 

After extending u(x,t) as in the above we choose

R=dist(Ω0,∂Ω) and define

( )
(x) ( )

max / (R), , . / (R)
wC

c b s Rλ ψ ψ
Ω

=  where ( ), ,
Qr

c c T oscu= Ω  

We let Z=Ω¯0 × (0) then

2 (r)
1(z )

(r)
rQ
oscu u c
λψ

λψ≤  for every r ∈ (0,R),

Qλψr (r)(z)∩Q0T.

Whenever z ∈ Z. Consider ( )( )' ',
1 ( X 0Tz Q∈ ∩ Ω  and define 

(r)
1 1(z ) sup : (z ) Zrr r r R Qλψ θ = = ≤ ∩ =   If r>R/2, then

2 (r)
1(z )

(r)
rQ
oscu u c
λψ

λψ≤  for every r ∈ (0,R).

In the final

( ) ( ){ } ( ){ }¯  4 ¯ , · / ¯ ¯  4 , /  · ,max r s r r max sR R cλ λψ ψ λ ψ λ= =  
implies that

2 (r)
1(z )

(r)
rQ
oscu u c
λψ

λψ≤  for every r ∈ [0,r¯].

Whenever ( )( )' ',
1 ( X 0Tz Q∈ ∩ Ω .

This completes the proof of Theorem 2.2.

Proof of theorem 2.3 

Let u(x,t) weakly solve of eqn. (1.1) in QT \E and assume that
(x),loc(x, t) C (Q )w Tu α∈  and Hψ(·)(E)=0. Q2

T ⊂ Q1
T ⊂ QT be arbitrary space-

time smooth cylinders. Our only need to prove the conclusion in 
Q1

T since the one of being a weak solution is a local property. By the 
assumption

(x),loc(x, t) C (Q )w Tu α∈  there exists M>0 such that

1
(x, t)

TQ
oscu M≤  and (r) 1

(x, t) (r)
TTQ Q

osc u M
µ ψ

ψ
− ∩

≤               (2.5)

If we using the existence result, then see that there exist a unique 
solution v(x,t) of problem

2u (w(x) ) 0p
t div Dv Dv−− =                (2.6)

v|Γ(QT1 )=u

Let µ be the nonnegative Riesz measure associated to v(x,t). Note 
that from existence µ follows v(x,t) is a supersolution [7]. Let F={(x,t) 
∈ Q1

T : v(x,t)=u(x,t)}. Now prove that the support of µ is contained in 
F ∩ E. For these is sufficient to show that v(x,t) is a weak solution to 
(2.6) in Q1

T \(F ∪ E). We already know that (2.6) satisfy in Q1
T \F and 

it therefore remains to show that (2.6) satisfy in Q˜
T=Q1

T \E. To this 
aim, we show that if Q˜∗

T ⊂ Q˜
T is a cylinder and α€C0(Q*

T) is a weak 

solution to ( ) 2( )P
t w x D Dα α α−− witk α=u on Γ( TQ ), then actually v 

must coincide with α (x,t)in the( TQ ) . Note that such a unique solution 

α(x,t) exists. We immediately see by the comparison principle that v ≥ 
α in Q˜∗

T , because v(x,t) is a weak supersolution. To show that v ≤ α we 
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instead argue as follows: since u(x,t) ≤ v(x,t), we also have u(x,t) ≤ α(x,t) 
on Γ TQ  and as u(x,t) solves eqn. (1.1) in TQ , the comparison principle 
holdsu(x,t)≤ α (x,t)in. We thus conclude that v(x,t) ≤ α(x,t) on Γ(Q˜∗

T ) 
∪ F . Therefore v(x,t)=α(x,t) and consequently also eqn. (2.6) yields in 
Q˜∗

T. This completes the proof that support of µ is contained in F ∩ E.

Later using Theorem 2.1 and a covering argument we can conclude 
that there exists C depending only on n,p,ν,L,M,ψ(·),Q1

T ,Q
2

T such that

(r) 1
(x, t) (r)

TTQ Q
osc u M

µ ψ
ψ

− ∩
≤               (2.7).

Whenever 
1

(x, t)
TQ

oscu M≤ . Consider concentric cylinders 

(r) 1
(x, t) (r)

TTQ Q
osc u M

µ ψ
ψ

− ∩
≤ . In the following we will use the short 

notation 1Q \ ET TQ = . Let 1Q \ ET TQ =  be such 0  and ϕ ≡ 1 on Q˜
τ. Let 

k=supv(x,t). Using eqn. (2.6) we have

Q˜2τ

( )
2

0 p
r Q r

Q dµ ϕ µ≤ ≤ =∫

( ) ( )( )2

2 v

pp p

tQ r
w x Dv Dv D dxdtϕ ϕ

− − + ≤  ∫

( ) 1 1

2 2
( )

p p p

Q r Q r t
c w x Dv D dxdt vdxdtϕ ϕ ϕ

− − + ≤∫ ∫

( )( ) ( )( )
1 1

2 2

p
p p pp p

Q r Q r
c w x Dv dxdt w x D dxdtϕ ϕ ϕ

−

+∫ ∫

2
( )p

Q r t
vdxdtϕ∫            (2.8)

For the nonnegative weak sub solution k−v(x,t) we see that

( ) ( )1 2

2
[w(x) ]

pp p p p

tQ r
c k v D k v S dxdtϕ ϕ ϕ

−
− + − +∫

for some const c=c(n,p,ν,L) ≥ 1. By eqn. (2.7)

( ) ( )
1

2

sup ,
Tr QQ

k v oscv x t C rψ− ≤ ≤

and putting the estimates (2.8) we obtain that

( ) ( ) ( )( ) ( )
11

22 2 2 .
p

p pn p p p np
TQ c sµ ψ τ τ ψ τ τ ψ τ τ

−
−− −   ≤ +    

cψ(τ)τn ≤ c(1 + s)p−1ψ(τ)τn.  (2.9)

Here we also used the estimate |ψ(τ)|2−p ≤ τ2−p for τ ≤ 1. Now we 
consider cylinder Q3

T ⊂ Q2
T . We will prove that µ(Q3

T )=0. We first note 
using eqn. (2.9) we have

( )( ) ( )w nQ cτ
τµ τ ϕ τ≤ . (2.10)

Whenever ( )2 2
2
wQ Qτ
τ τ⊂ . Since Hψ(·)(E)=0 we obtain for ε>0 and δ>0 

given (to be taken smaller that dist(Γ(Q3
T ),Q2

T )/4), then there exists a 
countable family

( )}{ ( ) ( )}{ ,i i

i i i iQ Q x tψ τ ψ τ
τ τ=

of cylinders with 0 < τi < δ,i=1,2,..., such that ( )2 2
2

i

i
Q Qψ τ

τ τ⊂  and

E ∩ Q3T ⊂ [Q˜ψτi(τi) and Xτinψ(τi)<ε.            (2.11)

Later using eqn. (2.10) we is obtain

( ) ( )( ) ( )3 .i

i

n
T i ii i

F E Q Q Cψ τ
τµ µ τ ψ τ ∩ ∩ ≤ ≤ < ∈  ∑ ∑             (2.12)

proving that µ[F ∩ (E ∩ Q3
T )]=0. The fact that both Q2

T and Q3
T are 

arbitrary, we can conclude that µ(Q1
T )=0. Thus v(x,t) is a solution in Q1

T . 
Finally applying the above argument with u(x,t) replaced by −u(x,t) we 

deduce that there exist two solutions v1(x,t) and v2(x,t) i.e., eqn. (2.6) 
for v1 equal to eqn. (2.6) for v2. Such that v1(x,t) ≤ u(x,t) ≤ v2(x,t) and 
v1(x,t)=v2(x,t) on Γ(Q1

T ). It follows that v1=v2=u. Theorem is proof. 
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