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Abstract

Braided geometry is a sort of the noncommutative geometry related to a braiding. The
central role in this geometry is played by the reflection equation algebra associated with a
braiding of the Hecke type. Using this algebra, we introduce braided versions of the Lie
algebras gl(n) and sl(n). We further define braided analogs of the coadjoint orbits and the
vector fields on a q-hyperboloid which is the simplest example of a ”braided orbit”. Besides,
we present a braided version of the Cayley-Hamilton identity generalizing the result of Kantor
and Trishin on the super-matrix characteristic identities.
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1 Introduction

By braided geometry we understand a sort of the noncommutative geometry related to a braiding
R, which is an invertible operator R : V ⊗2 → V ⊗2 obeying to the Yang-Baxter equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)

Here V is a vector space over the ground field K = C (or R).
In what follows we are dealing with braidings satisfying a second order equality

(q I −R)(q−1 I + R) = 0

where q ∈ K is assumed to be generic (in particular, this means qk 6= 1 for any integer k ≥ 2).
Such a braiding is called a Hecke symmetry. It becomes an involutive symmetry in case q = 1.

Let Uq(sl(n)) → End(V) be the basic representation of the quantum group Uq(sl(n)), dimV =
n. Then the product of the image of the quantum universal R-matrix in the space V ⊗2 and the
flip (transposition operator) is a Hecke symmetry. In what follows this Hecke symmetry will be
referred to as a standard one. Note that its limit at q → 1 is the usual flip. In this sense we
can treat the standard Hecke symmetry as a deformation of the flip. In a similar way one can
construct deformation of a super-flip. Besides, there are known Hecke symmetries which are
neither deformations of a flip, nor of a super-flip (see the next section).

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
Sweden, October 11–13, 2007.
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With any Hecke symmetry we can associate (at least) two matrix algebras. One of them
is called RTT (or Reshetikhin-Takhtajan-Faddeev) algebra (cf [17]), the other one is called
Reflection Equation Algebra (REA)2.

Both, the RTT and the RE algebras (supplied with a spectral parameter) are employed in
constructing integrable dynamical models. Besides, the latter algebra possesses a number of
remarkable properties which make it a very interesting object of the braided geometry.

First, the REA admits some quotients which can be regarded as noncommutative (braided)
analogs of the coadjoint orbits. Moreover, it enables one to define a braided analog of the Lie
bracket.

Second, for certain matrices with entries belonging to REA one can find the Cayley-Hamilton
(CH) identities with central coefficients. These identities allow one to define a whole family of
projective modules over the braided orbits. An attempt to develop a sort of related K-theory
based on a ”braided trace” instead of the usual one, which is traditionally employed in the
classical K-theory, was made in [8]. Most of these objects are defined and studied for the REA
related to the so called even Hecke symmetries (see the next section).

For the general linear type Hecke symmetries (further referred to as the GL(p|r) type sym-
metries) we have established the basic CH identity. This identity is a q-extension of the char-
acteristic identity for super-matrices discovered by I.Kantor and I.Trishin in [13]. Note that it
is this remarkable paper which stimulated our interest in the REAs related to the GL(p|r) type
Hecke symmetries.

The present paper is a brief review of the main properties of the REA and their applications in
braided geometry. In particular, we present a classification of the Hecke symmetries (section 2),
define and compare the corresponding quantum matrix algebras (section 3), introduce braided
analogs of the Lie algebras gl(n) and sl(n) (section 4), and consider braided version of the Cayley-
Hamilton identity (section 5). We conclude the paper with an example of a q-hyperboloid for
which we describe a braided analog of vector fields and describe their applications.

2 Classification of Hecke symmetries

Definition 2.1. Let V be a finite dimensional vector space over the field K, dimKV = n. An
invertible operator R : V ⊗2 → V ⊗2 is called a braiding if it satisfies the quantum Yang-Baxter
equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)

If, in addition, a braiding R obeys the relation

(qI −R)(q−1I + R) = 0, q ∈ K \ 0

it is called a Hecke symmetry. If q = 1 a braiding R is called an involutive symmetry.

For any Hecke symmetry the braided analogs of the symmetric and skew-symmetric algebras
of the space V can be constructed in the following way. Define the ”R-symmetric” I+ and
”R-skew-symmetric” I− subspaces of V ⊗2 by the relations

I+ := Im(q−1 I + R) i.e I+ = {q−1x⊗ y + R(x⊗ y), ∀x, y ∈ V }
I− := Im(q I −R) i.e I− = {qx⊗ y −R(x⊗ y), ∀x, y ∈ V }

2A method of constructing other matrix algebras by means of a pair of compatible braidings, one of them
being the Hecke symmetry, is described in [11, 5].
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Let T (V ) denotes the free tensor algebra of the space V , and 〈I±〉 stands for a two-sided
ideal in T (V ) generated by the space I±. The quotients

Λ+(V ) := T (V )/〈I−〉 and Λ−(V ) := T (V )/〈I+〉

are called R-symmetric and R-skew-symmetric algebras of the space V respectively.
Noticing that Λ±(V ) are quadratic graded algebras, we consider their Hilbert-Poincaré (HP)

series

P+(t) :=
∑

k≥0

dimΛk
+(V ) tk, P−(t) :=

∑

k≥0

dimΛk
−(V ) tk

where Λk±(V ) ⊂ Λ±(V ) are homogeneous components of the degree k.

Theorem 2.2. For generic values of q the following identity holds

P+(t)P−(−t) = 1

Example 1. If R = P where P is the usual flip then P−(t) = (1 + t)n where n = dimV .

Example 2. If V = V0 ⊕ V1 is a super-space, sdimV = (p|r) and R is the corresponding
super-flip then P−(t) = (1+t)p

(1−t)r .

Definition 2.3. If P−(t) (respectively P+(t)) is a monic polynomial then the space V and the
braiding R are called even (respectively odd).

Theorem 2.4. If R is even then the polynomial P−(t) is reciprocal.

Proposition 2.5. For any V with dimV = n ≥ 2 there exists a Hecke symmetry R : V ⊗2 → V ⊗2

such that P−(t) = 1 + nt + t2.

Note that if n > 2 such a Hecke symmetry cannot be a deformation of the usual flip since
the HP series are stable under the deformation.

Definition 2.6. Let R be an even Hecke symmetry. The degree p = degP−(t) is called the rank
of R.

Proposition 2.7. Let p be an integer constrained by 2 ≤ p ≤ n = dimV . Then there exists an
even Hecke symmetry R : V ⊗2 → V ⊗2 of the rank p.

All even Hecke symmetries of rank 2 are classified (cf [4] and references therein).

Example 3. If p = 3, then P−(t) = 1 + nt + n t2 + t3.

Example 4. If p = 4, then P−(t) = 1 + n t + r t2 + n t3 + t4.

Definition 2.8. Let P−(t) be a rational function represented as a ratio of two coprime polyno-
mials, the degrees of the numerator and denominator being p and r respectively. We shall say
that the corresponding Hecke symmetry has the bi-rank (p|r).

The bi-rank of a super-flip coincides with its super-dimension.

Theorem 2.9. [10] Any Hecke symmetry has a certain bi-rank. In other words, its HP series
P−(t) is a rational function.
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Definition 2.10. A braiding R is called skew-invertible if there exists an operator Ψ : V ⊗2 →
V ⊗2 such that

Tr(2)R12Ψ23 = P13

where P13 is the flip transposing the first and the third spaces.

On fixing a basis {xi} ∈ V we get the corresponding basis {xi ⊗ xj} in the space V ⊗2. With
respect to this basis the braiding R and the operator Ψ are represented by their matrices

R(xi ⊗ xj) := xk ⊗ xlR
kl
ij , Ψ(xi ⊗ xj) := xk ⊗ xlΨkl

ij

where the upper pair of indices enumerates columns of the matrix and the lower one — rows.
In terms of matrices the relation in Definition 2.10 takes the form

n∑

a,b=1

Rkb
iaΨal

bj = δl
i δk

j

Theorem 2.11 ([2]). If R is a skew-invertible symmetry then the numerator N(t) of the rational
function P−(t) is a reciprocal polynomial, while the denominator D(t) is a skew-reciprocal one
(i.e D(−t) is reciprocal).

For any skew-invertible braiding the operators

B := Tr(1)Ψ (Bi
j = Ψai

aj), C := Tr(2)Ψ (Ci
j = Ψia

ja)

are well defined. They are analogs of the parity operators in super-spaces. They are used for the
definition of R-traces associated with R in the spaces of endomorphisms. If End(V) = V ⊗ V∗

is the space of left endomorphisms and the set {hj
i} is its natural basis (i.e hj

i (xk) = δj
k xi), then

TrR(hj
i ) = Cj

i (for the space of right endomorphisms there is a similar formula with B instead
of C). Note that if R is a super-flip then TrR is nothing but the usual super-trace.

3 Quantum matrix algebras

The most famous quantum matrix algebra related to a Hecke symmetry R is the RTT-algebra.
It is defined in following way. Let T = ‖tji‖, 1 ≤ i, j ≤ n = dim V be a matrix with entries tji .
Then by definition an RTT algebra is generated by the unit and by the elements tji subject to
the relations

RT1T2 = T1T2R, where T1 := T ⊗ I, T2 := I ⊗ T

or in a coordinate form

Rkl
ij tmk tnl = tki tlj Rmn

kl

where the summation over repeated indices is always understood. Being equipped with the
coproduct

∆(tji ) = tki ⊗ tjk

and a counit it becomes a bi-algebra. If in addition R is an even skew-invertible Hecke symmetry
a group-like element detq(T ) (called the quantum determinant) can be defined. If it is central,
the quotient of the RTT algebra over the ideal generated by detq(T )− 1 is a Hopf algebra. For
the standard Hecke symmetry (”the standard case” in what follows) this quotient is denoted
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Kq[SL(n)] and treated to be a quantum analog of the function space on the group SL(n). Its
restricted dual is just the quantum group (QG) Uq(sl(n)).

Another important quantum matrix algebra associated with R is the so-called Reflection
Equation Algebra (REA). It is defined as follows. Let L = ‖lji ‖, 1 ≤ i, j ≤ n = dim V be a
matrix with entries lji (the lower index enumerates rows). Then the REA is generated by the
unit and by the elements lji subject to the relations

R L1 R L1 − L1 R L1 R = 0

or, in coordinates

Ra1b2
i1i2

lb1a1
Rc1j2

b1b2
lj1c1 − la1

i1
Rb1c2

a1i2
lc1b1 Rj1j2

c1c2 = 0

This algebra has a braided bi-algebra structure and can be equipped with the coaction of the
RTT algebra (in the standard case it can be also equipped with an action of the QG Uq(sl(n))).
The term ”braided” means that

∆(a b) = ∆(a)∆(b) = (a1 ⊗ a2) (b1 ⊗ b2) := a1 b̃1 ⊗ ã2 b2

where ∆(a) = a1 ⊗ a2, d̃⊗ c̃ = REnd(V)(c⊗ d), and REnd(V) is an extension of the initial Hecke
symmetry R to the REA (see the next section and [7] for more detail).

If R is a skew-invertible even Hecke symmetry a group-like element detq(L) can be defined.
Then the quotient of the REA over the ideal generated by detq(L) − 1 has a braided Hopf
structure [15]. It is a braided analog of function space on SL(n). Denote it Kq[SL(n)].

In the standard case Kq[SL(n)] and Kq[SL(n)] arise from the quantization of two different
Poisson structures on the group SL(n). The algebra Kq[SL(n)] arises from the Sklyanin bracket,
while Kq[SL(n)] originates from the Semenov-Tian-Shansky (S-T-S) one. A universal description
for both these algebras is given in [11, 5]. It is based on the use of a pair of compatible braidings,
one of them being the Hecke symmetry.

However, the properties of Kq[SL(n)] and Kq[SL(n)] differ drastically.

1. In the REA the elements3 TrR Lk := Tr (C · Lk) are central for any integer k ≥ 0. In the
RTT algebra their analogs are not central bur form a commutative subalgebra (i.e they
are in involution).

2. For the REA there is a Cayley-Hamilton identity in the classical form (see section 5). For
the RTT algebra the ”powers” of the matrix T coming in such a relation are defined in a
more complicated way.

3. The REA has a further deformation which plays the role of the enveloping algebra of a
”braided Lie algebra”. We call this algebra the modified REA (mREA).

Definition 3.1. The mREA is an associative unital algebra, generated by the elements lji subject
to the following quadratic-linear relations

R L1 R L1 − L1 R L1 R = ~ (R L1 − L1 R), ~ ∈ K \ 0, L := ‖lji ‖

or, in components,

Ra1b2
i1i2

lb1a1
Rc1j2

b1b2
lj1c1 − la1

i1
Rb1c2

a1i2
lc1b1 Rj1j2

c1c2 = ~ (Rj1a
i1i2

lj2a − lai1 Rj1j2
a i2

)

3Emphasize that the notation TrR plays a double role. From one side, it stands for the R-trace applied to the
matrix L or its powers. From the other side, when it is applied to an element of the space End(V) it sends this
element to the field K as explained above.
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Theorem 3.2 ([7]). Let R = Rq be a Hecke symmetry depending on q ∈ K (for q = 1 it
becomes involutive). Then for a generic q the dimensions of homogeneous components of the
RTT algebra and of the REA equal to those at q = 1, that is the dimensions are stable under
the q-deformation.

Moreover, there exists an analog of the PBW theorem for the mREA. Thus, in the standard
case the mREA is a deformation algebra depending on 2 parameters ~ and q. Its Poisson
counterpart is a Poisson pencil generated by the linear Poisson-Lie bracket on gl(n)∗ and by a
quadratic bracket which is an extension of the S-T-S one to the whole space gl(n)∗. We refer
the reader to the paper [7] for description of this Poisson pencil and to [16] for details on S-T-S
bracket on the group.

In the sequel we use the notation L(q, ~) for the mREA and L(q) for the REA.
Note that the element l = TrRL := Cj

i lij is central in the both algebras L(q, ~) and L(q).
So, it is natural to introduce the quotients SL(q, ~) = L(q, ~)/〈l〉 and SL(q) = L(q)/〈l〉 over an
ideal, generated by l.

In the standard case all these algebras can be endowed with an action of the QG Uq(sl(n))
so that

X(a b) = X1(a) X2(b), a, b ∈ L(q) or L(q, ~), X ∈ Uq(sl(n)), ∆(X) = X1 ⊗X2

All the operators possessing this property are called equivariant.

4 mREA and braided Lie bracket

Let R be a skew-invertible braiding. We want to equip the space End(V) (say, the left endo-
morphisms for the definiteness) with a structure of a generalized Lie algebra.

Let us first assume R to be involutive (R2 = 1). Then there exists an extension of R up to

REnd(V) : End(V)⊗2 → End(V)⊗2

such that it is involutive and coordinated with the natural product

µ : End(V)⊗2 → End(V)

as follows

REnd(V) µ23 = µ12 R
End(V)
23 R

End(V)
12

Here the both sides of the equality should be applied to an element from End(V)⊗3. This means
that the result of applying the product µ does not depend on the position. The operators
satisfying this property will be called R-invariant.

Let us set by definition

[ , ] := µ(I −REnd(V))

Theorem 4.1. The following properties hold true:

1. REnd(V) [ , ]23 = [ , ]12 R
End(V)
23 R

End(V)
12 (the R-invariance of the bracket);

2. [ , ]REnd(V) = −[ , ] (the R-skew-symmetry of the bracket);

3. [ , ] [ , ]12(I + R
End(V)
23 R

End(V)
12 + R

End(V)
12 R

End(V)
23 ) = 0 (the R-Jacobi identity).
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Definition 4.2. A generalized Lie algebra, or R-Lie algebra, is a data

(V, R : V ⊗2 → V ⊗2, [ , ] : V ⊗2 → V )

satisfying the properties 1− 3 above where REnd(V) should be replaced by R.

The generalized Lie algebra defined above in the space End(V) is denoted gl(VR).
Let TrR : End(V) → K be the R-trace associated with a given skew-invertible involutive

symmetry R (see section 2). The family of TrR-less elements of gl(VR) forms a generalized
Lie subalgebra denoted sl(VR). For any generalized Lie algebra g its enveloping algebra can be
defined in the natural way as the following quotient

U(g) = T (g))/〈Im(I− R− [ , ])〉

It is a braided Hopf algebra, its coproduct being additive on the generators:

∆(X) = X ⊗ 1 + 1⊗X, ∀X ∈ g.

We would like to extend this construction to the non-involutive case. However, in contrast to
the involutive case, here we first define the ”enveloping algebra” of a braided Lie bracket, and
then the bracket itself. We consider the mREA L(q, ~) corresponding to a skew-invertible Hecke
symmetry R as a proper analog of the enveloping algebra U(gl(n)).

In order to argue this point of view we restrict ourselves to the standard Hecke symmetries.
The following statement is a corollary of the theorem 3.2.

Proposition 4.3. The mREA corresponding to a standard Hecke symmetry is a two-parameter
deformation of the commutative algebra Sym(gl(n)) and a one-parameter deformation of
U(gl(n)~) (the subscript ~ means that the parameter ~ stands as a multiplier at the usual gl(n)
Lie bracket).

Any finite dimensional representation of U(gl(n)) can be deformed into an equivariant rep-
resentation of the mREA L(q, ~).

Besides, a sort of the PBW theorem is valid for the mREA (cf [7]). Concerning simple algebras
of the series Bn, Cn, Dn there exists no similar deformation of their enveloping algebras.

Now, we are able to define a braided analog of the Lie bracket arising from L(q, ~). Below
we put ~ = 1. The commutative relations among the generators lji can be rewritten as follows
(cf [7]):

lji llk −Q(lji llk) = linear terms

Denoting the right hand side of the above relation as [lji , llk] we claim the following.

Theorem 4.4. Consider the map L(q, 1) → End(L(q, 1)) : lji 7→ Lj
i where Lj

i is a linear operator
acting on generators by the rule Lj

i (l
l
k) := [lji , llk]. This map is a representation of the algebra

L(q, 1).

We shall call the map lji 7→ Lj
i the adjoint representation, Lj

i the adjoint operator and the
operation [ , ] the braided Lie bracket. Also, we denote the vector space Span(lji ) endowed with
the braided Lie bracket as gl(VR). Unfortunately, the properties listed in the theorem 4.1 (where
R is assumed to be an involutive symmetry) are not valid in general case. Their analogs for the
braided Lie bracket in question are more complicated (cf [7, 9] for detail).

In fact, we have identified the space Span(lji ) with End(V). The R-trace in the basis {lji } ∈
End(V) is TrRlji ∼ δj

i (up to a factor). It is not difficult to see that traceless elements of the
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braided Lie algebra gl(VR) form a subalgebra sl(VR). Moreover, if TrC 6= 0 there exists a
natural projector gl(VR) → sl(VR) similar to the classical one.

However, the restriction of the adjoint representation of the algebra gl(VR) to the subalgebra
sl(VR) is not in general a representation of the latter algebra. However, by a slight modification
of this restriction (described in [7], section 6) we can get an analog of the adjoint representation
of the algebra sl(n).

Note that in the standard case the braided analogs of the gl(n) and sl(n) adjoint represen-
tations are equivariant. Also, note that by using the methods of [14] a map from SL(q, 1) to
the QG Uq(sl(n)) (localized by the quantum Casimir element) can be constructed. Basing on
this map it is possible to develop a representation theory of the algebra SL(q, 1) in the standard
case.

5 Cayley-Hamilton identity

Let R be a skew-invertible Hecke symmetry and λ be a partition. Let us consider the corre-
sponding REA or mREA and define a Schur function sλ(L) as follows

s0 = 1, sλ(L) := (TrR)1...k(L1 . . . Lk ρR(Eλ
α)), λ ` k, k = 1, 2, . . .

Here

L1 = L, Lk+1 = Rk k+1 Lk R−1
k k+1

Eλ
α is a primitive idempotent of the Hecke algebra Hn(q) corresponding to a partition λ. The

symbol ρR stands for the ”local” representation of Hn(q) associating the braidings Rk k+1 with
the standard generators σk ∈ Hn(q).

Theorem 5.1. The elements sλ(L) are central in the algebra L(q).

Theorem 5.2. [Cayley-Hamilton theorem] Assume that R is an even Hecke symmetry of rank
p. Then the matrix L = ‖lji ‖ composed of the REA generators satisfies the following Cayley-
Hamilton (CH) identity

Lp − q s(1)(L) Lp−1 + q2 s(12)(L) Lp−2 − · · ·+ (−q)p s(1p)(L) I = 0

Here the partition (1k) is represented by the one-column Young diagram of the height k.

Remark 5.3. In fact, this CH identity is the first one in a family of CH identities. It is called
the basic identity. The other identities of the family deals with some extensions of the basic
matrix L and they are called the higher identities.

Let us introduce formal elements µ1, µ2, . . . , µp such that

qks(1k)(L) =
∑

1≤i1<···<ik≤p

µi1 . . . µik

Otherwise stated, µi are the roots of the equation

µp − q s(1)(L) µp−1 + q2 s(12)(L) µp−2 − · · ·+ (−q)p s(1p)(L) I = 0

So, µi belong to an algebraic extension of the center of the algebra L(q). Then the CH identity
factorizes into the product

p∏

i=1

(L− µi) = 0
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Let us fix values of the elements µi and let Lµ(q) denotes the quotient of the REA over the
ideal generated by the set of elements

{
qks(1k)(L)−

∑

1≤i1<···<ik≤p

µi1 . . . µik | 1 ≤ k ≤ p
}

We assume the family {µ1, . . . , µp} to be generic (in particular, µi are pairwise distinct). Then
the algebra Lµ(q) is a braided analog of the coordinate algebra of a generic coadjoint orbit in
gl(n)∗. This means that in the standard case this algebra arises from the quantization of a
generic orbit in gl(n)∗.

Proposition 5.4. The elements

ei(L) =
∏

j 6=i

L− µj

µi − µj

are pairwise orthogonal idempotents (projectors)

ei(L)2 = ei(L), ei(L) ej(L) = 0, i 6= j,

p∑

i=1

ei(L) = I

Recall that the elements TrR Lk are central in the algebra L(q).

Theorem 5.5. In the algebra Lµ(q) there is a spectral decomposition

TrR Lk =
p∑

i=1

µk
i di, where di = TrR ei(L) =

∏

j 6=i

qµi − q−1µj

µi − µj
(5.1)

Here TrR is normalized by he condition TrR I = pq = qp−q−p

q−q−1 . The quantities di are called the
quantum dimensions.

Using the idempotents ei(L) we can define quantum analogs of line bundles over the quantum
orbits via projective modules in the spirit of the Serre-Swan’s approach.

Note that a CH identity is also valid for the algebra L(q, ~). For this algebra the formula
similar to (5.1) takes place too, but µi become now the roots of the CH identity for L(q, ~) and
the quantum dimensions should be modified as follows

di = TrR ei(L) =
∏

j 6=i

qµi − q−1µj − ~
µi − µj

In order to get the latter formula it suffices to replace the roots µi in (5.1) by µi − ~
q−q−1 .

Formula (5.1) can be also considered as a parameterized relation between two families of
central elements, namely, {TrR Lk}, 1 ≤ k ≤ p, and the set of coefficients of the corresponding
CH identity in the algebras L(q) or L(q, ~).

Now let us pass to the Hecke symmetries of GL(p|r) type.

Theorem 5.6 ([5]). Let now R be a skew-invertible Hecke symmetry of the bi-rank (p|r). The
matrix L = ‖lji ‖ composed of the REA generators satisfies the following CH identity

p+r∑

i=0

Lp+r−i

min{i,p}∑

k=max{0,i−r}
(−1)k q2k−i s[p|r]ki−k

(L) = 0
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where [p|r]ki−k denotes the partition with the following Young diagram

p boxes

{
r boxes︷ ︸︸ ︷
. . .

...

. . .
︸ ︷︷ ︸
k boxes

}
l boxes

=
(
(r + 1)l, r(p−l), k

)
=: [p|r]lk

This is a q-generalization of the Kantor-Trishin’s result [13].

Theorem 5.7 ([6]). Being multiplied by s[p|r], the CH of Theorem 5.6 factorizes into the product

( p∑

k=0

(−q)k Lp−ks[p|r]k(L)
)( r∑

l=0

q−l Lr−ls[p|r]l(L)
)

= 0

Denoting the roots of the first and of the second factors as {µi}1≤i≤p and {νj}1≤j≤r respec-
tively, we get the following parameterizations of the normalized coefficients of these factors

s
[p|r]k(L)

s[p|r](L)
7→ s

[p|r]k
(µ,ν)

s[p|r](µ,ν) :=
∑

1≤i1<···<ip≤p q−kµi1 . . . µik = ek(q−1µ) , 1 ≤ k ≤ p (5.2)

s[p|r]l
(L)

s[p|r](L) 7→
s[p|r]l

(µ,ν)

s[p|r](µ,ν) :=
∑

1≤j1<···<jl≤r (−q)lνj1 . . . νjl
= el(−qν) , 1 ≤ l ≤ r (5.3)

In terms of ”even” roots µi and ”odd” roots νj the CH identity factorizes as follows

(s[p|r](L))2
p∏

i=1

(L− µiI)
r∏

j=1

(L− νjI) = 0

Recently a formula similar to (5.1) has been obtained (the proof will be given in our forth-
coming paper).

Theorem 5.8. Let L(q)µ,ν be the quotient algebra of the GL(p|r) type REA by the relations
(5.2), (5.3). In L(q)µ,ν the following relations hold true

TrRLk =
p∑

i=1

diµ
k
i +

r∑

j=1

d̃jν
k
j

where

di := q−1
p∏

s=1, s 6=i

µi − q−2µs

µi − µs

r∏

j=1

µi − q2νj

µi − νj

d̃j := −q

p∏

i=1

νj − q−2µi

νj − µi

r∏

s=1, s 6=j

νj − q2νs

νj − νs

Similarly to the even case, if we replace µi (resp., νj) by µi − ~
q−q−1 (resp., νj − ~

q−q−1 ) we

get the ”quantum dimensions” di (resp., d̃j) valid for the spectral decomposition in the algebra
L(q, ~). In the modified formula µi and νj are regarded to be the roots of the CH identity for
the matrix L composed of the generators of the algebra L(q, ~).
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6 Example: q-Minkowski space and q-hyperboloid algebras

Let R be the standard Hecke symmetry in the case n = 2. In an appropriate basis {x, y} of the
two dimensional space V we get the following matrix

R =




q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q




which represents this Hecke symmetry in the basis {x⊗ x, x⊗ y, y ⊗ x, y ⊗ y}.
Also, we put L =

(
l11 l21
l12 l22

)
=

(
a b
c d

)
. Then the system defining the mREA becomes

qab− q−1ba = ~ b q(bc− cb) = ((q − q−1)a− ~)(d− a)
qca− q−1ac = ~ c q(cd− dc) = c((q − q−1)a− ~)
ad− da = 0 q(db− bd) = ((q − q−1)a− ~)b

If ~ = 0 this algebra is called the q-Minkowski space algebra [12]. For ~ 6= 0 it is regarded to
be a braided or q-analog of the enveloping algebra U(gl(2)~).

Changing the set of generators {a, d, b, c} for {l, h, b, c} where

l = q−1a + qd, h = a− d

we come to the relations

q2hb− bh = ~ 2qb− (q − q−1)lb, bl = lb
q2ch− hc = ~ 2qc− (q − q−1)lc, cl = lc(
q2 + 1

)
(bc− cb) +

(
q2 − 1

)
h2 = ~ 2qh− (q − q−1)lh, hl = lh

In this basis of generators it is seen explicitly that the element l = q−1a+qd is central. Therefore,
we can introduce the quotient algebra

SL(q, ~) = L(q, ~)/〈l〉

The commutation relations among the independent generators of SL(q, ~) read

q2hb− bh = ~ 2qb, q2ch− hc = ~ 2qc,
(
q2 + 1

)
(bc− cb) +

(
q2 − 1

)
h2 = ~ 2qh

Thus, we get a braided or q-counterpart of the algebra U(sl(2)~). But in contrast with the
classical case, the algebra SL(q, ~) is not a subalgebra of L(q, ~).

Consider now the central element TrqL2 ∈ L(q, ~). Its explicit form in the basis {l, h, b, c}
reads

TrqL
2 = q−1bc + qcb +

q

1 + q2
(h2 + l2)

Its image C in the algebra SL(q, ~) is

C = q−1bc + qcb +
q

1 + q2
h2 ∈ SL(q, ~) (6.1)

This element is central in the algebra SL(q, ~). The quotient of this algebra over the ideal
〈C − α〉, α 6= 0, is called the quantum (or braided or q-)hyperboloid algebra

Aα := SL(q, ~)/〈C − α〉
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On the next step we introduce the braided Lie algebra sl(VR). But in the low-dimensional
case in question we can simplify the construction of the corresponding braided Lie bracket. We
only use the fact that this bracket is Uq(sl(2))-covariant. We put SL = Span(b, h, c). Let us
equip this space with an action of the QG Uq(sl(2)) and extend this action to the space SL⊗SL
by using the coproduct of the QG. Then for a generic q the space SL⊗ SL can be decomposed
into a direct sum of irreducible Uq(sl(2)) submodules SL ⊗ SL = V0⊕V1⊕V2 where the subscript
stands for the spin. Then the operator

[ , ] : SL ⊗ SL → SL

is a Uq(sl(2)) morphism iff it is trivial on the components V0 and V2 and is an isomorphism
between V1 and SL. By this property the bracket is uniquely defined up to a nonzero factor w.

Let us exhibit the multiplication table of this braided bracket:

[b, b] = 0, [b, h] = −w b, [b, c] = w
q

2q
h, [h, b] = wq2 b

[h, h] = w(q2 − 1), [h, c] = −w c, [c, b] = −w
q

2q
h, [c, h] = wq2c, [c, c] = 0

As can be easily seen, the bracket [ , ] defines a representation of the algebra SL(q, 1) iff w =
~ (q4 − q2 + 1)−1.

Consider now q-analogs of adjoint operators. Being represented by matrices in the basis
{b, h, c} they have the form

Bq = w




0 −1 0
0 0 q

2q

0 0 0


 , Hq = w




q2 0 0
0 q2 − 1 0
0 0 −1


 , Cq = w




0 0 0
− q

2q
0 0

0 q2 0


 (6.2)

Theorem 6.1. The operators Bq, Hq, Cq satisfy the relation

q−1b Cq +
hHq

2q
+ qc Bq = 0

Moreover, there exist extensions of these operators to the higher homogeneous components of
the algebra SL(q) such that on each component we get a representation of the algebra SL(q, 1)
and this relation is still valid for the extended operators Bq, Hq, Cq (we keep for them the same
notations).

Now, we are able to define a braided analog of the space of vector fields on the classical
hyperboloid. Let us consider the left Aα-module generated by the operators Bq, Hq, Cq. It is
possible to show that this Aα-module is projective. It is natural to call it the ”tangent module”
on the q-hyperboloid in question. In a similar way the ”cotangent module” on this q-hyperboloid
can be introduced (it is isomorphic to the tangent one). Such braided geometrical structures on
the quantum hyperboloid were first considered by one of the authors (D.G.) and P.Akueson (cf
[1] and the references therein).

Note that the above vector fields are very useful for defining braided analogs of some operators
of mathematical physics on the q-hyperboloid. Thus, the Laplace operator on a q-hyperboloid
can be defined via the element (6.1) where the generators b, h, c should be replaced by braided
vector fields Bq, Hq, Cq respectively. As a result, we get the following braided Laplace operator
on the q-hyperboloid

q−1Bq Cq +
H2

q

2q
+ qCq Bq
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A braided version of the Dirac operator on the q-hyperboloid can be be defined a similar way.
Recently a braided analog of the Maxwell operator on the q-hyperboloid was constructed. Its
construction will be published in [3].

It would be very interesting to generalize these constructions and results on other ”braided
varieties” of general type. The most intriguing problem is whether the module of the braided
vector fields defined on these ”varieties” possesses the properties analogous to those considered
above.
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