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Abstract
Imputation is a powerful in silico approach to fill in those missing values in the big datasets. This process requires 

a reference panel, which is a collection of big data from which the missing information can be extracted and imputed. 
Haplotype imputation requires ethnicity-matched references; a mismatched reference panel will significantly reduce 
the quality of imputation. However, currently existing big datasets cover only a small number of ethnicities, there 
is a lack of ethnicity-matched references for many ethnic populations in the world, which has hampered the data 
imputation of haplotypes and its downstream applications. To solve this issue, several approaches have been 
proposed and explored, including the mixed reference panel, the internal reference panel and genotype-converted 
reference panel. This review article provides the information and comparison between these approaches. Increasing 
evidence showed that not just one or two genetic elements dictate the gene activity and functions; instead, cis-
interactions of multiple elements dictate gene activity. Cis-interactions require the interacting elements to be on the 
same chromosome molecule, therefore, haplotype analysis is essential for the investigation of cis-interactions among 
multiple genetic variants at different loci, and appears to be especially important for studying the common diseases. It 
will be valuable in a wide spectrum of applications from academic research, to clinical diagnosis, prevention, treatment, 
and pharmaceutical industry.
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Abbreviations: ASW: African ancestry in Southwest USA; CEU:
Utah residents with Northern and Western European ancestry from the 
CEPH collection; CHB: Han Chinese in Beijing, China; GIH: Gujarati 
Indians in Houston, Texas; JPT: Japanese in Tokyo, Japan; MKK: Maasai 
in Kinyawa, Kenya; YRI: Yoruba in Ibadan, Nigeria; AADM: The Africa 
America Diabetes Mellitus Study; ENCODE: The Encyclopedia of DNA 
Element Consortium; GALA: Gene-Environment Studies of Asthma in 
Hispanic/Latino Children; HGDP: Human Genome Diversity Project; 
KGP: 1,000 Genomes Project; DHSs: DNase I hypersensitive sites; 
GWAS: Genome-Wide Association Studies; HLA: Human Leukocyte 
Antigen; SNP: Single-Nucleotide Polymorphisms; TSSs: Transcriptional 
start sites.

Databases
1,000 Genomes Project: http://www.1000genomes.org/ 

The Africa America Diabetes Mellitus Study: https://www.genome.
gov/10000831 

African Genome Variation Project: https://www.sanger.ac.uk/
research/initiatives/globalhealth/research/africangenome.html 

dbGaP: http://www.ncbi.nlm.nih.gov/gap 

Gene-Environment Studies of Asthma in Hispanic/Latino Children: 
https://pharm.ucsf.edu/gala/home 

HapMap project: http://hapmap.ncbi.nlm.nih.gov/ 

Human Genome Diversity Project: http://www.hagsc.org/hgdp/ 

Imputation
In the big data era, as the number and size of genomic datasets 

enormously grow, people will regularly encounter a limitation on missing 
information. Since the missing data can adversely affect downstream 
analysis, how to deal with the missing values in the big datasets is emerging 
as a new and fast-moving research focus. Imputation is one of the most 
useful strategies for filling in those missing values using computational 
algorithms and large reference datasets (Figure 1) [1,2]. Imputation has 
been used widely in the analysis of genome-wide association studies 

(GWAS) to boost power, fine-map associations and facilitate the 
combination of results across studies using meta-analysis [3]. Without 
imputation, many gene associations would not be discovered in GWAS. 

Figure 1: An illustration of the imputation. Imputation is an in silico 
technology for replacing missing data with substituted values. The filled circles 
indicate the known data, the dotted unfilled circles indicate the missing value. 
After imputation, all missing values are inferred, and the data is complete. 
References are usually required for carrying out an imputation. Missing data 
can be a serious impediment for subsequent data analysis, thus it is critically 
important in the big data era. 
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Solving the missing-value problem by imputation is a notoriously 
resource-demanding task. This process usually requires a reference 
panel, which is a collection of data from which the missing information 
can be extracted or imputed. Haplotype imputation requires ethnicity-
matched references composed of known haplotypes (phased 
genotypes) in matched populations. A mismatched reference panel will 
significantly reduce the quality of imputation results [4,5] and yield 
false positive results [6]. However, currently available references only 
cover a limited number of ethnicities. The lack of ethnicity-matched 
references in many populations has severely restricted the use of big 
datasets in the research and development in these populations. It is 
important to establish the reference panels in a broad range of ethnic 
populations in the world for haplotype imputation. 

It is well-known that different subpopulations have different unique 
SNPs (single-nucleotide polymorphisms) and different haplotypes due 
to their unique bottleneck events in ancient histories. For example, the 
intra-continental variation within the African populations is much 
greater than inter-continental populations. The population should not 
be described merely as “African”, “Sub-Saharan African”, “West African”, 
or “Sierra Leonian”, since each of those designators encompasses many 
populations with different geographic ancestries [7-9]. In the United 
States, the African-American population is featured by substantial 
admixture of multiple ancestral origins within various African 
populations and between different continental populations. Latino-
Americans, American-Indians, and other minority populations are also 
featured by substantial admixture between various populations. This 
admixture feature reinforces the importance of establishing references 
of various ethnic populations.

Theoretically, several approaches can be used for obtaining the 
reference panels for haplotype imputation. First, people may carry 
out experimental haplotyping to establish the haplotype references 
to cover more ethnic populations. Second, people may pool together 
experimental haplotypes from various ethnic populations and use 
the pooled references for the imputation. Third, people may use the 
haplotypes with missing data from the imputation target population 
as the internal reference for imputation. Last, people may extract the 
information from the existing big data and create the reference panels 
for additional ethnic populations. 

Establishing reference panels by molecular haplotyping
Intuitively, a straightforward strategy to expand the haplotype 

references is to recruit human population samples from a wide-range of 
ethnic diversities and determine their molecular haplotypes. Molecular 
haplotypes can be determined either by high-throughput technologies 
[5,10-17] or by inference from trio genotypes [18]. Currently the 
reference datasets for haplotype imputation can be downloaded from 
the HapMap project and the 1,000 Genomes Project (KGP), in which 
the haplotypes are inferred either by the Mendelian Law of Inheritance 
or by statistical inferences. Since the launch of the International 
HapMap project in 2001 and the 1,000 Genomes project in 2008, totally 
27 populations have been recruited, in which 17 populations have trios. 
Although trio haplotyping can reliable yield accurate chromosomal 
haplotypes except those triple-heterozygous sites, it is often unrealistic 
due to the difficulties to recruit pedigree specimens [18].

Alternatively, people may also recruit more samples and determine 
their molecular haplotypes experimentally using those cutting-edge 
technologies [10, 12-16, 19-21]. At present, sequencing technologies are 
still far from being able to construct long haplotypes directly through 
overlapping of those sequencing reads [12,17,22]. Single-sperm 
approach [23] needs sperms and can be used only on males. Single-

chromosome isolation approach [10,13,14] has not been completely 
automated. Experimental haplotyping is still expensive and time-
consuming for the data generation for establishing the reference panels 
in a diverse range of ethnic populations. 

Establishing reference panels by pooling haplotypes 
from multiple populations

It has been proposed to mix the haplotypes from some of available 
ethnicities to create a pooled reference panel (also called cosmopolitan 
reference panel) when an ethnicity-matched reference panel does not 
exist [4,5]. Indeed, it has been reported recently that pooled reference 
panels could give acceptable results [4]. However, this approach also 
suffers from some limitations. 

One limitation is that this strategy requires a priori knowledge for 
identifying the major contributors and primary components before 
creating the corresponding pooling reference panel and for optimizing 
the mixing recipe on the number of haplotypes from each of available 
ethnicities [4]. The imputation accuracy of this strategy heavily 
depends on the optimization of the mixing recipe; a non-optimally 
mixed reference panel will reduce the imputation accuracy. For 
example, a study showed that the highest imputation accuracy may be 
as high as 97.8% (the Basque population imputed with a reference panel 
consisting of 48 CHB+JPT haplotypes, 120 CEU haplotypes, and no 
YRI haplotypes); and may be as low as 78.2% when the San population 
was imputed with a reference panel consisting of the entire CHB+JPT 
panel of 180 haplotypes [4]. In another study, it was noticed that it 
seems to be unpredictable what rationale to pool the ethnicities will be 
the best for imputation accuracy [24]. For example, when the sample 
was ASW, the [YRI+CEU] reference panel performed better than 
cosmopolitan reference [YRI+MKK+GIH+MEX+CEU]; interestingly, 
when the internal reference was involved, the largest cosmopolitan 
reference panel [ASW+CEU+YRI+MKK+GIH+MEX] performed 
the worst, but a reference panel pooled by the seemingly unrelated 
cohorts [JPT+CHB] performed the best [24]. It is unclear how this 
approach works for many untested populations and subpopulations 
yet. Theoretically only the cohorts from the ethnic populations that 
contribute to the admixture of the study population should be included 
in the pooled reference panel; however, a cosmopolitan panel does 
not always compromise the quality of imputation. Another potential 
limitation is the computing speed, the larger number of ethnicities in 
the pooled reference panel, the higher computer burden for using this 
cosmopolitan panel for imputation in reality. This is an important issue 
that should not be ignored in the big data era. 

Using internal reference panels for imputation
Another strategy is to use internal reference panels when an 

ethnicity-matched reference panel does not exist. It has been proposed 
to use the information of phylogenetic diversity from mathematical 
phylogenetic and comparative genomics to generate the most diverse 
internal reference panel efficiently, which has been reported to be 
able to substantially improve the imputation accuracy compared with 
randomly selected reference panels [25].

This strategy can avoid the substantial mismatch in ancestral 
background between the study population and the reference population. 
In addition, this strategy may combine the internal haplotypes with 
an available external panel to create a single cosmopolitan reference 
panel, so it can take the benefits from both of the existing big datasets 
contributed by the large genome projects as an external panel and the 
greater genetic similarity of the internal panel to the study population 
[26]. However, researchers may not always have sufficient study budget 
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to create the internal reference panel with adequate sample size. 
When internal references are limited, the combination with external 
references should be careful; the choice of the existing external cohort 
for the augmentation of a small internal reference panel will be critical 
for the quality of imputation. A study showed that compared with 
the external-reference-only panel, augmenting an internal reference 
panel with a cosmopolitan external panel may considerably lower 
the imputation accuracy especially and interestingly when the ethnic 
backgrounds of augmented external references are related to the study 
population [24]. When a study does not have a budget for creating the 
internal references, an external reference panel will be the only choice.

Establishing reference panels by statistically converting 
the genotypes into haplotypes 

It has been well-known that unmatched reference panel will lower 
the quality of imputation. However, it is unrealistic to recruit a well-
matched reference panel for every population in the world. Fortunately, 
enormous amounts of unphased genotype data have been generated 
and are still being generated by genome-wide SNP microarrays and 
whole-genome sequencing projects, these datasets have a broad 
representation of ethnic populations in the world. If these unphased 
genotype datasets can be converted and used as the reference panels 
for haplotype imputation, it will be a labor and cost-efficient strategy 
to quickly expand the ethnic representation for haplotype imputation.

In this approach, the unphased genotypes are first converted to 
haplotypes by a software tool based on statistically inferences [27-30]; 
and then the statistically resolved haplotypes are used as references for 
data A recent study showed that with the reference panel composed 
of statistically converted haplotypes from unphased genotypes, the 
imputation accuracy was 99.43 ± 0.05%, which is comparable with the 
imputation accuracy with the reference panel composed of molecular 
haplotypes (99.49 ± 0.05%) [31]. Even when as high as 50% values 
are missing in a dataset, this reference panel could still yield 98.5% 
imputation accuracy [31,32]. The quality of imputation was consistent 
across different study populations in this study [31]. This result 
demonstrates the feasibility of converting currently existing big data of 
unphased genotypes to be reference panels for high-quality imputations. 

This strategy has the potential to efficiently increase the coverage of 
ethnic diversities in the world (Figure 2) [31]. At the present time, the 
high-throughput experimental approach is still expensive for whole-
genome haplotyping and has not generated any large dataset yet that can 
be used for imputation as references; all of those existing big datasets of 
molecular haplotypes were obtained by deducing the personal haplotypes 
from genotypes of trios [18,33]. So far, large genome projects, such as 
The International HapMap Project, The 1,000 Genomes Projects, African 
Genome Variation Project, and Human Genome Diversity Project 
(HGDP), have performed SNP genotyping on only a small number 
of human populations, totally 17 populations have trio genotypes. 
However, meanwhile, with the effects of whole-genome analysis such 
as genome-wide association studies (GWAS) and with decreasing cost 
of high-throughput microarray and sequencing technologies and other 
technologies, enormous amounts of unphased genotype data have been 
and are being generated. More than 1,000 big datasets have been collected 
and organized. Even the datasets in the dbGaP database cover a large 
diversity of ethnicities (Supplementary Table 1). 

Until now, statistical inference from genotype data is still the most 
practical and economical approach for obtaining haplotypes; however, 
this approach still suffers from ambiguities, low accuracy over a long 
distance with switching errors (Figure 3) [10,34-36]. Chromosomal 

Figure  2: A geographic map of ethnic groups covered by statistically 
converted reference panels. (A) The molecular haplotypes are composed 
of trio haplotypes from the HapMap project and the 1,000 Genomes Project 
(KGP). (B) The statistical references are composed of statistically resolved 
haplotype from unphased genotypes obtained from genotyping and next-
generation sequencing platforms. The data is mainly retrieved form dbGaP, 
African Genome Variation Project, Human Genome Diversity Project (HGDP), 
AADM and GALA. The map was generated with “openheatmap” software. 

Figure 3: An illustration of switching errors in statistically resolved 
haplotypes. The true chromosomal haplotypes for two homologous 
chromosomes of an individual are shown on the left. The statistically resolved 
haplotypes are shown on the left. The red arrows indicate the positions of 
switching errors. The statistical haplotypes are usually correct within a short-
range genomic region between two adjacent switching errors. Although 
statistically resolved haplotypes contain switch errors, when the sliding window 
size is significantly smaller than the average size of haplotype segments between 
two adjacent switching errors, these statistical haplotypes can still be used as 
reference haplotypes in the data imputation and yield high-quality results. 
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segments may be phased correctly but their connections to each other 
are often incorrect along the entire chromosomes. Such errors can 
occur many times along the entire length of chromosomes. Moreover, it 
cannot predict where the switching errors occur along the chromosomes 
(ambiguities). Even so, it was demonstrated that the reference panel 
composed of statistically resolved haplotypes can successfully yield the 
high-quality imputation results that is similar to the results obtained 
with the reference panel composed of molecular haplotypes [31,32]. 
We investigated the reason underlying this observation, and found 
that the size of sliding windows is usually much smaller than the 
segmental sizes of haplotype stretches between switching errors in the 
statistical phasing results; due to the relatively high accuracy within 
each haplotype stretch in the statistically resolved haplotypes, the 
imputation can extract correct information from each sliding window. 
This strategy can make a good use of existing big data and overcome the 
caveats (switching errors and ambiguities) of the big data of unphased 
genotypes; it becomes a powerful approach in addition to the pooling 
strategy and the internal reference strategy for haplotype imputation.

The importance to determine long-range haplotypes in 
medicine

Haplotype refers to a group of alleles inherited on each of the 
homologous chromosomes (Figure 4). Haplotype is related to molecular 
functions [37,38]. Humans are diploid, with two sets of homologous 
chromosomes in each somatic cell, one inherited from mother, one 
from father. Although those two copies of homologous chromosomes 
share a high similarity in human genome, their nucleotide sequences 
are different and the gene functions on these chromosomes are not 
similar [39-47]. The high-throughput sequencing technologies can only 
provide the information of primary sequential orders of nucleotides; 
they cannot provide the other half of genetic information in human 
genome, the structural conformations of nucleotides. Without the 
phase information, all of these ‘personal genomes’ are incomplete, and 
should essentially be regarded as rough draft genomes [10].

As stated by the nature special issue released in the February 2015 
on epigenome roadmap and the ENCODE strategic planning meeting 

(ENCODE and Beyond) held in March 2015, increasing evidence 
showed that not just one or two genetic elements dictate the gene 
activity and functions; instead, cis-interactions of multiple elements 
dictate gene activity [48-50]. It has been revealed that extensive 
allelic imbalance events are associated with cis-regulatory elements 
[51]. Long-range cis-interactions have been systematically examined 
with chromosome conformation capture (3C) [52], chromosome 
conformation capture carbon copy (5C) [53] and Hi-C technique [52]. 
It has been observed that only 7% of looping interactions between 
gene expression and promoter-enhancers are with the nearest gene, 
indicating that genomic proximity is not a simple predictor for long-
range interactions [53,54]. It is believed that cis-regulatory mutations 
affect a broad range of morphological, physiological and neurological 
phenotypes. Classic examples include the HLA typing (human 
leukocyte antigen) on the chromosome 6p21, which is associated with 
more than 100 different diseases, mostly autoimmune diseases such 
as type I diabetes, rheumatoid arthritis, psoriasis, and atopic asthma. 
Long range haplotyping is required [55]. The unphased genotype data 
is sufficient for those rare diseases caused by single mutations; but only 
haplotypes can unveil the secrets underlying the common diseases 
involving cis-interactions among multiple genetic variants. Phenotypic 
effects of genetic variants are best understood in terms of multi-locus 
haplotypes rather than single-locus variants because the configuration 
may have a tremendous impact on gene functions as illustrated by 
Figure 5. In order to study the biological, physiological and pathological 
functions of genetic variations in human genome, it is necessary to 
decipher these cis-interactions and their synergy rather than studying 
them one by one [53,54]. It has been widely accepted that haplotype 
information will be extremely valuable in a wide spectra of applications 
from academic research, to clinical diagnosis, prevention, treatment, 
and pharmaceutical industry, but the wide clinical applications of 
haplotype-based diagnosis await new advances at present.
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