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Introduction
Let us start by considering the following general Dynamics Inverse 

Problem (DIP). Given a time series n(X[i] R i t N)X = ∈ < ∈ of vectors 
of finite dimension n over the set R of reals, indexed over a subset of 
t natural numbers (time points), find a state function δ: Rn → Rn such 
that:

n i(X[i]  R i t ) = ( (X[0]) i < t)  δ∈ <    (1)

where δi is the i-iteration of δ, with δ0(X)=X and δi+1(X)=δ(δi(X)) for 
every i ε N and X ε Rn. 

In other words, we pose the problem of finding an autonomous 
discrete dynamical system over Rn with initial state X[0] and a 
dynamical function δ that is able to provide a given time series, as 
trajectory originated from a given initial point. When such a solution 
is found (possibly within an approximation threshold), we can say that 
a given trajectory in Rn is represented in terms of a suitable next-state-
function defined in the same space. Dynamics inverse problems were 
the beginning of modern science aimed at discovering the motion laws 
of planets around the sun. In general, a typical problem of mechanics 
is the determination of motion laws: from the observed motion to 
the underlying equations deduced from the knowledge of the forces 
acting on bodies. The approach we will outline where is similar, but 
here the forces as\causes of motion changes" are not assumed. Rather, 
we are interested in inferring a possible (approximate) internal logic 
regulating how (instead that why) changes of variables are cooperatively 
organized in a given system. This of course is a solution less precise and 
less explicative than the classical approach (usually based on ordinary 
differential equations). However, very often, in very complex systems 
with poor Information about the causes acting in a system, it is the only 
possibility that can be realistically investigated. The dynamics inverse 
problem was investigated in the context of MP theory developed 
in the last ten years (see, for example, [1-6]. In this paper, when we 
refer to MP regression, we intend the LGSS (basic) MP regression 
algorithm, integrating algebraic and statistical regression methods 
in the MP framework [7-10], that resulted completely satisfactory in 
all the considered cases. Dynamics inverse problems are crucial in 
many applicative contexts, where solving a DIP means discovering a 

logic relating the variables of a phenomenon, by passing from a time 
external manifestation to a state internal causation [11-13]. Here, we 
present an MP solution of a mathematical problem related to circular 
functions: which are the MP recurrent equations discovered by the 
MP regression from time series of sine and cosine? We will show that 
the solutions, expressed by MP grammar for sine and cosine, found 
by means of LGSS algorithm, correspond to formulae deduced from 
elementary trigonometric identities or Taylor series. In a sense, this 
is an evidence of the validity of LGSS algorithm in inferring internal 
regularities underlying a given dynamics. An MP grammar G is given 
by a structure [10]:

( , , )G X R= Φ
where:

• X is a finite set of real variables;

• R is a finite set of rules and each rule r € R is expressed by αr →
βr with αr; βr multisets over X (functions assigning a multiplicity 
to every variable);

{ | }r r RϕΦ = ∈ is the set of regulators, or flux functions

: n
r R Rϕ →

for every r € R, where Rn is the set of possible states of X, that is, column 
vectors of Rn, which we continue ambiguously to denote by X (a state 
assigns to every variable a real value, in a given order). Any regulator 
φr associates a flux value u to every state of Rn. A flux u of a rule r 
establishes an updating of the current state of variables, by decreasing 
of u . αr (x) the value of any variable x occurring in αr and by increasing 

*Corresponding author: Vincenzo Manca, University of Verona, Verona, Italy,
Tel:390458027981; E-mail: vincenzo.manca@univr.it 

Received June 05, 2014; Accepted July 18, 2014; Published July 24, 2014

Citation: Manca V, Marchetti L (2014) Recurrent Solutions to Dynamics Inverse 
Problems: A Validation of MP Regression. J Appl Computat Math 3: 176 
doi:10.4172/2168-9679.1000176

Copyright: © 2014 Manca V, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
The paper is focused on a new perspective in solving dynamics inverse problems, by considering recurrent 

equations based on Metabolic P (MP) grammars. MP grammars are a particular type of multiset rewriting grammars, 
introduced in 2004 for modeling metabolic systems, which express dynamics in terms of finite difference equations. 
Regression algorithms, based on MP grammars, were introduced since 2008 for algorithmically solving dynamics 
inverse problems in the context of biological phenomena. This paper shows that, when MP regression is applied to 
time series of circular functions (where time is replaced by rotation angle), the dynamics that is found turns out to 
coincide with recurrent equations derivable from classical analytical definitions of these functions. This validates the 
MP regression as a general methodology to discover deep logics underlying observed dynamics. At the end of the 
paper some applications are also discussed, which exploit the regression capabilities of the MP framework for the 
analysis of periodical signals and for the implementation of sequential circuits providing periodical oscillators.

Recurrent Solutions to Dynamics Inverse Problems: A Validation of MP 
Regression
Vincenzo Manca* and Luca Marchetti
University of Verona, Verona, Italy

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679



Citation: Manca V, Marchetti L (2014) Recurrent Solutions to Dynamics Inverse Problems: A Validation of MP Regression. J Appl Computat Math 3: 
176 doi:10.4172/2168-9679.1000176

Page 2 of 8

Volume 3 • Issue 5 • 1000176
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

of u . βr (y) the value of any variable y occurring in βr, where u . αr (x) 
and u . βr (y) are the multiplicities of x and y in αr and in βr, respectively.

When an initial state X [0] is given to an MP grammar G, then, 
starting from it, we pass from any state to its following state by applying 
all the rules of the grammar, that is, by summing the decrements and 
increments acting on each variable, according to all the rules where it 
occurs. It is easy to show that the corresponding dynamics is expressed 
with recurrent equations, which are synthetically represented in 
matricial form [10].

When variables are equipped with measurement units (related to 
their interpretation), and a time duration is associated to each step, the 
MP grammar is more properly called an MP system.

The term grammar is due to two reasons. First, rules αr → βr become 
rewriting rules, of Chomsky grammars considered in Formal Language 
Theory [14], when αr and βr are strings (multisets are strings where the 
occurrence order is not relevant). Secondly, an MP grammar generates, 
from its initial state, a sequence of states. Analogously, a Chomsky 
grammar generates a set of strings from an initial string. The attribute 
MP comes from the initial application context suggesting MP grammars 
[1] extending Paun's P systems (multiset rewriting rules distributed in 
compartments) [15-17]. Applications in modeling biological systems 
were developed in the last years [3,10,13,18-22].

MP grammars have an intrinsic versatility in describing oscillatory 
phenomena [13,14]. The schema of MP grammars given in Table 1, 
called bicatalyticus [10], has an input rule r1 and an output rule r3 
(incrementing and decrementing the variable x and y, respectively). 
Both rules are regulated by the same variable that they change (a sort of 
autocatalysis), while the transformation rule r2 from x to y is regulated 
by both variables (bicatalysis). An MP grammar of this type provides a 
simple model for predator-prey dynamics firstly modeled in differential 
terms by Lotka and Volterra [23]. The model assumes a simple schema 
ruling the growth of the two populations x; y (preys and predators): 
preys grow by eating nutrients taken from the environment (according 
to some reproduction factor) and die by predation, while predators 
grow by eating preys and naturally die (according to some death factor). 
When predators increase then preys are more abundantly eaten and 
therefore they decrease. But prey decrease results in a minor food for 
predators which start to decrease (by providing a consequent increase 
of preys). This means that the increase of predators produces, after a 
while, their decrease (and symmetrically, a corresponding inverse 
oscillation happens for preys). This oscillatory mechanism of the sizes 
of the two populations is displayed in Figure 1 by the dynamics of the 
MP grammar of Table 1 with the following regulators:

1

2

3

(x) 0.061 x 0.931
(x, y) 0.067 x 0.15
(y) 0.154 0.403,

ϕ
ϕ
ϕ

= ⋅ +
= ⋅ + ⋅

= ⋅ +
y

y
from the initial state x [0]=9.5, y [0]=6.

The following matrix: 

1 1 0
0 1 1

A
− 

= − 
is the stoichiometric matrix of grammar in Table 1, which is constructed 
by 3 column vectors of integers R1, R2, R3 expressing the differences 
between the coefficients of left and right occurrences of variables (a 
rule 3x → x+y would be (-2, 1) because 1x-3x=-2x and y-0y=1y). Figure 
2 is an MP graph illustrating the MP grammar of Table 1, according 
to a natural representation of rules and regulators, introduced in [24], 
where: circles are variables, continuous edges with full circles are rules 
and discontinuous lines with grey circles are regulators (triangles are 
input and output elements).

An MP grammar G with n variables defines an autonomous 
discrete dynamical system [3,10] where the space is given by the set Rn 
of possible states of its variables, and the dynamical function δ is given 
by the following equation, for any (column) vector X € Rn:

( ) ( ( ))X X A U Xδ = ⊕ ×     			                 (3)

where: 

⊕  is the vector sum;

A is the stoichiometric matrix, ( ){ }r ,(x) (x) , ;r x rA x X r Rβ α= − ∈ ∈

U(X) is the column vector of fluxes r( (X) )r Rϕ ∈

Any MP grammar has an equivalent grammar (providing the same 
dynamics) where rules have an input or output form (with the empty 
multiset ϕ, on the right or on the left of the rule). In these grammars 
the reciprocal influence of variables is realized by means of regulators. 
Moreover, any first-order recurrent systems of equations (where the 
value of a variable at step i+1 may depend only by variables at step i) 
identifies an MP grammar in input/output form, and vice versa [10].

The LGSS algorithm of MP regression

 Let us consider a given DIP, and let us fix a set of m rules over n 
variables, then the Log-Gain Stoichiometric Stepwise algorithm (LGSS) 
[7-10] yields an MP grammar, with the given rules and the initial state 
X [0] of the time series X, generating X (within an approximation 
threshold). To this end, we chose a set of d primitive functions g1,…, 
gd (at most of n variables), called regressors, by means of which 
regulators are expressed, as linear combinations of some of them. The 
selection of the regressors corresponding to each regulator is realized 
by means of suitable statistical tests based on Fisher's F-distribution 
within a strategy of Stepwise regression [25,26]. The determination of 
the coefficients of the chosen regressors is computed by combining the 
method of Least Square Evaluation with a procedure of Stoichiometric 
Expansion realized by means of suitable algebraic operations on 
matrices. The name LGSS is due to the use of Log-gain principle [3] 
for assigning scores in the choice of regressors. In fact, this is a crucial 
point of the procedure. More technical details on this algorithm can be 
found in [7-10].

An MP Grammar for Sine and Cosine
Sine and cosine functions can be defined as the values of x and y 

coordinates, respectively, of a point moving on a circle of unitary radius 
and center on the origin of xy plane. Circular functions are as old as the 
Archimedean investigation about the π ratio between circle length and 
its diameter. As illustrated in [27], Archimedean sine of an angle α is 
the cord under α, that is, 2 sin (α/2), and Archimedes' investigation 
about the rectification of circle relies on a kind of bisection formulae 
(from the cord of an angle to the cord of the half angle) that were 

1 1

2 2

3 3

: ( )
: ( , )
: ( )

r x x
r x y x y
r y y

ϕ
ϕ
ϕ

∅→
→
→∅

Table 1: A general schema of MP oscillating grammars
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the basis for the approximate evaluation of π. Many classical results 
of trigonometry, such as addition formulae, are due to Arabian and 
Indian mathematicians (Bhaskara II, 12th century). The analytical 
representation of sine and cosine was one of Euler's jewels [28]. Now 
we are interested to know if a simple MP grammar exists that generates 
sine and cosine tables with a very good approximation. To this end, we 
start from the MP grammar schema of Table 1, which we know to be 
a good schema for providing an MP oscillator, and then we use LGSS 
with the following regressor dictionary D = {xk yj |0≤ k ≤ 4, 0 ≤ j ≤ 4} for 
inferring the right regulator formulae providing a cosine/sine oscillator 
(sine plays the role of predator and cosine the role of prey). When the 
time series of sine and cosine, with sampling at 10-3 rad, are given as 
input to the LGSS algorithm, in order to find the best regulators of 
the MP grammar of Table 1 (with regressor dictionary D), we get the 
following result (x indicate cosine, y indicates sine):

1 1 1

2 2 2

3 3 3

: ( )
: x ( , ) ( )
: ( )

r x x k x
r y x y k x y
r y y k y

ϕ
ϕ
ϕ

∅→ = ⋅
→ = ⋅ +
→∅ = ⋅

    		                  (4)

where k1=0:000999499833375, k2=0:000999999833333 and k3= 
0:001000499833291 (the coefficient estimates are cut to the 15th 
decimal digits, according to the accuracy of the computer architecture 
used during the computation). MP grammar (4) provides a very precise 

sine/cosine oscillator, with maximum absolute error of the order of 10-14 
(Figure 3).

Let us search for a recurrent definition of sine and cosine by using 
the trigonometric addition formulae:

cos( ) cos( ) cos(h) sin(i) sin(h)
sin( ) sin( ) cos(h) cos(i) sin(h)

i h i
i h i
+ = ⋅ − ⋅
+ = ⋅ ⋅ + ⋅       (5)

that is:
cos( ) cos( ) cos( ) cos(h) sin(i) sin(h) cos(i)
sin( ) sin( ) sin(i) cos(h) cos(i) sin(h) sin(i)

i h i i
i h i
+ − = ⋅ − ⋅ −
+ − = ⋅ + + ⋅ −     (6)

Let us approximate the value of sin(h) with the value h of the angle. 
Therefore, the value of cos(h) is:

2 2cos(h) 1 sin (h) 1 h= − = −

If we substitute these values to sin(h) and cos(h) in equations (6) 
we obtain:

2

2

cos( ) cos( ) 1 cos( ) sin(i) cos(i)

sin( ) sin( ) 1 sin( ) cos(i) sin(i)

i h i h i h

i h i h i h

+ − = − ⋅ − ⋅ −

+ − = − ⋅ + ⋅ −
   (7)

which, finally, gives the following MP grammar (x; y are the 
variables for sine and cosine, respectively):

2
1 1

2
2 2

: ( , ) 1- - -

: ( , ) 1- -

r x x y h x h y x

r y x y h y h x y

ϕ

ϕ

∅→ = ⋅ ⋅

∅→ = ⋅ + ⋅
                             (8)

Proposition 1: The MP grammar (8) coincides with the MP 
grammar (4) given by LGSS, up to the seventh decimal digit (the 
corresponding coefficients of the two grammars are the same within an 
approximation of 10-7).

Proof: Let us modify the stoichiometry of the grammar (8) by 
reversing the second rule:

2
1 1

2
2 2

: ( , ) 1- - -

: ( , ) 1-

r x x y h x h y x

r y x y y h y h x

ϕ

ϕ

∅→ = ⋅ ⋅

→∅ = − ⋅ − ⋅
                                 (9)

Now, let us add a new rule (we write it in second position) with 

 

10

9

8

7

6

5

4

3
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x
y

Steps

Figure 1: Dynamics of the MP grammar of Table 1 with regulators given in (2).
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ϕ1

Figure 2: An MP graph representing the MP grammar of Table 1.
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null flux:
2

1 1

2 2

2
2 2

: ( , ) 1- - -
: x ( , ) 0

: ( , ) 1-

r x x y h x h y x
r y x y

r y x y y h y h x

ϕ
ϕ

ϕ

∅→ = ⋅ ⋅
→ =

→∅ = − ⋅ − ⋅

                            (10)

and then, let us move the term h • y from the first rule to the second rule 
and the term h • y from the third rule to the second rule:

2
1 1

2 2

2
2 2

: ( , ) 1- -
: x ( , )

: ( , ) 1-

r x x y h x x
r y x y h y h x

r y x y y h y

ϕ
ϕ

ϕ

∅→ = ⋅
→ = ⋅ + ⋅

→∅ = − ⋅

                                      (11)

This change introduces an error in variable step variations, with 
respect to those of the original grammar (9), because the flux h • y, 
which was moved from r1 to the r2, now acts also on the variable y (that 
is increased of it), and the flux h • x, which was moved from r3 to the 
r2, now acts also on the variable x (that is decreased of it). Therefore, 
in order to compensate these extra fluxes, we add the term h • x in the 
flux of r1 and the term h • y in the flux of r3, by obtaining at end the 
following MP grammar equivalent to (9):

2
1 1

2 2

2
3 3

: ( ) [ 1- 1 ]
: x ( , ) ( )

: ( ) [1 1- ]

r x x h h x
r y x y h x y

r y y h h y

ϕ
ϕ

ϕ

∅→ = − + ⋅
→ = ⋅ +

→∅ = + − ⋅

	             (12)

We show that this MP grammar is dynamically equivalent to the 
MP grammar (4). In fact, by construction, it has the same stoichiometry 
as the grammar (4). Moreover, if we set the step h equal to 10-3, by 
substituting this value of h in Equation (12) we get the following 
grammar, where we get coefficients that coincide with the coefficients 
of the grammar (4) rounded at seventh decimal digit:

1 1

2 2

3 3

: ( ) (0.9999995 - 1 + 0.001) 0.0009995
: x ( , ) 0.001 x + 0.001  y
: ( ) (1 - 0.9999995 + 0.001) y = 0.0010005 y

r x x x x
r y x y
r y y

ϕ
ϕ
ϕ

∅→ = ⋅ = ⋅

→ = ⋅ ⋅
→∅ = ⋅ ⋅

  (13)

that is, we get for the three rules the constants k1, k2, k3 of (4) (rounded 
at the seventh decimal digit). MP grammar (13) permits a very accurate 
computation of the cosine/sine dynamics. Its accuracy surely increases 
if we use a smaller step, say 0.000001. However, the grammar (4) 
provides, with the same step (0.001), a more accurate calculation, which 
is comparable to the precision accuracy of the computer (precision 
order of 10-14). This means that LGSS, during its calculation, is able to 
calculate the regulator formulae with a precision that is bounded only 
by the precision accuracy of the computer which runs the calculations. 
We will show, in the next Proposition, that what LGSS gives at step 
0.001, corresponds exactly to what can be derived by means of a 
recurrent definition of cosine and sine based on Taylor series:

2 3 4

( ) ( ) ( ) ( ) ( ) ( )
2! 3! 4!
h h hf x h f x h f x f x f x f x′ ′′ ′′′ ′′′′+ = + ⋅ + ⋅ + ⋅ + ⋅ + ⋅⋅⋅

In fact, if we apply the formula above to cosine and sine we obtain:
2 3 4

2 3 4

cos( ) cos( ) sin( ) cos( ) sin( ) cos( )
2 6 24

sin( ) sin( ) cos( ) sin( ) cos( ) sin( )
2 6 24

h h hi h i h i i i i

h h hi h i h i i i i

+ = − ⋅ − ⋅ + ⋅ + ⋅ − ⋅⋅⋅

+ = + ⋅ − ⋅ − ⋅ + ⋅ + ⋅⋅⋅
  (14)

which, finally, leads to the following recurrent formulae:
2 4 3

3 2 4

cos( ) cos( ) cos( ) sin( )
2 24 6

sin( ) sin( ) cos( ) sin( )
6 2 24

h h hi h i i h i

h h hi h i h i i

   
+ − = − + − ⋅⋅⋅ ⋅ + − + − ⋅⋅⋅ ⋅   

   
   

+ − = − + ⋅⋅⋅ ⋅ + − + − ⋅⋅⋅ ⋅   
   

  (15)

that, for the sake of simplicity, can be rewritten as follows:

cos( ) cos( ) cos(i) B sin(i)
sin( ) sin( ) cos(i) sin(i)

i h i A
i h i B A
+ − = ⋅ − ⋅
+ − = ⋅ + ⋅                                      (16)

Where 
2 4

A
2 24
h h 

= − + − ⋅⋅⋅ 
 

and 
3

6
hB h

 
= − + − ⋅⋅⋅ ⋅ 
 

In Table 2 are represented the values for the coefficients A and B 
of equations (16) for different orders of Taylor series and considering a 
step h=10-3, which is the step used for computing the MP grammar (4). 
This means that, by substituting in recurrent equations (16) the values 
of A and B taken from Table 2, we can obtain a cosine/sine oscillator 
which approximates the curves of cosine and sine with sampling 10-3 
and approximation increasing as the order of terms considered in the 
Taylor series. The best approximations, with respect to the available 
computer precision, are computed by using the values in the last row 
of Table 2.

Recurrent equations (16) can be rewritten in the following MP 
grammar:

1 1

2 3

: (x, y) B
: (x, y)

r x A x y
r y B x A y

ϕ
ϕ

∅→ = ⋅ − ⋅
∅→ = ⋅ + ⋅

			                (17)

The following proposition shows that this recurrent definition of 
sine and cosine coincides with the MP grammar (4) found by means 
of LGSS algorithm.

Proposition 2: The MP grammar (17) with coefficients A,B of the 
fourth line of Table 2 is dynamically equivalent to the MP grammar (4) 
(the two grammars define the same dynamics). 

Proof: Let us write the MP grammar (4) by changing its 
stoichiometry, but keeping the same variations of variables at any step. 
First, we change the direction of r3:

1 1 1

2 2 2

3 3 3

: (x, y)
: (x, y) ( )
: (y)

r x k x
r x y k x y
r y k y

ϕ
ϕ
ϕ

∅→ = ⋅
→ = ⋅ +
∅→ = − ⋅

                                             (18)

then, we eliminate the transformation rule in the middle, by 
rewriting (18) as:

1 1 1 2

2 2 2 3

: (x, y) k (x y)
: (x, y) ( ) k y

r x k x
r y k x y

ϕ
ϕ

∅→ = ⋅ − ⋅ +
∅→ = ⋅ + − ⋅

                                (19)

Order A B
1 0 0:001
2 -5:00000000 • 10-7 0:001
3 -5:00000000 • 10-7  9:99999833333 • 10-4

4 -4:99999958 • 10-7 7 9:99999833333 • 10-4

Table 2: Values of A and B of Equation (16) for different orders of the Taylor series, 
by considering a step h=10-3 (the estimates are cut to the 15th decimal digits, 
according to the accuracy of the computer used during the computation). Since, 
order by order, only one term of the Taylor series is added, which depends only by 
cosine or by sine, only one column of the table is updated in each row. From the 
4th order the coefficients remain stable, that is, the change is reflected only in digits 
which are not reported in table because too low.
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The grammar above can be finally rewritten by grouping terms:

1 1 1 2 2

2 2 2 2 3

: (x, y) ( k ) k y
: (x, y) ( k ) y

r x k x
r y k x k

ϕ
ϕ

∅→ = − ⋅ − ⋅
∅→ = ⋅ + − ⋅

                              (20)

and this last grammar leads to the conclusion that the MP grammar 
(17) is equivalent to the grammar (4) when:

A=k1 - k2=k2-k3

B=k2                                                                       			                           (21) 

If we use the estimates of k1, k2 and k3 computed by LGSS for the 
MP grammar (4), we obtain:

A=k1-k2=k2-k3=-4:99999958 • 10-7

B=k2=9:99999833333 • 10-4

which corresponds to the coefficients for A and B of 4th order provided 
in Table 2. 

The proposition above shows that LGSS provides formulae and 
coefficients estimations that are mathematically well grounded and 
that provides the maximum power of approximation, according to 
the precision accuracy reachable by the machine performing the 
computation. LGSS computed coefficients corresponding to Taylor 
terms of 4th order, because this order provides the precision accuracy 
of 15 decimal digits. However, now that we are aware of this, we can 

better explain the approximation loss of grammar (13) with respect 
to grammar (4). In fact, if we reconsider the evaluation (21) with the 
values of (13), we obtain:

A=k1-k2=k2-k3=-5 • 10-7

B=k2=0.001

which corresponds to the coefficients for A and B of 2th order provided 
in Table 2. This means that the approximation power of grammar (4) is 
increased, with respect to grammar (13), of two orders of Taylor series.

If we apply LGSS directly to the stoichiometry of grammar (17), we 
will obtain the coefficients of the fourth line of Table 2. The following 
MP grammar:

1 1

2 3

: ( , ) -0.004995834721974 -0.099833416646828 
: ( , ) 0.099833416646828 0.004995834721974

r x x y x y
r y x y x y

ϕ
ϕ

∅→ = ⋅ ⋅
∅→ = ⋅ − ⋅  (22)

has been computed by LGSS, considering the stoichiometry of 
grammar (17) and a sampling step of 0.1. Even if the sampling step 
of this grammar is bigger than the one used for calculating grammar 
(4), this system provides a cosine/sine oscillator that is more precise. In 
fact, the maximum approximation error in the first two oscillations is 
of the order of 10-15 (Figure 4). It is interesting to see that, thanks to the 
fact that this time the considered sampling step is bigger, the coefficient 
estimates computed by LGSS consider more terms of Taylor series. In 
particular, coefficients of grammar (22) correspond to a Taylor series of 
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9th degree (Table 3), the maximum degree that is possible to considerate 
with a precision of 15 decimal digits. 

Applications
 The LGSS regression described in MP Grammar for Sine 

and Cosine part demonstrated to be very reliable even when the 
discretization step of our analysis is realized at a very macroscopic 
level, for example by considering sine and cosine at angle increments of 
2 rad. In such a case, the values computed by the MP grammar deduced 
by LGSS were determined with the best possible precision and with a 
surprising computational speed (Figure 5). In fact, the greater is the 
angle increment, the higher is the order of terms of Taylor series used 
by the grammar given by LGSS. And moreover, the greater is the angle 
increment, the smaller is the number of steps necessary for generating 
sine and cosine values (with a decreasing of error propagation along 
the iteration). The charts given in Figure 6 refer to a set of 400 MP 
models providing sine/cosine dynamics with sampling step ranging 
from 0.01 rad to 4 rad. For each model is given the mean square 
error (MSE) and the order of Taylor series reached by the coefficient 
estimates computed by LGSS. Thanks to the high performance of 
LGSS, the entire set of models has been computed and simulated in 
less than a minute by means of a standard laptop with a dual core CPU 
and 4 GB of memory. An explanation of this very good performance of 
MP grammars is due to their intrinsic capability of combining a sort 
of native built-in integro-differential strategy. In fact, in a differential 
representation of a dynamics, when solutions are found, analytically or 
by numerical integration, the behavior of variables at a given discrete 

time sampling can be obtained by integrating the differential solution 
in the (macroscopic) time interval of the time step. The MP solutions 
given by LGSS provide directly this result by means of a very precise 
evaluation of regulators responsible for the observed dynamical 
variations between the two extremes of the step interval. The results 
presented till now apply not only to standard circular functions, but 
also to any harmonics cos (n • i) and sin(n • i), with n € R. In fact, from 
Equations (14), (15) and (16), we have:

2 2

2 2

cos( ) cos( ) sin( ) cos( )
2

sin( ) sin( ) cos( ) sin( )
2

n hn i h n i n h n i n i

n hn i h n i n h n i n i

⋅
⋅ + = ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅⋅⋅

⋅
⋅ + = ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅⋅⋅

  (23)

which leads to:

cos( ) cos( ) A cos( ) sin( )
sin( ) sin( ) cos( ) sin( )

n i h n i n i B n i
n i h n i B n i A n i
⋅ + − ⋅ = ⋅ ⋅ − ⋅ ⋅
⋅ + − ⋅ = ⋅ ⋅ + ⋅ ⋅

              (24)

Where 
2 2 4 4

2 24
n h n hA

 ⋅ ⋅
= − + − ⋅⋅⋅ 
 

 and 
3 3

6
n hB n h

 ⋅
= ⋅ − + ⋅⋅⋅ ⋅ 
 

This means that MP grammar (17) has the capability of generating 
sine and cosine curves regardless of their frequency and that we can 
use LGSS to compute the right values for A and B. Now, since we know 
from Fourier analysis that any periodical signal can be represented by 
a combination of simple sine waves with different frequencies, this fact 
leads to important applications in using LGSS for generating recurrent 
equations that exhibit periodical signals. Moreover, since MP grammar 
(17) has linear regulators, it is easy to translate it in a combinatorial 
circuit (Figure 7). Such a circuit can be then incorporated in a 
sequential one, like that represented in Figure 8, which provides an 
implementation, in terms of hardware, of the MP system inferred by 
LGSS. This fact indicates that it is possible to define a methodology, 
based on LGSS regression that permits to implement sequential circuits 
of periodical oscillators. A paper is in preparation that investigates 
along this direction. 

Conclusions
The results presented in this paper focus on a new perspective of 

considering recurrent equations. Usually, their investigation is aimed at 
finding analytical methods to solve them or at determining properties 
of the discrete dynamics that they express [29]. On the contrary, here 
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Order A B
1 0 0.001
2 -5.00000000•10-3 0.001
3 -5.00000000•10-3 9.9833333333333•10-2

4 -4.995833333333•10-3 9.9833333333333•10-2

5 -4.995833333333•10-3 9.9833416666666•10-2

6 -4.995834722222•10-3 9.9833416666666•10-2

7 -4.995834722222•10-3 9.9833416646825•10-2

8 -4.995834721974•10-3 9.9833416646825•10-2

9 -4.995834721974•10-3 9.9833416646828•10-2

Table 3: Values of A and B of grammar (17) for different orders of the Taylor series, 
with step h=0.1.
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we do not cope with their solutions, because their intrinsic algorithmic 
(iterative) nature provides a direct computation of their dynamics: it is 
enough to put them in the canonical form Xn+1=F(Xn) and iteratively 
apply the right side of the equation, starting from an initial value (every 
equational recurrence can be expressed in a first order recurrent form). 
Of course, in this way the dynamics at step n can be computed only 

after computing it in all the steps preceding n, but, in most cases, this 
is not a real limitation if the computation is performed automatically. 
Using MP grammars, recurrent equations are constructed by assigning 
regulators to MP rules, that is, by combining the action of a number 
of regulators that encode abstract forms of mutual interactions among 
variables. In this perspective, regulators replace forces that in classical 
mechanics are the causes of observed motions. In fact, regulators 
may be related to a big number of unknown forces, very difficult to 
individuate and to discriminate, therefore, they express abstract entities 
of rational and compact reconstruction of the internal logic underlying 
an observed dynamics. When the complexity and the indetermination 
of systems do not allow us other ways of analysis, this could be an 
important chance to the comprehension of phenomena. In this paper 
we deduce a sort of proof of concept of the ability of MP regression 
to discover the deep logic underlying a phenomenon. Namely, LGSS 
implicitly applied trigonometric formulae and Taylor series, with the 
best possible accuracy and a powerful computational efficiency. We 
would like to stress that LGSS automatically calculates not only the 
values of the coefficients, but also the form of linear combinations 
providing regulators. This provides a big advantage with respect to 
other formalisms, such as GMA-systems [30], which reach a similar 
power of approximation, for circular functions, only because the form 
of differential equations, on which they are based, are constrained to 
fit with the form of Taylor series. Conversely, the exibility of LGSS 
allows us to find the best regulators approximating the internal logic 
of the observed dynamics, without imposing a preliminary form. In 
papers [10-13,21,22] where MP theory was already successful applied 
to biomedical problems, very good approximations are obtained even 
when the regulators have a form that is different from that corresponding 
to Taylor series. Finally, beside the wide range of applications of the 
MP approach to the analysis of complex phenomena, in applications 
section some new applications are introduced that exploit the 
regression capabilities of LGSS for the analysis of periodical signals. In 
particular, at the end of the section a new application is suggested, that 
focus on the definition of a methodology, based on LGSS regression, 
for implementing sequential circuits of periodical oscillators.
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