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Introduction
There are serious challenges posed by high-dimensional data sets. 

With the arrival of new technologies, high-throughput modeling is 
becoming a norm in many disciplines such as statistical genetics, 
epidemiology, astronomy, high energy physics, and ecology. High-
dimensional data have emerged from various sources such as digital 
images, documents, next-gen sequencing, mass spectrometry, 
metabolomics, microarray, proteomics, online videos and web pages. 
One area with a growing need for new statistical methods and theory for 
high-dimensional data is the classification of subgroups. For example, 
cancer classification has primarily been based on histopathological 
appearance of tumor. However, patients with similar tumor appearance 
can have different prognosis and response to treatment. The traditional 
way to classify cancer by pathological review may cause biased results 
and misclassify the tumor subtypes for patients. The availability of 
microarray data allows simultaneous measures of thousands of genes. 
These high-dimensional data have become a standard tool for biomedical 
studies and are now commonly collected from patients in clinical 
trials. The identification of informative genes may result in potential 
molecular markers for tumor class prediction. Correct classifications 
can help practitioners identify the right treatment for patients. Due 
to the cost and/or experimental difficulties in obtaining sufficient 
biological materials, it is common to see studies with sample size much 
smaller than the number of dimensions. These problems are referred 
to as “large p small n” issues, where p is the number of dimensions 
(or say genes) and n is the sample size. High-dimensional data pose 
challenges to traditional statistical methods. For instance, owing to 
small n, there are increased uncertainties in the standard estimations of 
parameters such as means and variances. As a consequence, statistical 
analyses based on such parameters estimation are usually unreliable. To 
have improved parameters estimation, researchers have come up with 
innovative ways to deal with this.

A common approach for the analysis of high-dimensional data 
classification is discriminant analysis. The main goal of discriminant 
analysis is to assign an unknown subject to one of K classes on the basis 
of observed subjects from each class. Let ,1 ,, ,k k nk

X X
 be independent 

and identically distributed from p-dimensional multivariate normal 
distribution with mean vector µk and covariance matrix ∑k for class 
k=1,..,K. Let n = n1+...+nk be the total number of observations. Note 
that the sample covariance matrices are singular when p is larger than 
n. Therefore, traditional methods such as Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis (QDA) are not applicable
to high-dimensional data classification directly.

Recent Advances
To overcome the singularity problem, Dudoit [1] introduced two 

simplified discriminant rules by assuming independence between 
covariates. For each class k, let 1 ,=1

= ( , , ) = /nT k
k k pk k j kj

X X X X n∑
 be the 

sample mean, and 2 2
1

ˆ ˆ ˆ= d ( , , )k k pkiag σ σΣ   be the sample covariance 
matrix where the off-diagonal elements are all set to be zero. Also let 
ˆ = /k kn nπ  be the estimated prior probability of observing a class 

k subject. The first rule developed in Dudoit [1] is called Diagonal 

Quadratic Discriminant Analysis (DQDA). It classifies a new subject X 
to class k that minimizes the discriminant score

2 2 2
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The second rule is called Diagonal Linear Discriminant Analysis 

(DLDA) that classifies the new subject analogously according to the 
discriminant score 2 2

=1
ˆ ˆ ˆ( ) = ( ) / 2 logpL

k i ik i ki
d X x X σ π− −∑ , where 2ˆiσ  are 

the pooled variances across the K classes. DQDA and DLDA classifiers 
are sometimes called “naive Bayes” classifiers because they can arise 
in a Bayesian setting [2]. Due to the small sample size, DLDA and 
DQDA, which ignore correlations between genes, perform remarkably 
well compared to some more sophisticated classifiers in terms of both 
accuracy and stability. In addition, DQDA and DLDA are easy to 
implement and have been adopted to analyze high-dimensional data in 
various fields of science.

Though DQDA and DLDA work for small sample sizes and perform 
better than some sophisticated classifiers, their performance under the 
“large p small n” setting is still unreliable due to various reasons. In this 
section, we review some significant results that have been developed in 
the literature to improve the diagonal discriminant analysis.

The Nearest Shunken Centroid (NSC) method proposed by 
Tibshirani [3] is among the first to improve the diagonal discriminant 
analysis. This method also assumes a diagonal covariance matrix. To 
improve the classification performance, the mean vector µk is estimated 
by the “shrunken centroid” rather than the sample mean. NSC 
shrinks each class centroid toward the overall centroid by a certain 
amount. Specifically, let = ( ) / ( )ik ik i k id x x m s−  be the standardized 
distance between each class centroid and the overall centroid, where 

= 1/ 1/k km n n− , si is the pooled within-class standard deviation for 
the ith component and s0 is a positive constant with the same value for 
all genes. By shrinking dik toward zero via soft thresholding or hard 
thresholding, the NSC method uses the achieved shrunken centroids 
to perform DLDA and then classifies the new subject to the class with 
nearest shrunken centroid. Note that other variations of NSC are also 
available in the literature; see for example [4,5].

Uncorrelated discriminant analysis (UDA) is another extension 
of the diagonal discriminant analysis [6]. Let Sb be the between-class 
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scatter matrix, and Sw be the within-class scatter matrix, and Si = Sb+Sw 
be the total scatter matrix. A special property of UDA is that the genes in 
the transformed space are uncorrelated. The goal of UDA is to find the 
optimal discriminant vectors that are St-orthogonal. Suppose r vectors 
are obtained, then the (r+1)th vector will be the one that maximizes 
the Fisher criterion function subject to certain constraints. Ye et al. [6] 
showed that this can be solved efficiently by solving an optimization 
problem.

Due to the small sample sizes, another direction to improve the 
diagonal discriminant analysis is by shrinkage [7,8]. For instance, Pang 
[7] applied the shrinkage estimates of variances in Tong [9] into the
diagonal discriminant scores, and formed two shrinkage-based rules
called Shrinkage-based DQDA (SDQDA) and Shrinkage-based DLDA
(SDLDA). Pang [7] also applied regularization as in Friedman [10] to
further improve the performance of SDQDA and SDLDA. Combining
shrinkage-based variances in diagonal discriminant analysis and
regularization in a new classification scheme showed improvement
over the original DQDA and DLDA, Support Vector Machine, and
k-Nearest Neighbors in many scenarios. In addition, Pang H [11] have
applied the shrinkage-based discriminant rules to identify genes that
help differentiate between estrogen receptor positive and negative
samples to investigate genes that are specific to the African American
subjects with breast cancer.

Recently, Huang S [11] observed that the diagonal discriminant 
analysis suffers from serious drawback of having biased discriminant 
scores. Inspired by this, they proposed bias-corrected diagonal 
discriminant rules by using unbiased estimates of ˆ ( )Q

kd X  and 
ˆ ( )L

kd X . Specifically for DQDA, let 1 2
ˆ ˆ ˆ ˆ( ) = 2log ,Q

k k k kd X L L π+ −
where 2 2

1 =1
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2 =1
ˆ ˆ= logp

k iki
L σ∑ . Huang 

S [12] observed that 1
ˆ

kL  and 2
ˆ

kL  are biased estimates of the true
quantities. Let 1kL



 and 2kL


 be the bias-corrected estimators. The 
resulting bias-corrected discriminant score of DQDA is then defined 
as 1 2 ˆ( ) = 2logQ

k k k kd X L L π+ −


 

. It was shown that the proposed bias-
corrected score improves the standard one under the quadratic loss 
function. Finally, both simulation study and prediction accuracy 
analysis demonstrated the superiority of bias correction over the 
original rules, especially when the design is highly unbalanced.

Discussion
Though the progress made thus far is encouraging, we believe 

that more needs to be done given the increased demand and further 
improvement are desired. First, note that genes are unlikely to be 
independent of each other. Therefore, the assumptions made in the 
diagonal discriminant analysis and its variations may not be realistic. 
Pang H [13] are studying and extending block-diagonal discriminant 
analysis methods. In some preliminary study, they have made further 
improvement possible for class prediction in real data analysis. Second, 
the performance of the NSC method and its variations may not be 
satisfactory when the sample size is small due to the large variation in 
variable selection using cross-validation. In Tong T [14], the authors 
are proposing a new algorithm that chooses the tuning parameter 
for variable section by minimizing certain risk functions. Some 
preliminary simulations indicate that the proposed algorithm performs 
well compared to the original NSC method by cross-validation when 
the sample size is small. Third, we can consider the bias-corrected rules 
for SDQDA and SDLDA. Recall that the shrinkage estimation is to 
trade off a “small” increase in bias for a possible “significant decrease” 
in variance. The good performance of SDQDA and SDLDA in Huang S 

[12] is mainly owing to the largely reduced variance in the shrinkage-
based discriminant scores. Instead, the bias term in SDLDA and
SDQDA still remains or may be even larger than that in DLDA and
DQDA, respectively, as shrinkage may pull in extra bias. To conclude,
we reiterate that there is still room for more innovative methdological
developments in the area of discriminant analysis for high-dimensional
data classification.
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