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Introduction
Sexual transmission through vaginal and rectal mucosal surfaces 

has been the most common route of HIV-1 spread throughout the 
world [1]. The latest estimates by the Joint United Nations Program 
on HIV/AIDS (UNAIDS) indicate that more than 33.3 million people 
worldwide are living with HIV-1 infection or AIDS [1]. Worldwide, 
new HIV-1 infections (approximately 3 million per year) occur, mostly 
through heterosexual intercourse. Heterosexual transmission of HIV-1 
now accounts for over 80% of adult infections worldwide and male-
to-female transmission of HIV-1 is approximately eight times more 
frequent than female-to-male transmission [2]. Receptive anal sex 
is the predominant mode of HIV acquisition among men who have 
sex with men (MSM) [3,4] and a significant independent risk factor 
for HIV infection among women [5,6]. Unprotected receptive anal 
intercourse (RAI) has the highest per act risk of HIV acquisition with 
an unadjusted probability of 0.08 per contact for RAI [7] as compared 
to 0.001 per coital act for vaginal intercourse [8]. Furthermore, there 
is increasing epidemiological evidence that women as well as men in 
both the developed [9-11] and developing world [12-14] practice RAI. 
Clearly, both vaginal and rectal microbicides should be seen as an 
important HIV prevention technology for all individuals who practice 
RAI. However, the move for the development of a safe and effective 
anogenital microbicides remains an unmet challenge despite more than 
25 years of accelerated product development. Early strategies to prevent 
the spread of sexual transmission of HIV-1 with first-generation 
vaginal antiviral agents led to the failure of 11 clinical trails with 6 
microbicide candidates, nonoxynol-9, SAVVY®/C31G, cellulose sulfate, 
Carraguard®/PC-515, PRO 2000 and BufferGel® [15-19]. In addition, 
the recent failure of rectal microbicide candidates can be attributed to 

the use of vaginally formulated microbicide gels that failed in clinical 
vaginal efficacy and safety studies.

Multiple Mechanisms of Sexual Transmission of HIV
Sexual male to female transmission of HIV-1 can occur via multiple 

alternate pathways involving a variety of target cells in the host vaginal/
rectal mucosa and cell surface receptors/co-receptors, and both cell-free 
and cell-associated virus [20-23]. HIV-1 entry into target cells (T cells, 
macrophages, dendritic cells, and mucosal Langerhans cells) involves a 
sequential, multi-step process that includes viral attachment to the host 
receptor, binding to host coreceptors, and fusion of the viral and host 
cell membranes [24]. HIV can enter the human cell in three important 
steps: (i) Attachment of the HIV surface envelope (ENV) glycoprotein 
(gp) 120 to the cellular CD4 receptor expressed by the monocyte 
derived macrophages and T-lymphocytes; (ii) Interaction of the gp120 
protein and CD4 complex with either the CCR5 or CXCR4 coreceptor 
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(iii) Virus-cell membrane fusion mediated by conformational changes 
in the transmembrane gp41 protein [24-27]. Upon internalization, the 
viral enzymes, viz. reverse transcriptase (RT) and integrase are released 
into the cytosol of the host cell. The viral RNA is then transcribed into 
a double-stranded DNA with the help of RT, followed by integration of 
viral DNA into the host genome resulting in formation of a provirus 
[28,29]. Provirus formation is followed by a transcription step, wherein 
the unspliced viral RNA leaves the nucleus and, with the help of the 
host translation machinery, viral proteins are formed from unspliced 
transcript [30]. HIV-1 exploits several host proteins, also known as 
HIV-dependency factors (HDFs) during multiple steps of infection, 
including viral entry, viral integration, and viral transcription in cells 
expressing human CD4 and CXCR4 [31-34].

Microbicides Targeting Mucosal Infection and Virus 
Dissemination

HIV-1 appears to exploit multiple mechanisms to transit different 
epithelial barriers and gain access to susceptible target cells and the 
opportunity to establish a systemic infection. Due to different receptors 
and HIV-1 entry pathways, effective microbicides may need to target 
both localized mucosal infection and virus dissemination to draining 
lymph nodes [35]. HIV-1 remains localized in the genital mucosa for 
about a week defining the “eclipse phase” of the infection [36], which 
provides a window opportunity for intervening in order to prevent 
the establishment of the infection. Single-genome amplification and 
sequencing of the earliest detectable viruses showed that they are 
usually derived from a single transmitted virus which infects a small 
founder population of CD4+ T cells [37,38]. The finding that R5, X4, 
and dual-tropic R5X4 HIV-1 isolates can all infect mitogen-activated 
cervical tissues [39], suggests that immune activation may increase 
susceptibility to additional HIV-1 phenotypes. Blockade of cell surface 
receptors (CD4, CCR5, and CXCR4) within the mucosa may be 
sufficient to prevent localized infection of T cells, macrophages, and 
dendritic cells (DCs). However, HIV-1 can attach to mucosal LCs and 
to DCs via the binding of HIV-1 gp120 to syndecan-3, a heparan sulfate 
moiety, as well as to DC-SIGN, a C-type lectin receptor, expressed on 
the surface of these cells, and may be more resistant to microbicides than 
the establishment of localized infection [40]. These cells can mediate 
the efficient transfer of HIV-1 to CD4+ T cells across a gap termed 
the virological synapse [41]. Additionally, epithelial cells that line the 
female genital tract can endocytose HIV-1 and transfer virus to CD4+ 

T cells and DCs in the underlying lamina propria in a process termed 
transcytosis [42]. Moreover, the virus could also remain unmodified 
within the cytoplasm of LCs for several days before transmission 
to T cells. Rectally administered microbicides have the potential to 
reach local nodes through lymphatic drainage [43]. The interior iliac 
lymph nodes are known to be a site of early virus replication and 
have common drainage of the female genital tract and rectum. Thus, 
effective microbicides should be able protect against vaginal as well 
as rectal HIV-1 infection and transmission. The best approach likely 
involves a combinatorial approach to targeting both cell-free and cell-
associated virus, and also to protect the vaginal and rectal mucosa with 
compounds that impart resistance to infection. 

Role of Mucosal Barriers and Inflammatory Mediators
The vaginal and rectal compartments are equipped with a variety 

of physical barriers, innate and adaptive immune responses important 
for preventing HIV-1 infection [44-48]. The multilayered squamous 
epithelium of cervico-vaginal mucosa is a significant anatomical barrier 
and challenge for the virus in the female genital tract to come in contact 

with susceptible CD4+ target cells in the epithelium or superficial 
submucosae. The mucosal epithelium also contributes to innate defenses 
that have antiviral activity such as the production and secretion of 
microbicidal defensins, antimicrobial peptides, and secretory inhibitors 
deposited within the lumen of the genital tract [45,47-50]. A single cell 
layer of columner epithelium separates the rectal mucosa with abundant 
CD4-bearing target cells (CD4+ T cells, DCs, and macrophages) in close 
proximity to the basolateral surface of the intestinal epithelium [43]. 
Therefore, it is critical that topical microbicides do not interfere with 
natural protective host immune mechanisms to sexually transmitted 
infections (STIs), but inhibit pathogen host cell interactions that 
facilitate spread. Exposure of the vaginal-ectocervical and rectal tissue 
to chemical insult can cause damage and/or inflammation at the site 
of application [51,52]. The public health risk caused by such reactions 
is significant due to increased rates for STIs such as HIV-1 [45]. The 
increased STI susceptibility is due to: (a) compromised tissue barrier 
which allows viral entry, (b) recruitment of susceptible target cells to 
the site of inflammation [44,45] and/or (c) induction of inflammatory 
cytokines that can activate HIV long terminal repeat (LTR) via the 
nuclear factor kappa B (NFκB) pathway [46,53]. Consequently, less 
intrusive microbicides, which could be used by women and male 
receptive partners, would be highly desirable [54]. Despite extensive 
preclinical research, five large-scale phase IIB/III clinical trials of 
candidate microbicides (i.e., Nonoxynol-9 [N-9], cellulose sulfate, 
Savvy [C31G], Carraguard, BufferGel and PRO-2000) showed no 
reduction or even an increased risk of acquiring HIV-1 [15-19]. These 
candidate microbicides were considered safe in preliminary short-term 
phase I safety trials and had shown activity against HIV-1 [55-58].

Developmental Requirements for Anogenital Microbi-
cides

Microbicides are hoped to provide anti-HIV protection by directly 
inactivating HIV, preventing HIV from attaching, entering or replicating 
in susceptible target cells, and/or by hindering the dissemination of HIV 
to the host cells that line the vaginal wall. Unlike several first-generation 
microbicides that have failed in recent clinical trials [15-19], an ideal 
microbicide must be safe and effective following vaginal and rectal 
administration and it should cause minimal or no local inflammation 
following long-term repeated use. The desired criteria for an optimal 
microbicide include: (1) Rapid virucidal activity without requiring 
metabolic activation, (2) Ability to rapidly cross membrane barriers, 
(3) Prolonged or irreversible inhibition of HIV-1 enzyme activity, 
(4) Sustained antiviral activity under acidic and alkaline conditions, 
(5) Stability under various climatological temperatures, (6) Minimal 
binding to genital tract and rectal components, (7) Long-acting or 
sustained prophylactic activity, (8) Lack of systemic absorption that 
might contribute drug resistance, (9) Lack of pro-inflammatory effects, 
and (10) Lack of adverse effects on the healthy normal vaginal and 
rectal microbiomes.

Prevalence of Non-B Subtypes and Recombinant Forms
HIV-1 entry and fitness may also play a role in HIV-1 transmission, 

spread in the human population, and global evolution. The current 
HIV-1 epidemic is a mixture of old and contemporary lineages. 
High mutation frequencies coupled with plasticity of functional env 
glycoproteins have now resulted in extreme env diversity observed 
among different subtypes (>15% predicted amino acid diversity) and 
between isolates of the same subtype (10 to 15%). HIV-1 subtype B is 
the prevalent variant in North America and West Europe. However, 
non-subtype B and recombinants (non-B variants) are responsible for 
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90% of the 33 million infections worldwide [59]. These variants have an 
increasing prevalence and heterogeneity in developed countries [60]. 
Regardless of the human ethnicity of the host cell, subtype C HIV-1 
isolates are significantly less fit in terms of relative replication efficiency 
than any other group M isolates (e.g., subtypes A, B, D, and E) [61], and 
yet subtype C now dominates the worldwide epidemic.

The coexistence of multiple HIV-1 variants in the same region 
favors the recombination between them after coinfection and/or 
superinfection events. At least 20% of HIV-1 isolates sequenced 
worldwide are inter-subtype recombinants that can be divided into two 
categories: CRFs (circulating recombinant forms) and URFs (unique 
recombinant forms) [62]. Currently, more than 40 CRFs and 100 URFs 
have been identified worldwide http://www.hiv.lanl.gov. Recombinant 
CRF02_AG, a CRF derived from subtype A and G, is the most prevalent 
strain in West and West Central Africa. Also, the prevalence of newly 
diagnosed patients infected with non-B subtypes and CRFs is very 
high in some European countries (43.9% in UK) and is traditionally 
associated with immigration [63]. Genotypic diversity among HIV-1 
subtypes and CRFs may lead to distinct pathways to drug resistance. 
Non-B variants present clade-specific substitutions in positions related 
to drug-resistance [64] that could accelerate the emergency of drug-
resistant viruses, change or induce alternative pathways of resistance, 
affect the drug-binding affinity or accelerate disease progression. 
Notably, HIV-1 subtype C viruses rapidly develop K65R resistance to 
tenofovir in cell culture [65]. Thus, the continuous spread of HIV-1 
recombinants may have serious implications in the effort to control the 
AIDS pandemic with future microbicide trials, and could potentially 
represent one of the highest barriers to HIV-1 eradication [66].

Antiretroviral Microbicides in Development
Currently there are six classes of drugs act¬ing at various stages 

of the viral life cycle, nucleos(t)ide reverse transcriptase inhibitors 
(NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), 
protease inhibitors (PIs), CCR5 coreceptor antagonists, fusion 
inhibi¬tors and integrase strand transfer inhibitors. Protection against 
HIV transmission via the colorectum requires the use of highly potent 
antiretroviral (ARV) agents with high solubility. Nucleoside/tide analog 
and non-nucleoside reverse-transcriptase inhibitors (NRTIs and 
NNRTIs) are of greatest interest because of their preintegration activity, 
long half-lives, safety profiles, and success in preventing infection in 
animal models [67-75]. HIV-1 can only evolve in those host cells that 
provide the essential microenvironment required for its life cycle. A 
recent genome-wide siRNA-mediated single gene knockdown study 
provided elegant evidence that HIV-1 exploits several host proteins, 
also known as HIV-dependency factors during multiple steps of 
infection, including viral entry, viral integration, and viral transcription 
in HeLa cells expressing human CD4 and CXCR4 [31-34]. Accordingly, 
identifying new agents capable of both preventing and treating HIV-1 
infection by leveraging the dependency of HIV on host factors as well as 
the viral RT enzyme for infecting and replicating in human cells will be 
superior approach for developing effective antiretroviral microbicides.

Virus targeting entry inhibitors

HIV-1 entry into target cells involves a sequential, multi-step 
process that includes viral attachment to the host receptor, binding 
to host coreceptors and fusion of the viral and host cell membranes 
[25]. Since viral infection is mediated by a single type of protein cluster 
on the virus surface, inhibition of the initial entry of HIV-1 into host 
cells has been a compelling means to prevent infection and spread of 
the virus [26]. Each virus Env spike consists of a trimer of two non-

covalently associated glycoproteins, an inner gp41 transmembrane 
protein and a gp120 exterior protein. Viral entry is dependent on 
the ability of the virus envelope protein spike of Env to interact with 
specific cell receptors (CD4 as well as a coreceptor CXCR4 or CCR5) 
in a multistage process that triggers conformational rearragements 
in Env and consequent fusion of virus and cell membrane to deliver 
virus contents to the host [76-80]. Agents that could either block virus 
Env-host cell receptor interactions or inactivate the Env spike before 
cell encounter would provide virus-targeted molecular weapons for 
prevention of HIV-1 transmission [81].

C-C chemokine receptor 5 (CCR5) antagonists: CCR5 is the 
coreceptor almost exclusively used by HIV-1 isolates involved in the 
initial viral transmission [82]. Nearly all newly infected individuals 
have primarily CCR5-tropic viruses in the blood; however, CXCR4-
tropic viruses can emerge as HIV disease progresses [37,80,81]. 
CCR5 is expressed on a large number of CD4+ T lymphocytes, usually 
activated, present in the vaginal, rectal, and foreskin epithelia. Humans 
bearing homozygous CCR5 mutations that abrogate CCR5 function are 
resistant to HIV infection and do not lead to any significant immune 
dysfunction [83,84]. RANTES is a natural chemokine that binds to 
CCR5; this binding subsequently leads to the internalization of the 
receptor, and as a result, prevents HIV binding and infection [85]. 
These findings imply that blocking HIV-1 binding to CCR5 is a viable 
strategy to prevent HIV-1 transmission. 

CCR5 antagonists have already proven useful at preventing 
HIV transmission in nonhuman primates [86-88]. PSC-RANTES, a 
chemically modified version of RANTES with anti-HIV-1 blocking 
and CCR5 agonist properties, has been shown to prevent vaginal 
SHIV-162P infection of rhesus macaques [86]. In spite of the potential 
of gp120 antagonists for HIV-1 prevention, progress has been limited 
due to such factors as low potency of CCR5 inhibitors, the high cost 
and potential toxicity of protein inhibitors and the potential risk 
of infection enhancement with CD4-mimicking ligands. Human 
vaginal Lactobacillus jensenii are being engineered to secrete wild-
type (wt) RANTES as well as its CCR5 antagonist analogue, C1C5 
RANTES [89,90]. Both proteins exert strong anti-HIV-1 activity in 
CD4+ T cells and macrophages, the two major target cells for HIV-1. 
Viral resistance against CCR5 inhibitors, primarily through isotype 
conversion to CXCR4 for entry is also a concern. CCR5 antagonism 
is crucial to prevent mucosal inflammation. Therefore, while blocking 
HIV-1 entry, RANTES derivatives (e.g. PSC-RANTES, 5P12 RANTES) 
should not activate CCR5 that can trigger proinflammatory activity and 
mucosal inflammation that could enhance HIV-1 transmission. CCR5 
activation together with persistent elimination of CCR5 from the cell 
surface can perturb the function of CCR5 in host physiology. Also, 
internalization of CCR5 following RANTES exposure is short-lived 
thereby leading to renewed CCR5 surface expression. Although CCR5 
antagonists effectively block localized infection unlike RT inhibitors 
they are unable to inhibit dissemination by migratory cells [91]. Since 
HIV-1 transmission can occur days after the initial exposure to HIV-
1 in seminal fluid [42], underscoring the importance of advancing 
microbicides that can prevent the binding and internalization of HIV-1.

The activity of CCR5 antagonists is limited to patients with virus 
that uses only CCR5 for entry (R5 virus). Viruses that use both CCR5 
and CXC chemokine receptor 4 (CXCR4; termed dual/mixed [D/M]) 
or only CXCR4 (X4 virus) do not respond to treatment with CCR5 
antagonists [92]. Virologic failure of these drugs frequently is associated 
with outgrowth of D/M or X4 virus from a preexisting minority 
population present at levels below the limit of assay detection [92-95]. 
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The main determinants of HIV-1 coreceptor usage are located in the 
V3-loop of gp120, although mutations in V2 and gp41 are also known. 
Mutations in HIV-1 gp120 that allow the virus to bind to the drug-
bound form of CCR5 have been described in viruses from some patients 
whose virus remained R5 after virologic failure of a CCR5 antagonist 
[95-97]. Most of these mutations are found in the V3 loop, the major 
determinant of viral tropism. Some CCR5 antagonist-resistant viruses 
selected in vitro have shown mutations in gp41 without mutations in 
V3 [97-99]. The sensitivity to R5 entry inhibitors is closely related to 
HIV-1 fitness, entry efficiency, and more specifically, to CCR5 binding 
[100-102]. Diversity in the viral envelope gene likely results in variable 
sensitivity to entry inhibition [100,102,103]. In the African countries 
the predominant HIV subtypes are A, C, and D. In the US, subtype B 
predominates. A relevant biological difference is the binding avidity of 
HIV subtypes for CCR5 receptors, which are important mechanisms 
for entry into LCs, and are the predominant HIV-1 co-receptor in 
foreskin immune cells [104]. Subtype B has a greater binding avidity for 
CCR5 receptors than subtype C [105], which could represent decreased 
sensitivity to R5 entry inhibitors (RANTES derivatives).

Neutralizing antibodies: Enhancing anti-HIV-1 humoral 
immunity at the mucosal cell surface by local expression of anti-HIV-1 
broadly neutralizing antibodies (BnAbs) that block HIV-1 entry would 
provide an important new intervention that could slow the spread of 
HIV. The major targets for HIV-1 neutralizing antibodies are the viral 
envelope glycoprotein trimers on the surface of the virus that mediate 
receptor binding and entry [106,107]. HIV-1 has evolved many 
mechanisms on the surface of envelope glycoproteins, gp120 and gp41 
to evade antibody-mediated neutralization, including the masking 
of conserved regions by glycan, quaternary protein interactions and 
the presence of immunodominant variable elements. Human BnAbs 
against highly variable viral pathogens are much sought after to treat 
or protect against global circulating viruses. A growing number of 
human BnAbs including, b12, 2G12, 2F5, 4E10, Z13e1, VRC01, HJ16, 
PG9 and PG16 are capable of potently neutralizing a broad range of 
primary HIV-1 isolates [108-111]. The monoclonal antibodies 2G12, 
PG9 and PG16, which neutralize HIV-1 from multiple clades, bind to 
glycosyl moieties or V2 and V3 of gp120 [106-111]. The use of antibody 
fragments, such as FabV and scFv molecules, preserves the high degree 
of specificity and the orientation of the binding region, while immune 
reactions are reduced since Fc receptor-mediated phagocytosis by cells 
of the mononuclear phagocyte system is avoided. On the other hand, 
the binding avidity might be lost or decreased, although, coupling 
the fragments onto liposomes would lead to multivalent binding 
and can restore avidity [112]. Nonetheless, the sequence variability, 
glycosylation and mobility make the envelope a moving target, which 
complicates the search for molecules that bind with high specificity.

Several cell surface receptors and molecules can facilitate HIV-1 
entry into epithelial cells allowing passage through the mucosal barrier. 
Syndecans are found to be exploited by HIV-1 to cross the mucosal 
epithelium by transcytosis [113-115]. It has been reported that the 
Arg298 in gp120 mediates HIV-1 binding to syndecans, and the human 
b12 anti-HIV gp120 neutralizing antibodies can block this interaction 
[116-118]. Macaques treated with b12 IgG1 by intravaginal application 
were shown to be protected against SHIV infection by the vaginal route 
[119]. Also, mAb 2G12, a potent neutralizing anti-HIV-1 IgG, which 
binds to a constellation of high mannose-type carbohydrates on gp120, 
has been shown to protect macaques against vaginal transmission 
upon chimeric simian HIV challenge [116,119,120]. Another novel 
microbicide strategy to protect against sexual transmission of HIV-1 
is by adeno-associated virus (AAV) transfer of broadly neutralizing 

antibody genes to cervico-vaginal epithelial stem cells that could 
replenish human b12 anti-HIV gp120 BnAb secreting cells through 
multiple menstrual cycles [121]. However, most humans-unlike 
macaques-possess CD8 T-cell responses specific for the AAV capsid 
due to prior exposure; these responses may clear the vector too rapidly 
for it to be effective.

Cyanovirin-N: High-mannose N-linked glycans recognized 
by carbohydrate-binding agents are potential targets for topical 
microbicides. HIV-1 Env gp120 is a highly glycosylated protein, with 
approximately 24 N-linked carbohydrates accounting for as much as 
50% of its mass. Cyanovirin-N (CV-N) is an 11-kDa cyanobacterial 
lectin that prevents virus-to-cell fusion by blocking gp120 interaction 
with CD41 and cell-associated CCR5 coreceptor [122,123]. This 
antiviral activity is attributed to two homologous carbohydrate 
binding sites that specifically bind high mannose glycosylation present 
on envelope glycoproteins such as HIV-1 gp120 [124]. CV-N is 
currently being investigated for, including gels, suppositories, and in 
vivo Lactobacillus delivery [125-127]. The efficacy of either 1% or 2% 
recombinant CV-N formulated into a carboxyethylcellulose gel matrix 
as a topical microbicide has been tested in male macaques that were 
rectally challenged with a chimeric SIV/HIV-1 virus (SHIV89.6P) 
[125]. In this study, all of the untreated macaques were infected and 
experienced high viremia and CD4+ T cell depletion while none of the 
macaques that received either 1% or 2% CV-N gel showed evidence of 
SHIV89.6P infection. In the vaginal challenge model, 0.5, 1, and 2% 
CV-N gels were effective in blocking vaginal transmission of cell-free 
SHIV89.6P in macaques [126]. All of the placebo-treated and untreated 
control macaques became infected while 83% of CV-N treated 
macaques remained uninfected. 

Among the anti-HIV carbohydrate-binding agents investigated, 
lectins with higher mannose binding sites are more effective inhibitors 
of HIV-1 than CV-N which has only four binding sites [124,128]. Also, 
CV-N has been shown to enhance viral replication levels at suboptimal 
concentrations with pronounced mitogenic/stimulatory effects on 
human peripheral blood mononuclear cells (PBMCs) [129-131]. CV-N 
has the capacity to promote secretion of pro-inflammatory cytokines 
and chemokines from human PBMCs, activate quiescent CD4+ T-cells, 
and promote T-cell proliferation. CV-N affects the cell morphology of 
PBMCs and enhances the expression of the cellular activation markers 
CD25, CD69 and HLA-DR. Consequently, the use of CV-N may be 
accompanied by various stimulatory effects that may compromise 
its application for microbicidal use. In addition, HIV-1 resistance to 
CV-N, by deletion of multiple high-mannose N-linked glycosylation 
sites, has been well described [129,132]. Although there are three 
glycan clusters on gp120, a single deglycosylation on the glycan trimer 
regardless of subtype and tropism can limit the anti-HIV activity of 
these carbohydrate binding lectins [128,132,133].

Peptides: Retrocyclins are circular 18-residue, tetracyclic 
peptides with three cysteine disulfide bonds [134]. RC-101 
(GICRCICGKGICRCICGR), a cationic retrocyclin exhibits activity 
against X4 and R5 strains of HIV-1 in vitro [135]. RC-101 prevents 
viral entry by blocking 6 helix bundle formation and binds to gp41 with 
high affinity. Mutations in gp41 have a greater effect on retrocyclin’s 
anti-HIV-1 binding activity than gp120 mutations. RC-101 has a low 
therapeutic index with potential for hemolytic activity or cytolytic 
activity at 100-fold above its antiviral activity. Retrocyclins were shown 
to protect primary T cells from X4 and R5 strains of HIV-1 in vitro; 
protect primary CD4+ cells against infection by clinical HIV-1 isolates 
from multiple clades. RC101 lacks inflammation potential and retains 
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anti-HIV activity in the presence of vaginal fluids. RC-101 formulated 
as a quick-dissolve film was found to be safe and retained antivirally 
property following repeated topical vaginal application in pigtailed 
macaques [136]. However, RC-101 is far less potent than NNRTIs 
requiring micromolar concentrations for preventing HIV-1 infection 
in vitro. 

RTI-based microbicides

Reverse transcriptase (RT) inhibitors (RTIs) are the most advanced 
compounds used as potential components of vaginal and rectal 
microbicides because they are very specific and potent and potentially 
have a long-term inhibitory effect [137]. Candidate microbicides 
from all three major categories of RT inhibitors are being explored: (i) 
2',3'-dideoxynucleoside analogs designated nucleoside RT inhibitors 
(NRTIs); (ii) acyclic nucleoside phosphonate analogs designated 
nucleotide RT inhibitors (NtRTIs), and (iii) non-nucleoside RT 
inhibitors (NNRTIs).

NtRTI-based microbicide: (Tenofovir/PMPA, [9-(R)-{2-
(phosphonomethoxy)propyl}adenine] or PMPA, is a nucleotide analog 
of deoxyadenosine monophosphate that inhibits HIV-1 RT [138]. 
Tenofovir (TFV), a widely prescribed ARV drug in combination with 
other ARV agents for the management of HIV-1 infection [139]. 
The oral lipophilic prodrug, tenofovir disoproxil fumarate (TDF) is 
hydrolyzed to TFV intracellularly and phosphorylated to the active 
metabolite, tenofovir diphosphate (TDP). Multiple nonclinical studies 
have demonstrated the in vitro and in vivo efficacy of TFV for preventing 
HIV transmission [140-144]. TFV gel has also been proven effective 
in preventing vaginal SHIV transmission in macaques [72]. TFV 1% 
gel has been found to be well tolerated in women and men [144-146]. 
Some systemic absorption of TFV was reported following 14-day 
administration of 1.0% vaginal microbicide gel [144,147]. Tenofovir 
was detected in the sera of 56% of tested women.

Tenofovir is the first vaginal microbicide shown in a clinical trial to 
possibly provide a safe and effective way to prevent sexual transmission 
of HIV. In a double-blind, randomized, placebo controlled clinical 
trial in women (CAPRISA 004), vaginal application of 1% TFV gel 
was shown to reduce HIV acquisition by an estimated 39% (P = 0.017) 
overall, and by 54% (P = 0.025) in women with high gel adherence 
(>80%) [148]. Several other safety and effectiveness studies of 1% 
TFV gel as an HIV prevention strategy are ongoing [http://www.avac.
org/ht/a/GetDocumentAction/i/3109]. Following the CAPRISA 004 
study which demonstrated that Tenofovir gel used before and after sex 
reduced HIV infection by 39%, there was high hope that the VOICE 
(Vaginal and Oral Interventions to Control the Epidemic) study of daily 
Tenofovir gel would show similar promising results. The VOICE study 
is designed to test whether antiretrovirals, either as tablets or as gels, are 
safe and effective in preventing sexual transmission of HIV involving 
5029 women from South Africa, Zimbabwe and Uganda. The Tenofovir 
tablet component of the VOICE study was discontinued after interim 
results showed that it was no better than placebo in preventing HIV 
in the study women [149]. Furthermore, VOICE study data revealed 
that the incidence rate of HIV infection in the women assigned to 
daily Tenofovir gel was 6.0% compared to 6.1% in women assigned to 
placebo gel [150]. Based on the unfavorable outcome, the Tenofovir 
gel component of the VOICE study was also discontinued while the 
Tenofovir/Emtricitabine (Truvada) tablet component is continuing 
to study completion [150]. Vaginal acquisition of HIV may require a 
stronger barrier to infection than that provided by oral dosing with a 
Tenofovir/Emtricitabine combination [151].

The major risks of daily TFV/TDF use include: (i) mitochondrial 
toxicity [152,153], (ii) loss of bone mineral density due to reduced 
phosphate absorption [154-156], (iii) renal injury due to tubular 
dysfunction [157,158], and (iv) development of secondary ARV 
resistance in treated persons [159-165]. Resistance mutation (K65R) 
selected by TDF confers a reduced susceptibility to TDF [160]. K65R 
is frequently associated with M184V mutation. Tenofovir (TDF) 
resistance occurs in the presence of K65R, the 69 insertion complex, or 
at least three thymidine analog mutations (TAMs) [159-165].

NRTIs-based microbicides: The nucleoside analogues bind to the 
active site of the RT enzyme and can be incorporated into the growing 
DNA chain. However, further elongation is not possible, as they lack the 
3’-OH group normally present in the substrate. This causes premature 
termination of the growing viral DNA strand.

Stampidine (5’-[4-bromophenyl methoxylaninylphosphate]-2’,3’-
didehydro-3’-deoxythymidine) is a novel aryl phosphate derivative of 
stavudine with a unique mechanism of action as an epigenetic modulator 
of HIV infection-associated gene expression [166,167]. Stampidine 
was rationally designed novel prodrug of stavudine (STV)/d4T that 
is being developed as a promising new microbicide candidate against 
ARV-resistant HIV [75]. NRTI form the backbone of contemporary 
combination ARV therapy regimens. The 5’-triphosphates of the NRTI 
family, which are generated intracellularly by the action of nucleoside 
and nucleotide kinases, are capable of competing with the natural 
deoxynucleoside triphosphates for binding to the RT primer:template 
complex and represent the biologically active form of NRTI responsible 
for their anti-HIV activity [168]. The rate-limiting step for the 
generation of the bioactive NRTI triphosphates is the conversion of the 
NRTI to their monophosphate derivatives. Stampidine was developed 
in an attempt to overcome the dependence of the NRTI stavudine 
on intracellular nucleoside kinase activation [169]. Stampidine is a 
much more potent anti-HIV agent than STV and was active against 
phenotypically and/or genotypically NRTI-resistant HIV with low 
nanomolar to subnanomolar IC50 values [170-174]. The superior anti-
HIV-1 activity of Stampidine was attributed to the rapid formation of 
its active metabolite Ala-STV-MP [169,175,176]. Cellular metabolic 
studies revealed that the p-Br group in the phenyl moiety of Stampidine 
contributes to its ability to undergo rapid hydrolysis yielding the key 
metabolite Ala-STV-MP in a thymidine kinase (TK)-independent 
fashion [169]. The potency of Stampidine against genotypically and 
phenotypically NRTI HIV-1 resistant isolates is attributed to its rapid 
kinetics of the generation of its active triphosphate metabolite yielding 
much higher inhibitor concentrations at the catalytic site sufficient to 
overcome the binding restrictions imposed by the NRTI resistance-
associated RT mutations. As a lipophilic aryl phosphate derivative of 
STV, Stampidine can enter target cells easier than STV, which could 
also contribute to higher inhibitor concentrations at the catalytic site of 
HIV RT. In addition, the presence of Ala side chain may promote the 
binding and/or incorporation of the triphosphate metabolite of these 
prodrugs. Drug metabolism studies conducted in multiple animal 
species have provided experimental evidence that Stampidine is rapidly 
biotransformed to two active metabolites, Ala-STV-MP and STV with 
favorable pharmacokinetics [175-178].

Stampidine is a promising microbicide candidate because of it 
exhibits (a) remarkable subnanomolar to low nanomolar in vitro ARV 
potency against genotypically and phenotypically NRTI-resistant 
primary clinical HIV isolates, NNRTI-resistant HIV-1 isolates, clinical 
non-B subtype HIV-1 isolates (subtypes A, C, F, and G) originating 
from South America, Asia, and sub-Saharan Africa with resistance to 
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stavudine, adefovir and tenofovir, as well as recombinant HIV clones 
containing common patterns of RT mutations responsible for NRTI 
resistance such as multiple TAMs plus M184V, multiple TAMs plus T69 
insertion, and Q151 complex [170-174] (b) favorable pharmacokinetics 
profile in mice, rats, dogs, and cats with 25 mg/kg or 50 mg/kg tolerable 
dose levels yielding micromolar plasma concentrations of Stampidine 
in mice, cats, and dogs, which are 1,000-fold higher than its in vitro 
IC50 value against HIV [175-180], (c) favorable, safety profile in mice, 
rats, dogs, and cats [177-181], (d) in vivo anti-retroviral activity in Hu-
PBL-SCID mice as well as FIV-infected domestic cats [179,180], and 
(e) lacks adverse effects on human sperm functions and vaginal mucosa 
following prolonged exposure [182-184]. In a placebo-controlled 
Phase I study involving 30 therapy-naïve adult HIV-infected patients, 
formulated GMP-grade oral Stampidine capsules did not cause dose-
limiting toxicity at single dose levels ranging from 5 to 25 mg/kg [185].

Additionally, Stampidine epigenetically modulates the host 
transcriptome in a unique manner which prevents HIV infection from 
distorting and disrupting key cellular transcriptional networks. As a 
new dual-function agent, Stampidine has the potential for preventing 
and treating HIV infection by leveraging the dependency of HIV 
on host HIV-dependency factors as well as the viral RT enzyme for 
infecting and replicating in human cells. Unlike available treatments 
for HIV that attempt to disrupt a specific step in the life-cycle of HIV, as 
a microbicide, Stampidine has the potential to completely abrogate all 
steps in the life cycle of HIV.

NNRTI-based microbicides: Non-nucleoside inhibitors of HIV-1 
reverse transcriptase (NNRTIs) are allosteric inhibitors that indirectly 
interfere with the catalytic mechanism of the enzyme. NNRTIs 
blocks reverse transcription in cells which virus has entered but not 
yet established productive infection. Some NNRTIs also possess 
virucidal properties in vitro. Rationally prepared formulations of 
“mechanism-based” broad-spectrum anti-HIV compounds, especially 
the membrane permeable, “tight-binding” NNRTIs have emerged as 
promising anti-HIV-1 microbicide candidates due to their documented 
ability (unlike NRTIs) to block mucosal HIV-1 infection without a need 
for further metabolic activation [67,70,71,75,186-194]. The rationale 
for the development of “tight-binding NNRTI class of compounds as 
microbicides is the fact that unlike nucleoside analog RT inhibitors 
(NRTIs) they do not require metabolic activation to elicit antiviral 
activity. Unlike NRTIs, NNRTIs can directly exert their antiviral action 
against cell-free and cell-associated HIV-1 within the vaginal cavity 
[188-191]. The key criteria for an NNRTI to be an optimal microbicide 
include: (1) Ability to rapidly cross membrane barriers, (2) Prolonged or 
irreversible inhibition of HIV-1 RT activity, (3) Rapid virucidal activity 
without metabolic activation, (4) High genetic barrier to resistance, (5) 
Potent activity against drug-resistant strains, (6) Sustained antiviral 
activity under acidic and alkaline conditions, (7) Long-acting antiviral 
activity following drug removal, (8) Lack of systemic absorption that 
might contribute drug resistance, (9) Lack of pro-inflammatory effects, 
and (10) Lack of adverse effects on normal vaginal microbiome. Four 
NNRTIs (i.e., UC-781, TMC120, MIV-150, HI-443) are currently being 
developed as candidate microbicides.

UC-781, (N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-me-
thyl-3-furancarbo-thioamide), is a tight binding thiocarboxanilide, 
originally developed as a crop protection agent. UC-781 has been 
shown to protect pretreated cells from subsequent infection with HIV-
1 in the absence of drug. In addition, UC-781 treatment of infected 
cells results in release of attenuated virus [190]. The compound may 
have direct virucidal activity [195]. Other groups have also failed to 

demonstrate direct virucidal activity for UC-781 [196]. UC-781 vaginal 
gel potently inhibits viral replication in indicator T cells when present 
during viral exposure [91]. UC-781 does not prevent binding of virus 
to DC-SIGN-positive cells (mannose binding C-type lectin receptors) 
and unlikely to prevent HIV-1 capture and endosomal internalization 
in vivo. UC781 has a low genetic barrier to resistance with rapid emer-
gence of one (Y181C) or two (V108I/K103T) most prevalent mutations 
in vivo [197]. This would suggest the failure of UC781 to protect against 
the tested NNRTI-resistant viruses. The instability of UC-781 in aque-
ous conditions as well as difficulties encountered combining UC-781 
with Tenofovir and in alternative formulations has led to discontinu-
ation of UC-781 development in favor of pursuing other microbicide 
candidates.

Dapivirine/TMC120 [4-[[4-[2,4,6-trimethylphenyl)amino]-2-
pyrimidinyl]-amino]-benzonitrile)], is a substituted diarylpyrimidine 
derivative currently in clinical development in multiple vaginal 
dosage forms including gels and rings for the prevention of HIV 
transmission to women [197-202]. Dapivirine is a potent inhibitor 
of HIV-1 replication in vitro and in vivo and exhibits potent antiviral 
activity against multiple clades of HIV as well as both wild-type virus 
and strains harboring various resistance-inducing mutations [203,204]. 
Dapivirine is a tightly binding lipophilic NNRTI that is active against 
cell-free and cell-associated HIV-1 [205]. Dapivirine vaginal gels and 
rings have been tested in phase 1 and phase 1/2 clinical safety trials 
[198-202]. Phase 1 and 2 studies indicate that twice daily administration 
of the gel for 42 days was safe and well-tolerated. A series of mutations 
has been observed among Dapivirine-resistant viruses (L100I, K101E, 
K103N, V108I, E138K/Q, V179M/E, Y181C, and/or F227Y) [197]. An 
amino acid change at position 138 is indicative of the development 
of cross-resistance between Dapivirine and both first and second 
generation inhibitors of the NNRTI family of drugs [197]. E138K 
confers resistance to Etravirine and the most recently approved NNRTI, 
Rilpivirine since Etravirine and Rilpivirine due to their structural and 
functional relationship to Dapivirine [206-209]. E138K was the most 
common mutation with Dapivirine alone and with Dapivirine plus 
Tenofovir [210]. Thus, suboptimal concentrations of Dapivirine and 
Dapivirine plus Tenofovir permit the emergence of more RT mutations. 
The development of Y181C under sub-optimal use of a Dapivirine-
containing microbicide is also a concern. 

MIV-150 [(1S;2S)-N-(cis-6-fluoro-2-hydroxy-3-propionyl-phenyl)
cyclopropyl]-N'-(5-cyanopyrid-2-yl)urea], a phenylethylthiazolylurea 
compound has been shown to inactivate free virus in vitro [196, 
197]. MIV-150 has a higher genetic barrier than UC781 requiring a 
combination of at least two or three RAMs (L100I, K103N, Y181C, 
and/or M230L) [2]. MIV-150 showed potent activity against SHIV in 
monkeys and prevented infection when dosed after SHIV inoculation 
and showed a good profile in pre-clinical safety and toxicology [71]. 
However, loss of antiretroviral activity of MIV-150 was apparent when 
higher viral challenge dose was used for macaque mucosal efficacy 
studies [71]. MIV-150 lacked identifiable toxicity in mice, rats, dogs, 
and monkeys in the dose range studied. Notably, viral isolates from 
subtypes B, C, and CRF02_AG are resistant to three NNRTIs currently 
under development as potential microbicides. Furthermore, low-level 
systemic absorption observed for the three most advanced RTI-based 
microbicide candidates (UC781, Dapivirine, and Tenofovir) could 
possibly result in the development of RTI-resistant genital reservoirs. 
Significant systemic absorption of RTI-based microbicides could 
lead to suboptimal drug pressure and could potentially promote the 
selective transmission of RTI-resistant viruses, contributing to an 
already increasing public health problem in developing countries. 
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These findings demonstrate the importance of pursuing alternative 
NNRTI compounds with superior activity against both NNRTI-
and NRTI-resistant isolates. Therefore, novel bifunctional inhibitors 
combining the functionalities of a chain-terminating NRTI and a tight 
binding NNRTI could bind very tightly and specifically to RT and 
could be effective in preventing HIV transmission.. Success and overall 
protection against HIV infection and/or spread may best be achieved 
through the combined effects of bifunctional inhibitors that exhibit 
different mechanisms of action.

HI-443 (N’-[2-(2-thiophene)ethyl]-N’-[2-(5-bromopyr idyl)] thiou-
rea, is a rationally designed thiophene thiourea NNRTI using a com-
puter model of the NNRTI binding pocket of RT and high resolution 
crystal structure information from 9 individual RT-NNRTI complexes 
[211-213]. HI-443 was identified through an integrated multidiscipli-
nary effort involving structure-based drug design, molecular docking 
studies of HIV-1−NNRTI complexes in the NNRTI binding pocket of 
RT, chemical synthesis, and extensive biological evaluation [70,187,214-
216]. HI-443 was designed based on changes in NNRTI binding pocket 
size, shape, and amino acid residues that result from clinically-observed 
NNRTI resistance mutations [70,187,213-215]. HI-443 is a first-in-class 
thiophene thiourea compound that tightly fits the NNI binding pocket 
of HIV RT and exhibits subnanomolar to low nanomolar activity against 
primary HIV isolates with multidrug resistance. HI-443 was active 
against clinical isolates (subtypes A, B, F, G) from diverse geographic 
areas at nanomolar to sub-nanomolar IC50 values [68,75,216,217]. HI-
443 exhibited nanomolar to low micromolar IC50 values against geno-
typically and/or phenotypically NRTI/NNRTI-resistant primary HIV-1 
isolates with 2–7 TAMs [68,75,217,218]. Hi-443 has been formulated in 
a self-emulsifying nonspermicidal gel formulation which offers rapid 
dispersion and enhanced solubilization of the active drug substance, 
lack of proinflammatory effects, and lack of systemic absorption [219]. 
HI-443 is capable of preventing vaginal transmission of a drug-resistant 
clinical HIV-1 isolate in the Hu-PBL-SCID mouse model [220]. HI-443 
lacked toxicity following repeated oral, intraperitoneal, intravenous, 
and intravaginal administration at doses in excess of those predicted 
to be clinically effective – the microbicide gel formulation causes no 
vaginal inflammation in rabbits or pigs [184,221].

As a nonspermicidal microbicide, HI-443 exhibits (i) Potent and 
broad-spectrum activity against multidrug-resistant clinical non-B 
subtype HIV-1 isolates, (ii) Ability to prevent vaginal transmission of 
clinical HIV-1 isolate in the Hu-PBL-SCID mouse model, (iii) Lack 
of adverse effects on fertility outcome following semen pretreatment 
and artificial insemination, (iv) Favorable toxicity profile after repeated 
oral, intraperitoneal or intravenous administration in mice and rats, 
(v) Favorable pharmacokinetics following oral, intraperitoneal, and 
intravenous dosing in mice, and (vi) Favorable safety profile after 
repeated intravaginal dosing via a gel formulation in rabbits and 
pigs. Finding a vaginal gel that protects women against HIV but still 
allows them to get pregnant has long been sought by AIDS researchers, 
because it can be used covertly by women without having to negotiate 
with their partners. The discovery of HI-443 as a non-spermicidal 
broad-spectrum anti-HIV agent represents a significant step forward 
in the development of a microbicide for curbing heterosexual HIV 
transmission. Based on extensive preclinical data and unique mode of 
action, HI-443 is a superior NNRTI microbicide candidate to prevent 
vaginal transmission of HIV-1 and post-exposure development of 
systemic HIV-1 infection. 

The combination of different ARV compounds in one microbicide 
could not only diminish the possibility of drug resistance selection 

but also increase the residual activity of these microbicides against 
preexisting drug-resistant HIV (either NRTI or NNRTI resistant) 
from an infected partner. A bifunctional inhibitor combining the 
functionalities of a chain-terminating NRTI and a tight binding NNRTI 
could bind very tightly and specifically to RT and could be effective 
in the treatment of AIDS. Success and overall protection against HIV 
infection and/or spread may best be achieved through the combined 
effects of bifunctional inhibitors that exhibit different mechanisms of 
action. 

RNA interference (RNAi)-based microbicides

RNA interference (RNAi) is a highly conserved gene silencing 
mechanism that uses small noncoding RNAs (typically 21-23-nucle-
otides) to guide the sequence-specific inhibition of gene expression 
[222-224]. By mimicking endogenous small regulatory RNAs, small 
interfering RNAs (siRNAs) can harness the cellular RNAi machinery 
for the targeted silencing of gene expression. Experimental introduc-
tion of siRNAs can harness the RNAi pathway to guide the sequence 
specific cleavage of target mRNA. siRNAs target HIV genes, the host 
receptors (CD4, CXCR4, CCR5), as well as host dependency factors 
(HDFs) required for HIV replication in cells [225-228]. Suppression 
of HIV infection via RNAi-mediated silencing has been tested in tis-
sue culture models, primary CD4+ T cells and monocyte-derived mac-
rophages, vaginal explants and humanized mouse models [229-236]. 
siRNA treatment silenced gene expression up to 7 days in CD4+ T cells 
and over three weeks in terminally differentiated monocyte-derived 
macrophages (MDMs). The most widely used systems for delivering 
siRNA are liposomal nanoparticle-based delivery systems.

The incorporation of siRNAs into a microbicide is mainly focused 
on the CCR5 co-receptor which is essential for HIV-1 infection through 
all routes of transmission. CCR5 co-receptor can be successfully 
targeted by RNAi [231,233,235]. The use of CCR5 siRNAs alone would 
not be an adequate strategy for effective HIV gene therapy as they will 
not protect against X4 or dual tropic strains of HIV-1. Additionally, the 
development of safe, easy to administer, and efficient delivery systems 
that achieve sustained target gene silencing is of substantial clinical 
importance. The failure of harnessing the RNAi technology can be 
attributed to several limitations: (i) development of therapeutically 
relevant delivery of siRNAs to the appropriate target cells in sufficient 
quantities to efficiently silence target gene expression, (ii) inability to 
deliver siRNAs to the cytoplasm of target cell types important in viral 
pathogenesis, (iii) reducing off-target and other undesired systemic 
effects, (iv) identification of potent and broad spectrum siRNAs that 
can target diverse viral strains, (v) and lack of in vivo characterization 
of the efficacy and safety of the siRNA mediated silencing technologies 
[237,238]. The clinical application of RNAi has been hindered by several 
challenges, particularly the potential for viral escape [239,240]. For 
improved long-range efficacy, an ideal combinatorial vector for HIV 
gene therapy should incorporate anti-HIV genes targeted to both viral 
and cellular targets to minimize the development of escape mutants. 
Such strategies are currently under development.

RNA-based aptamer microbicides

Aptamers are single-stranded synthetic oligonucleotides that are 
selected from random sequences and then expose them to the target 
bits of protein to identify the tight binding RNA sequences [241,242]. 
Repeated rounds of the process - known as in vitro selection or 
systematic evolution of ligands by exponential enrichment (SELEX) - 
can yield aptamers with improved affinities for their targets [243-245]. 
The ability of aptomers to fold into a variety of complex, sequence-
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specific tertiary conformations means enables them to bind a wide 
range of targets and rival antibodies in their potential diversity. A 
neutralizing aptamer against the HIV-1 Env gp120 [246], is currently 
being developed for use as a potential microbicide [247]. While RNA-
based aptamers are capable of neutralizing a broad spectrum of clinical 
HIV-1 isolates in cell culture, they are highly susceptible to different 
nucleases in the vaginal/cervical or rectal milieus that are able to 
rapidly degrade 2’-F-modified RNA. Presence of Zn (2+) cations has 
been shown to have some protective activity from nucleases [247]. The 
use of aptameric modulators in cell culture appears straightforward, 
however, their in vivo applicability is currently limited by their 
instability, bioavailability, and transmembrane delivery, at least when 
targeting intracellular proteins.

Aptamer-siRNA-based chimeric microbicides

Although siRNAs hold promise as a new weapon for blocking 
mucosal HIV transmission, efficient, targeted, systemic or mucosal 
delivery of siRNAs in vivo remains a major challenge for clinical 
translation. Consequently, the ability of aptamers to target specific cell 
surface proteins are being used to deliver siRNAs to target a distinct 
cell type, to minimize off-target effects and unwanted side effects. Cell 
type-specific aptamers are being combined with siRNAs to achieve cell-
specific delivery of the siRNAs for selective target mRNA knockdown 
[248]. Such chimeric RNAs is an alternative for in vivo gene knockdown 
[249]. Aptamer-siRNA chimeras efficiently transfect and knock down 
gene expression in cells bearing the surface receptor recognized by 
the aptamer. Fusion of an anti-HIV tat/rev siRNA to an aptamer 
directed to the surface gp120 protein on HIV-infected cells has led to 
cell type-specific delivery of the siRNA [250]. The antiviral activity of 
aptamer was enhanced by aptamer-mediated delivery of an anti–HIV-
1–delivered siRNA. Chimeric-siRNAs containing an aptamer that 
recognizes HIV-gp120 inhibits HIV replication in already infected cells 
in vitro and in vivo [249-253]. Human CD4 specific chimeric siRNAs 
are being engineered to prevent HIV transmission [251-253]. CD4-
siRNA chimeras are thought to inhibit HIV infection in 2 ways: by 
blocking viral entry via binding to CD4 and by RNAi knockdown of 
viral genes (gag and vif), host receptors (CCR5), or other host genes 
required for viral replication. Such polyfunctional molecules inhibit 
HIV infection in primary CD4+ T cells and macrophages, vaginal 
explants and humanized mice. siRNAs targeting HIV could be delivered 
specifically to HIV infected cells in culture and in humanized mice 
using an aptamer-specific for the HIV-1 Env gp160. However, since 
each aptamer can only deliver a single siRNA molecule, a major limiting 
step for this technology is the accumulation of sufficient siRNAs in the 
cytoplasm of the target cells to effectively inhibit gene expression. To 
overcome this obstacle, lipid nanoparticles (LNPs) encapsulating ample 
(~4,000) siRNA molecules/particle conjugated to CD4 aptamer are 
being explored [254]. 

Thus far, most of the anti-HIV gene therapy strategies revolve around 
targeting the viral genome with a focus on inhibiting HIV replication. 
Since HIV is continuously evolving, even targeting multiple viral 
regions cannot safe-guard against escape mutants. Despite substantial 
progress, no aptamer-based siRNA delivery approach has moved to the 
clinic. Until now, RNA-based microbicide combinatorial approaches 
are being tested only in humanized mouse models that support HIV-
1 replication. However, before aptamer and aptamer-siRNA chimeras 
can be a practical way to prevent HIV-1 transmission, extensive tests 
including biodistribution, pharmacokinetics, dose-response, effects 
on drug-resistant and latent viral infections and potential toxicity due 
to off-target sites is a prerequisite. Receptor (viz, CCR5) expression 

can be down regulated by specific siRNA treatment or the gene can 
be disrupted by nucleases targeting the receptor gene. However, these 
strategies will not protect against CXCR4 tropic HIV infection and will 
not be a successful treatment strategy in individuals with high viral 
loads of CXCR4 tropic or dual tropic viruses. These finding encourage 
the development of a “library” of targets and drugs that can be further 
tailored toward specific steps in the life cycle of HIV-1.

Coitally-dependent Delivery Systems
Gel-based anogenital microbicides

A major goal in HIV prevention strategies is to simultaneously 
and independently target HIV-1 virions and HIV-1-infected cells but 
protect uninfected target cells in the mucosal tissues of the anogenital 
tract. Yet, the development of a safe and effective anogenital microbicide 
is still in its early stages. A major concern for topical delivery is the 
retention time of the formulation. The effectiveness of a microbicide is 
dependent on the bioadhesion of the formulation and the bioavailability 
of the drug. Clinical trials of vaginal microbicides have generally used 
5 mL of gel or less, which is considered adequate to provide vaginal 
protection, the rectum requires at least 3-fold greater volume to achieve 
the same degree of coverage as in the vagina [255,256]. A clinical trial 
suggested that up to 35 mL of a gel applied intrarectally before RAI 
would be acceptable to the majority of men [257]. Suppositories are 
an alternate mode of delivery of a microbicidal agent intrarectally 
[258,259]. Rectally administered microbicides have the potential to 
reach local nodes through lymphatic drainage [260]. The interior iliac 
lymph nodes are known to be a site of early virus replication and have 
common drainage of the female genital tract and rectum [142,261]. 
In order to achieve this, sufficient levels of the drug must remain at 
the target mucosal sites and draining lymph nodes to block HIV-1 
infection and viral dissemination by migratory cells [262]. Therefore, 
prior to performing microbicide efficacy studies in humans, it is critical 
to determine whether levels of microbicide that can be recovered after 
vaginal or rectal dosing are substantially in excess of the concentrations 
needed to block viral replication in the absence and presence of semen. 
In addition, elucidating antiretroviral levels that can be recovered as a 
function of time post application is equally important for predicting the 
timing of pre-and post-coital dosing schedules. 

Vaginal specific microbicides: Several dosage forms have been 
developed as vaginal delivery systems, such as gels, creams, films, foams, 
suspensions, suppositories, and tablets and all have short residence 
time [263]. Bioadhesive polymers such as polycarbophil, sodium 
carboxymethyl cellulose, polyacrylic acid polymer Carbopol® 974P are 
incorporated to control the rate of drug release from, and extend the 
residence time of vaginal formulations [264]. A significant decrease 
in drug release can be expected from gel formulations as the polymer 
concentration is increased. In addition, effective vaginal microbicide 
drug delivery can be limited due to the low pH and presence of 
proteolytic enzymes in the female genital tract [146,265]. Further, the 
active and inactive ingredients in microbicidal formulations should 
not irritate or disrupt the mucosal epithelium as evidenced by the early 
clinical trials of N-9, Carraguard, Savvy and cellulose sulfate [266,267]. 
In the past 15 years, 11 clinical trials with six candidate microbicides 
has led to negative or inconclusive findings despite the fact that their 
development path followed the guidelines and recommendations 
proposed for the nonclinical development of microbicide candidates 
[268]. The six candidate microbicides tested previously include N-9, 
SAVVY® (C31G), cellulose sulfate (CS), Carraguard® (PC-515), PRO 
2000, and BufferGel® [15-19]. None of these proven antiretroviral 
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products had a protective effect against HIV in a clinical setting, with two 
(N-9 and CS) paradoxically showing a trend towards increased risk of 
HIV infection. These clinical trials revealed three essential components 
of a desired microbicide: undesirable local effects on epithelial integrity, 
inflammatory response and immune functions [269-271].

More recently, following the CAPRISA 004 study which 
demonstrated that pre-and post-coital use of 1% Tenofovir loaded 
poly(acrylic acid) (Carbopol®) and HEC polymer-based gel reduced 
HIV infection by 39% [148], there was high hope that the confirmatory 
VOICE (Vaginal and Oral Interventions to Control the Epidemic) study 
of daily Tenofovir gel would show similar promising results. The VOICE 
study was designed to test whether antiretrovirals, either as tablets or as 
gels, would be safe and effective in preventing sexual transmission of 
HIV involving 5029 women from South Africa, Zimbabwe and Uganda 
[149]. The VOICE study data revealed that the incidence of HIV 
infection in women assigned to daily Tenofovir gel was 6.0%, virtually 
identical to a rate of 6.1% in women assigned to a placebo gel [150]. 
Based on this disappointing outcome, the Tenofovir gel component of 
the VOICE study has been discontinued [150]. 

Rectal specific microbicides: Unprotected RAI has the highest 
per act risk of HIV acquisition with an unadjusted probability of 0.08 
per contact for RAI [7] as compared to 0.001 per coital act for vaginal 
intercourse [8]. Furthermore, there is increasing epidemiological 
evidence that women as well as men in both the developed [9-14] and 
developing world [12-14] practice RAI. Clearly, rectal microbicides 
should be seen as an important HIV prevention technology for 
all individuals who practice RAI. The differences between the 
microenvironments of the rectal and vaginal mucosal tissue require 
that different formulations be used for the two routes [272]. The earlier 
failure of rectal microbicide candidates can be attributed to the use 
of vaginally formulated microbicide gels that failed in clinical vaginal 
efficacy and safety studies [271-274]. Water-based gel formulations 
of UC781 (0.1% and 1.0%) have been assessed for pharmacokinetic 
and preclinical safety screening after repeated vaginal and rectal 
applications in the pig-tailed macaque models [274]. A reduced safety 
profile for the 1.0% UC781 gel was evident when applied rectally 
suggesting the differential sensitivities of the vagina and rectum to 
topical microbicides. 

Unlike the cervicovaginal tract which is composed of a pluristratified 
squamous epithelium, the rectal mucosa has a single-cell columnar 
epithelium which is extremely receptive to injury and highly vulnerable 
to HIV-1 infection [275,276]. It is densely populated with activated 
memory T-cells expressing both CD4 and co-receptors CCR5 and 
CXCR4, DCs and macrophages capable of transferring infectious virus 
to the underlying lymphoid tissue, the major site of viral replication and 
CD4+ T-cell depletion during acute infection [277-279]. Consequently, 
rectal transmission of HIV-1 is thought to be up to 200-times more likely 
per sexual act than vaginal transmission [280]. These differences may 
also increase rectal compared to vaginal susceptibility to microbicide-
induced toxicity, potentially favoring HIV infection as seen with other 
STIs [281,282]. Therefore, knowledge of HIV coreceptor tropism at 
cervicovaginal and rectal sites is essential to better understand the 
molecular biology of HIV transmission from vaginal/rectal secretions 
and for developing effective anogenital microbicides. Coreceptor 
tropism in ectocervical tissues, rectal secretions, rectal biopsies and 
feces is being investigated to examine differences in HIV envelope gene 
(env), HIV receptors/coreceptors and drug-resistance profiles between 
plasma, vaginal and rectal secretions.

Microbicidal agents incorporated into gels and suppositories that 

could be applied to the rectal mucosa before intercourse have been 
proposed as a prevention tool [259,283]. The rectum is 10 cm in length 
and has surface area 300 cm2. Surface area without villi gives it a 
relatively small surface area for drug absorption [284]. Use of rectal-
specific microbicides would require at least 3-fold greater volume 
to achieve the same degree of coverage as in the vagina [285,286]. 
Exogenously dosed autologous lymphocytes and HIV-sized particles 
have been found to migrate to similar locations and associate with the 
colonic tissue and within the rectosigmoid colon for 24 hrs [287]. Most 
rectal absorption of drugs is achieved by a simple diffusion process 
through the lipid membrane. Hydroxypropyl-beta-cyclodextrin is 
one of the preferred solubility enhancer for the development of liquid 
suppositories for poorly water-soluble drugs [288]. More recently, 
there have been attempts to develop microbicides whose properties 
are better suited for use in the rectal compartment (i.e., iso-osmolar, 
self-emulsifying systems). However, the overall effectiveness of a rectal 
microbicide will depend on efficacy, consistency of use and acceptability 
[289].

Intrarectal SHIV challenge of macaques pretreated with rectal 
microbicide gels is used a model to study their possible effects for 
preventing HIV transmission by anal intercourse. Since CCR5-using 
viruses are frequently associated with sexual transmission of HIV in 
humans [290,291], a pathogenic CCR5-specific chimeric envelope 
SHIV, is more appropriate for testing anogenital transmission in the 
macaque model [292,293]. In one study, a differential effectiveness of 
MIV-150-carrageenan gel was observed when tested both vaginally and 
rectally for protection from either vaginal or rectal challenge with RT-
SHIV (SIVmac239) transmission in macaques [71,294]. MIV-150 gel 
provided either partial or complete protection against vaginal or rectal 
challenge, respectively, with RT-SHIV when applied at 30 min or 4 h. 
However, loss of antiretroviral activity of MIV-150 gel was apparent 
when higher viral challenge dose was used for macaque rectal efficacy 
studies [294]. Moreover, a single dose of either 1% or 2% recombinant 
CV-N gel has been shown to protect male macaques that were rectally 
challenged with a chimeric SIV/HIV-1 virus (SHIV89.6P) [125]. Rectal 
application of Tenofovir prior to virus exposure was shown to efficiently 
protect against subsequent intrarectal challenge with SIVmac251/32H, 
a virus that result in high cell-associated and plasma viral RNA 
loads shortly after a single application to naïve macaques [142]. The 
concentration of Tenofovir detectable in the plasma 15 min after rectal 
application was positively associated with protection. However, animals 
that received Tenofovir gel 2 h after virus exposure showed partial 
protection. One of the rate limiting steps to 100% protective efficacy 
can be the local uptake of Tenofovir [295].

Vaginal gel vs. oral tablet interventions: Pre-exposure prophylaxis 
(PrEP) is an evolving new approach to prevention of sexually 
transmitted AIDS that employs ARV agents prior to potential HIV-1 
exposure in an attempt to reduce the likelihood of HIV infection post 
exposure [296]. Current PrEP strategies in clinical development rely 
on two clinically approved nucleotide (NtRTI)/nucleoside (NRTI) RT 
inhibitors TDF and Truvada (tenofovir plus emtricitabine, TDF/FTC) 
[297,298]. While promising clinical results were recently reported 
regarding the effectiveness of PrEP as an HIV-1 prevention strategy for 
MSM by the iPrEx Study Team [299], effective PrEP for women remains 
an unmet challenge, as emphasized by recent clinical failures of TFV 
(VOICE) and Truvada (FEM-PrEP) based PrEP strategies to reduce 
HIV infections in women [300-302]. 

In the iPrEX (Preexposure prophylaxis initiative) trial, a daily 
dosage of two ARV drugs given to HIV-seronegative MSM was shown 
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to reduce the HIV incidence by 44% compared to the placebo-treated 
control group [299]. Conversely, the FEM-PrEP, a large PrEP Phase III 
clinical trial of TDF/FTC (Truvada) using the same once daily drug 
regime failed to show any protection from HIV transmission in at-
risk HIV-negative women resulting in the closure of the study [300-
302]. However, preliminary data from two recent trials, the Center for 
Disease Control (CDC) TDF2 study (daily oral TDF/FTC) and the 
University of Washington Partners PrEP study (daily oral TDF or TDF/
FTC), showed reduced risk for HIV infection among heterosexuals on 
PrEP [303,304]. Notably, TFV, one of the PrEP arms of VOICE study, 
an NIH funded HIV prevention trial of the Microbicide Trials Network 
involving more than 5,000 women in Africa and evaluating oral 
PrEP agents TDF and Truvada (TDF/FTC), a vaginal microbicide gel 
formulation of TFV, and combinations thereof, has been discontinued 
based on the interim review of the data by the NIAID Prevention Trials 
DSMB demonstrating that oral TDF did not reduce HIV infection in 
participants receiving it [300,301] 

Antiretroviral therapies are known to have significant side 
effects, including mitochondrial cytotoxicity, loss of bone density, 
lipodystrophies, aggravation of renal impairments and increased risk 
for liver disease and diabetes, many of which increase with the length 
of time spent on ARVs [154,155,158,162,305,306]. Since it is unclear 
how long individuals need to stay on PrEP, these side effects could 
reduce the high levels of compliance necessary to maintain the efficacy 
of these approaches [154,155,158,162]. Incomplete adherence to these 
drugs could promote increased viral evolution and the selection of 
drug resistant viral strains [160-162]. Furthermore, long-term use 
is limited by emergence of resistant HIV strains while on therapy as 
well as the alarmingly increasing frequency of de novo resistant HIV 
strains in therapy-naïve heterosexual persons [161,162]. In particular, 
emergence of resistance (K65R mutation) diminishes TDF binding 
and incorporation into viral DNA, causing significant drug resistance 
[161,164,165]. Tenofovir resistance occurs in the presence of K65R, 
the 69 insertion complex, or at least three TAMs. These findings 
demonstrate the urgent need for developing innovative and effective 
antiviral agents that have minimal side effects and provide durable 
protection against drug-resistant HIV transmission. The identification 
of new ARV agents with potent activity against multi-drug resistant 
HIV remains an unmet and urgent challenge in the field of PrEP. 

The differential clinical effectiveness of gel-based microbicide 
clinical trials implies that both coitally dependent and coitally 
independent strategies are required to increase user acceptability and 
clinical effectiveness of microbicides.

Antiretroviral nano-microbicides

An alternative approach for creating multivalency is to use a 
scaffold, such as polymers, lipids or nanomaterials, on which multiple 
copies of a ligand can be presented, thereby generating a multivalent 
ligand [307]. Nanocarriers include liposomes, dendrimers, polymeric 
nanoparticles (NPs), solid lipid NPs, and metal NPs as well as 
nanospheres, nanocapsules, or NPs based upon the dispersion of drug 
within the nanocarrier. Nanocarriers especially, NPs (solid colloidal 
particles of approximately 10-1000 nm) are being evaluated for mucosal 
delivery of ARV agents to prevent HIV transmission [308-313]. The 
critical characteristics of a NP related to its function include size, surface 
charge, encapsulation efficiency, release properties, and clearance. Two 
types of NP-based formulations are being explored: those where the 
therapeutic molecules are the NPs and those with the therapeutic 
molecules are directly coupled (functionalized, entrapped or coated to 
a carrier). Nanoparticles can be superior microbicide delivery vehicles 

due to their ability to encapsulate and release active therapeutic 
compounds in the vaginal or rectal tract. NPs offer more stability 
to the encapsulated drug in biological fluids and against enzymatic 
metabolism as compared to other colloidal systems, such as liposomes 
or micelles Encapsulation of anti-HIV agents in NPs results in higher 
concentration of the drug in the cells. Development of NPs formulated 
from polylactide homopolymers (PLA) and poly (lactide-co-glycolide) 
(PLGA) offers an advantage for the delivery of both hydrophilic and 
hydrophobic drugs in a sustained manner. PLGA and PLA are the FDA 
approved polymers for human use. Additionally, NPs can be engineered 
with surface antibodies, aptamers or siRNAs to develop combination 
microbicides targeting both cell-free virus as well as specific mucosal 
cell types to prevent cell-associated HIV-1 transmission [309,314].

Surface functionalization of nanocarrier with polyethylene glycol 
(PEG) is used to avoid reticuloendothelial system uptake [315,316]. 
Although PEG modification substantially increases the diffusion rates 
of otherwise nearly immobile NPs in cervicovaginal mucus, it can 
reduce NP uptake by mucosal cells. Mucoadhesive NPs can reduce the 
clearance of ARV agents and ensure their prolonged retention, resulting 
in improved absorption of poorly absorbable drugs. Polymers such as 
poloxamers, pectins, chitosans, polyacrylates, and their derivatives, 
are being used to impart vaginal or rectal mucoadhesive properties to 
the NPs by surface coating [317-319]. However, the residence time of 
mucoadhesive NPs in the cervicovagina and rectum can be affected 
by mucus turnover rate, mucosal site, physiologic conditions, and the 
presence of irritants. The NPs with neutral surfaces are transported 
faster through human mucus compared with unmodified NPs. PLGA 
nanoparticles encapsulated with PSC-RANTES revealed a four-fold 
greater uptake in the vitro human ectocervical tissue [320]. However, 
as a potential microbcide delivery system, antiretroviral NPs must 
be nontoxic, nonimmunogenic, display favorable pharmacokinetics 
and selective in drug targeting to specific tissue sites and while not 
activating the complement cascade.

Gold and silver nanoparticles

Both gold (Au) and silver (Ag) NPs have received considerable 
attention as potential microbicides due to their activity against a wide 
range of HIV-1 strains in vitro, including laboratory strains, clinical 
isolates, M and T tropic strains, and resistant strains [321-323]. Au NPs 
serve as an efficient multivalent scaffold that significantly enhances 
the apparent affinity of ligands [324]. Small molecule-coated Au NPs 
are effective inhibitors for HIV fusion [322,325]. Multivalent Env-
targeting gold (Au)-based NPs (AuNPs) exhibit direct virucidal activity 
specific for HIV-1 [325]. Peptide triazole AuNPs (dual receptor site 
gp120 antagonists) display in vitro antiviral activity against a broad 
range of HIV-1 subtypes [325]. TAK-778, a CCR5 inhibitor-derived 
SDC-1721 gold NPs effectively inhibited HIV-1 fusion to human T 
lymphocytes, while free SDC-1721 had no inhibitory activity [321]. 
Galactosyland glucosyl-functionalized Au NPs exhibit 300 times better 
binding to gp120 [322]. Carbohydrate ligands conjugated to Au NPs 
exhibit affinities up to five orders of magnitude higher than those of the 
corresponding monomeric ligands with lectins [324]. 

Silver NPs (AgNPs) act as viral entry inhibitors by binding to gp120 
and thus preventing CD4-mediated viral membrane fusion to host cells 
and subsequent infectivity [326,327]. They are also found to inhibit 
post-entry stages of HIV-1, indicating that AgNPs act at multiple stages 
of the HIV life cycle. Polyvinylpyrrolidone (PVP) AgNPs mixed in a 
topical gel rapidly inhibit the transmission of infection when applied 
to the human cervical tissue in a model for explants, at a non-toxic 
range [323]. Consequently, combination of AgNPs with neutralizing 
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antibodies to viral envelope glycoprotein trimers exhibited an additive 
effect, increasing the inhibitory effect of AgNPs and neutralizing 
antibodies against cell-associated HIV-1 transmission/infection [328].

Although AgNPs and AuNPs are colloidally stable, their stability 
which is highly dependent on parameters such as concentration of 
the colloid, pH, total ionic strength or susceptibility to proteases in 
the genital tract need to be optimized for their usefulness at sites of 
microbicidal intervention. The in vivo safety and efficacy of gold and 
silver NPs remains to be demonstrated.

Polyanionic dendrimer

Dendrimers are “nanoscale” macromolecules characterized by 
highly-branched, well-defined, three-dimensional structures (5-20 
nm) that provide a high degree of surface functionality and versatility 
is the active ingredient of a topical microbicide [329]. Dendrimers 
cannot only act as carriers of ARV agents, but can also themselves act 
as ARVs. Dendrimers with inherent ARV activity can be synthesized 
by incorporating certain functional groups on their surface that can 
interfere with the binding of the virus to the cell. SPL7013, the active 
ingredient in VivaGel (3% w/w SPL7013 in Carbopol®-based aqueous 
gel) is a fourth-generation polylysine dendrimer and contains a 
specifically designed polyanionic surface. SPL7013 is comprised of a 
divalent benzylhydrylamine core, four generations of L-lysine branches 
radiating from the core, with the outermost branches capped with 32 
naphthalene disulfonic acid (DNAA) surface groups which impart 
hydrophobicity and a high anionic charge to the dendrimer surface 
[330]. Productive HIV entry is dependent on gp120 binding to CD4 and 
chemokine receptors. This highly charged polyanionic structure allows 
SPL7013 to attach to targets on viruses, blocking viral attachment and/
or adsorption to cells thereby preventing infection. SPL7013 is thought 
to bind gp120 proteins on the surface of the virus, through which the 
virus normally attaches to CD4 receptors on human cells.

SPL7013 [3% (w/w)] has been formulated in a mucoadhesive 
Carbopol®-based aqueous gel (VivaGel®) for use as a topical vaginal 
microbicide [329-331]. In a macaque model, SPL7013 Gel was protective 
against vaginal challenge with a CXCR4 using SHIV (SHIV89.6P) in 
a dose-related manner and inhibited replication of the CCR5 using 
SHIV162P3 strain in macaque and human PBMCs [332,333]. Phase I 
safety studies of SPL7013 gel as a candidate vaginal microbicide has 
been evaluated in populations with different characteristics [334-337]. 
The HIV-1 inhibitory levels of SPL7013 gel in the female genital tract 
were retained over a 24 h period. An expanded Phase I study assessed 
the safety and tolerability of VivaGel® versus placebo gel in healthy 
women. Twice daily application for 14 days revealed genitourinary 
adverse events and colposcopic findings consistent with mild epithelial 
irritation and inflammation among women in the VivaGel arm [336]. 
A second Phase I study assessed the safety, adherence, acceptability, 
and effect on vaginal microflora of 3% SPL7013 Gel (VivaGel) and two 
placebo gels applied twice daily for 14 consecutive days [337]. Although, 
VivaGel was generally well tolerated, Exposure to VivaGel and VivaGel 
placebo resulted in minor shifts in the vaginal microflora with a higher 
incidence of low-grade related genital adverse events compared to the 
HEC placebo gel.

The ARV activity of sulfated oligosaccharides is very low [338]. 
However, sulfated oligosaccharides when attached to a dendrimer 
show high ARV activity due to cluster effects [339]. Anionic polymers 
and dendrimers through ionic interactions with the V3 loop of gp120 
interfere with viral-host cell interactions [331,339,340]. SPL7013 is 
believed to prevent the attachment of HIV to human T-cells by binding 

gp-120. SPL7013 exhibits virucidal against HIV-1 strains that utilize the 
CXCR4 coreceptor but not viruses that solely use CCR5. SPL7013 has 
HIV-1 virucidal activity against X4 and R5X4 but not R5 HIV-1 strains. 
Also, the mode of action against X4 and R5X4 strains appears to differ 
from R5 strains of HIV-1 [341]. Nevertheless, in the absence of potent 
R5 virucidal activity, the ability of a microbicide to colocalize with HIV-
1 at target cells in the lower epithelial layers and submucosa becomes 
more critical in the context of preventing the sexual transmission of 
HIV-1.

Liposomes

Liposomes consist of amphiphilic lipid molecules that self-
assemble to form vesicles, encapsulating a nanoscale aqueous payload 
within a lipid bilayer. Liposomes can range from approximately 50 nm 
to μm in diameter, although diameters 100-200 nm are often desirable 
for drug delivery applications [342,343]. Conventional, passive or 
active targeted liposomes have been used to enhance the half-life and 
solubility of drugs and to decrease their toxicity. Liposomes can bind to 
the HIV-1 virus [344] and modulate HIV infectivity [345]. Liposomes 
have the ability to deliver drugs into cells or inside individual cellular 
compartments. The lipid composition of liposomal membranes can 
affect the rate and extent of HIV-1 fusion [346], and the infectivity of 
HIV-1 in cell culture [347]. Conventional or unmodified liposomes 
composed of phospholipids undergo rapid disintegration and only 
a fraction of the original formulation reaches the genital tissue and 
allows for intracellular uptake of the drug by direct binding to cell 
surface proteins. The physicochemical properties of liposomes, such 
as net surface charge, hydrophobicity, size, fluidity, and packing of the 
lipid bilayers, influence their stability and the type of proteins that bind 
to them [348,349]. Surface modifications either with glycolipids or 
hydrophilic polymers, such as polyethylene glycol (PEG) substantially 
prolong their half-life in vivo [350-352]. Effective liposomal 
formulations could be introduced intravaginally/intrarectally prior 
to coitus. A nonphospholipid liposome carrier (Novasomes 7474) 
provided a non-specific but robust protection against vaginal challenge 
in macaques with a CCR5-tropic SHIV (162P3) when compared with a 
synthetic chemokine (-2 RANTES), formulated Novasomes 7474 [353]. 
In addition, a liposomal gel loaded with NNRTI MC1220 was shown to 
provide partial protection against vaginal challenge of macaques with 
RT-SHIV [354].

Polymeric micelles composed of block copolymers have been 
utilized for improving aqueous solubility, membrane permeability, 
and site-specific delivery of several drug moieties. However, current 
limitations for mucosal delivery incude: (i) physico-chemical and 
biological stability, (ii) limited hydrophilic drug-loading capacity due 
to the small volume of the core (approximately 15 μL), rapid clearance 
rate, and (iii) slow cell penetration precludes their use for sustained drug 
delivery applications [355]. In addition, the complement cascade can be 
activated by both negatively charged and positively charged liposomes 
in man: negatively charged liposomes activate the complement system 
via the classical pathway, while positively charged liposomes activate it 
via the alternative pathway [356-359]. 

Nano (micro)-emulsions

Lipid-based systems are a promising choice for the delivery 
of hydrophobic molecules. These systems could be lipid solution, 
emulsions, microemulsions, self-emulsifying drug delivery systems 
(SEDDS), self-microemulsifying drug delivery systems (SMEDDS), or 
micellar systems. They help improve the bioavailability of hydrophobic 
drugs through several mechanisms, e.g., facilitation of in vivo dispersion 
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through the added surfactant, lipolysis of constituent lipids, increased 
lymphatic transport, etc. Micellar and microemulsion systems, being 
the most dispersed of all, appear the most promising.

Microemulsions are thermodynamically stable, isotropically clear 
dispersions of two immiscible liquids, such as oil and water, stabilized 
by an interfacial film of surfactant molecules [360]. The surfactant 
may be pure, a mixture, or combined with other additives. The role 
of surfactant is stabilization of the microemulsion, for instance, by 
decreasing the interfacial tension. The microemulsion has oil-in-water 
(o/w), water-in-oil (w/o), or a bicontinuous structure. Water-in-oil 
(W/O) microemulsions have been widely utilized for the solubilization 
and increased bioavailability of bioactive molecules. Polymer-based 
gelmicroemulsions are suitable as carriers for both water-soluble and 
lipo-soluble drugs [361-366]. Oil-soluble drugs can be formulated in 
o/w microemulsions, whereas, water-soluble drugs are better suited 
for w/o systems. If the microemulsion has a bicontinuous structure, 
the composition is suitable as carrier for both water-soluble and oil-
soluble drugs. The droplet size is typically in the range of 1–100 
nm. Microemulsions are superior to simple micellar solutions in 
terms of solubilization potential, and their thermodynamic stability 
offers advantages over unstable dispersions, such as emulsions and 
suspensions, and has a long shelf-life [367]. Drug delivery advantages 
offered by microemulsions include improved drug solubilization 
and protection against enzymatic hydrolysis, as well as the potential 
for enhanced absorption afforded by surfactant-induced membrane 
fluidity and thus permeability changes.

Microemulsions have great potential as intravaginal/rectal drug 
delivery vehicles for lipophilic microbicides because of their high drug 
solubilization capacity, increased absorption, and improved clinical 
potency [368]. A novel, lipophilic, submicron (30-80 nm)-particle size 
gel-microemulsion, GM-144, prepared from pharmaceutical excipients 
commonly used in topical, oral, and injectable medications, was found 
to exhibit potent spermicidal activity, although these excipients by 
themselves exhibit little or no spermicidal activity in human semen 
[369]. 

The use of microemulsions for intravaginal or intrarectal 
administration imposes rigorous demands on the nontoxicity of the 
formulation and its bioavailability. Two antiretroviral spermicides, 
WHI-05 [5-bromo-6-methoxy-5,6-dihydro-3’-azidothymidine-5’-(p-
methoxyphenyl)-methoxyalaninyl phosphate] and WHI-07 [5-bromo-
6-methoxy-5,6-dihydro-3’-azidothymidine-5’-(p-bromophenyl)-
methoxyalaninyl phosphate] formulated via gel microemulsion have 
undergone extensive preclinical testing for intravaginal delivery as 
dual-function microbicides [370-376]. 

In animal toxicity studies performed in mice, rabbits, cats, and/
or pigs, intravaginal administration of gel microemulsion with or 
without 2.0% WHI-05 or WHI-07 was not associated with any mucosal, 
systemic, developmental, and/or reproductive toxicity [74, 221,377-
383]. Topical application of WHI-07 as a single agent and in combination 
via a nontoxic gel microemulsion was shown to block vaginal as well 
as rectal transmission of feline AIDS (FAIDS) by chronically FIV-
infected feline T cells in the natural host model [375]. Polymer-based 
antiretroviral WHI-05 and WHI-07 gel-microemulsions offers several 
benefits for vaginal delivery, including increased solubility, protection 
from enzymatic hydrolysis, increased bioavailability for prolonged 
contraceptive and antiretroviral effects, as well as decreased toxicity. 

SMEDDS (self-microemulsifying drug delivery systems) are 
isotropic mixtures of oil, surfactant, cosurfactant (or solubilizer), and 

drug. The basic principle of this system is its ability to form fine oil-
in-water (O/W) microemulsions. A novel polymeric nonspermicidal 
SMEDDS (viz Conceival) has been developed for formulating lipophilic 
ARV agents for mucosal delivery [219]. Conceival greatly enhanced the 
solubility of poorly water-soluble anti-HIV microbicide candidates. In 
the rabbit model, Conceival lacked mucosal toxicity following repeated 
intravaginal application and did not affect in vivo fertility and birth 
outcome when administered at the time of artificial insemination. 
Conceival was found to be a clinically useful, safe noncontraceptive 
vaginal vehicle for formulating lipophilic drugs as prophylactic 
microbicides [184].

Coitally-Independent Delivery Systems
Intravaginal rings (IVRs)

Long-acting ARV releasing intravaginal rings (IVRs) are being 
developed as coitally independent strategies to improve the user 
compliance and acceptability as microbicides. The flexible, torus-
shaped, elastomeric IVR drug delivery devices originally developed 
for contraceptive and hormone delivery can provide long-term, either 
sustained or controlled release of compounds to the vagina for either 
local or systemic effect [384,385]. They are designed to be self-inserted 
and removed, and are positioned in the upper third of the vagina, 
generally adjacent to the cervix [386]. IVRs are generally only suitable 
for microbicides with very specific physicochemical characteristics 
[387], such as the hydrophobic, small molecule, NRTI/NNRTIs 
[202,388-391]. Currently, controlled release systems for vaginal 
administration are mainly used for contraceptive delivery ranging from 
3 weeks to 3 months [391]. IVRs made from polymers (e.g., silicone, 
poly (ethylene-co-vinyl acetate) (PEVA)) have good track records for 
hormonal contraceptives. The delivery rate from current contraceptive 
ring is ~120 µg/day. 

Vaginal rings for prevention of HIV transmission have focused 
primarily on delivery of small molecule ARV compounds, whose 
favorable physicochemical properties such as diffusion and solubility are 
conducive to potentially effective release rates [387,388]. Novel vaginal 
ring types are in development to overcome obstacles associated with 
more conventional designs and construction materials, particularly the 
limits placed on the permeation of ARV compounds candidates through 
conventional vaginal rings constructed from hydrophobic silicone and 
PEVA. ‘Sandwich’ and ‘core’ IVRs have been developed to provide 
constant daily release rates, resulting in linear cumulative release versus 
time profiles, and conforming to zero order release kinetics [389]. The 
release rates can be modified by changing the thickness of the rate-
controlling membrane. Recent clinical studies have reported the high 
user acceptability of IVRs [202,391-393]. 

Dapivirine (TMC120) has been extensively tested in silicone 
elastomer vaginal rings [202,388-390,392]. Earlier clinical studies of 
reservoir-type ring with different dapivirine loadings (200 mg or 25 mg) 
within the ring cores after 7 days revealed plasma and cervicovaginal 
fluid levels levels were <50 pg/mL and >1,000 fold, respectively, above 
the EC50 of the drug for both ring types [200,202]. Levels of dapivirine in 
tissue biopsies were similar for each ring (>1000× EC50). Additionally, 
reservoir-type IVR containing 400 mg dapivirine was shown to provide 
continuous and controlled in vitro release over the 71-day study period 
with an observed daily release rate of 140µg/day. Thus, similar levels 
and distribution of dapivirine were obtained with the reservoir rings, 
independent of the drug load. In contrast, the rank order of UC781 
release composed of silicone < polyurethanes < ethylene vinyl acetate 
copolymer IVRs [393].
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The major challenges facing microbicide-releasing IVRs include 
drug stability, the physical stability of the drug, mechanical properties 
of these devices [394] and potential local toxicity to mucosal tissues. 
Another important consideration is the amorphous to crystalline 
transformation of the drug substance which can occur at high drug 
loading (>10 wt %). Typical processing temperatures for creating 
polymeric elastomeric devices range from 130 to 190°C [391,393]. 
Therefore, ARVs incorporated within the device need to be stable under 
these conditions, at least for several minutes while the drug is being 
compounded into the polymer melt and then processed to form the 
final device. The high solubility of hydrophobic drug substances in the 
polymer at the high melt extrusion temperature creates an amorphous 
dosage form that is potentially thermodynamically unstable and may 
undergo an amorphous to crystalline transformation. IVRs should 
deliver ample amounts to ARVs locally to the cervicovaginal fluid/
tissues to prevent mucosal HIV infection without altering the gene 
expression profiles of mucosal cells or systemic absorption to avoid 
the development of a resistant strain [387,389]. Although dapivirine 
silicone IVRs were generally safe and well tolerated, it revealed high 
systemic drug concentrations [200,202]. Most of the toxicity associated 
with Tenofovir is linked to delayed mitochondrial destruction. To date, 
only very limited mucosal toxicity data has been generated for drug-
releasing IVRs. In particular, microbicide-releasing IVRs need to be 
tested for safety in long-term, repeated vaginal exposure models before 
they progress to the clinic. Current IVRs do not meet the delivery rate 
requirement for less potent ARVs (e.g., RANTES analogs, monoclonal 
antibodies) for HIV prevention.

Lactobacilli expressing antiviral biologics

The healthy human vagina is dominated by a variety of Lactobacillus 
species which play an essential role in protecting women from genital 
infection [395]. Lactobacilli colonize and persist on the mucosal 
surfaces where HIV-1 is transmitted [396]. L. crispatus, together with 
L. jensenii, are the most common species in vagina and in rectum 
[397,398]. The gut may function as a reservoir for vaginal colonization 
by Lactobacilli for the maintenance of a normal vaginal microflora 
[398,399]. Through the production of lactic and acetic acids, hydrogen 
peroxide, antimicrobial substances, and other prebiotic effects, these 
bacteria possibly contribute to the maintenance of colonization 
resistance [400-403]. Imbalance in the intestinal microflora favors 
the suppression of lactobacilli, which in turn leads to overgrowth of 
anaerobes in the vagina [404]. Rectal and vaginal co-colonization 
with hydrogen peroxide-producing lactobacilli is associated with the 
lowest prevalence of bacterial vaginosis [395,404]. A loss of lactobacilli 
frequently leads to bacterial vaginosis or recurrent genitourinary 
infection [396, 401,402]. L. crispatus is more prevalent in the vaginal 
flora of fertile women [398]. In fertile women, the vaginal lactobacilli 
can account for up to 107-109 colony-forming units per gram of vaginal 
fluid [398]. The identification of vaginal lactobacilli using phenotypic 
methods (sugar fermentation patterns and other biochemical tests) in 
microbicide safety studies has limited accuracy and reliability [405]. As 
a result, such tests may be unable to differentiate between closely related 
species. The highly sensitive culture-independent genomic methods of 
identification of lactobacilli using multiplex polymerase chain reaction-
based denaturing gradient gel electrophoresis (PCR-DGGE) and 
DNA sequencing as well as pyrosequencing of tagged 16S rRNA gene 
amplicons has allowed the accurate identification of species-specific 
variations contributing to vaginal and rectal microbiomes [405-408].

Recombinant lactobacilli are being tested to deliver effective levels 
of antiviral proteins to mucosal surfaces as an alternative to topical 

applications. These antiviral proteins include: (i) the first two domains 
of human CD4 both as a secretory protein and as a lactobacillus-
anchored moiety to block or capture the virus, respectively [403,409], 
(ii) fusion inhibitory peptides derived from the gp41 transmembrane 
Env glycoprotein, which exhibit virus-blocking properties [410-412], 
(iii) MIP-1β, another CCR5-ligand chemokine [99], (iv) a single-chain 
variable fragment (scFv) derived from an anti-intercellular adhesion 
molecule 1 (ICAM-1) monoclonal antibody (MAb) to block cell-
associated HIV-1 transmission [109,413], and (v) cyanovirin-N lectin 
displaying anti-HIV-1 activity owing to its high-affinity recognition of 
gp120 carbohydrate moieties [127,414].

Nanobodies - single-domain antigen-binding fragments derived 
from Camelid heavy chain-only antibodies have been expressed 
constitutively in lactobacilli [109]. The domain antibody m36 binds to 
a highly conserved CD4-induced (CD4i) epitope on HIV-1 gp120 and 
exhibits broad neutralizing activity against a number of diverse primary 
HIV-1 isolates that is superior to the scFv antibody m9 [109]. Preclinical 
studies of MucoCept, an engineered recombinant L. jensenii producing 
cyanovirin-N showed 63% efficacy (p < 0.004) in a non-human primate 
model and a reduction in viral load (p = 0.014) [415]. Current efforts 
are directed at expressing potent and broadly neutralizing single 
domain antibodies/nanobodies (~11-15 kDa) directed against HIV. 
As commensal colonizers, lactobacilli can provide prolonged delivery 
of the antiviral biologic they are engineered to express and secrete, 
thereby reducing the frequency and burden of application, hopefully 
increasing compliance. Engineered lactobacilli have been shown to 
produce sufficient levels of active antiviral biologics to potentially 
achieve efficacy.

The use of bacteria for drug delivery is currently in clinical trials, 
and thus far been shown to be safe. However, despite their reported 
safety, the risk of immunogenicity by transformed lactobacilli and 
alternations of commensal bacteria in the vagina remains a concern 
in the long run. Since lactobacilli can efficiently present an antigen 
to the immune system, mucosal administration of these genetically 
engineered lactobacilli has the potential to elicit both systemic and 
mucosal immunity. The highest immune response is usually obtained 
with cell-wall anchored antigens exposed to the surface of lactobacilli. 
Consumer acceptance of genetically engineered lactobacilli microbicide 
remains a very significant hurdle. The future of recombinant lactobacilli 
delivery strategy requires clear demonstration of the efficacy and safety 
in human clinical trials. 

Conclusion
Sexual transmission through vaginal and rectal mucosal surfaces 

has been the most common route of HIV-1 spread throughout the 
world Microbicides are being developed as a first line of defense to 
block the transmission of HIV-1 via the female and male genital tracts 
and rectum. The challenge exists to develop packaging systems that 
deliver optimal concentrations of microbicides to the mucosal tissues 
and also allow the penetration of active compounds through the 
epithelial lining to reach and protect susceptible target cells. Receptive 
anal sex is the predominant mode of HIV acquisition among MSM, and 
a significant independent risk factor for HIV infection among women. 
The differential sensitivities of the human vagina and rectum present 
a significant challenge for the design of microbicides. The clinical 
failure of first-generation microbicide candidates has propelled the 
field to mechanism-based candidates that act more specifically on viral 
receptors, viral enzymes, and host proteins. More than 40 compounds 
are being tested as topical vaginal microbicides, including 12 products 
currently in clinical trials. CAPRISA 004 clinical trial has given proof-
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of-concept that a topical microbicide applied vaginally can decrease 
the chances of HIV transmission. Stopping sexual HIV-1 transmission 
will require a broad toolkit of products that address individual needs 
and preferences, including long-acting microbicides and multimodal 
delivery systems that could improve consistent use and adherence, 
and ultimately enhance effectiveness, while reducing the possibility of 
resistance. The two most advanced microbicide dose forms are gels and 
rings. The clinical failure of first-generation microbicides attests to the 
need for new guidelines and recommendations for the development of 
safe and efficacious anogenital microbicides. The desired safety profile 
should include lack of specific target organ/systemic toxicity, epithelial 
integrity, inflammatory response/immune functions, greater adherence 
and acceptability as a result of its overall safety, which is expected to be 
superior to the non-specific first generation microbicides.
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