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Introduction 
Emotions are very important for human existence, since they 

control our ability of decision making, problem solving, communication 
and negotiation and allow us to adapt to unpredictable changes in 
the environments [1,2]. There are many ways to classify emotions 
rom simple pleasure/unpleasure [3] to detailed - happy, sad, disgust, 
fear, joy and anger [4]. Electroencephalography (EEG - recording of 
electrical activity along the scalp) have been demonstrated effective for 
differentiation between different emotional states [3,5]. EEG signals 
are commonly described in terms of rhythmic activity across different 
frequency bands: a) delta (1-3 Hz), b) theta (4-7 Hz), c) alpha waves 
(8-13 Hz), d) beta waves (13-30 Hz), e) gamma (30-100+ Hz) [5-8]. 
Analyzing the distribution of power in respective frequency bands will 
reveal features that correspond to a particular state of the human mind 
[5,9]. 

The ratio of slow waves to fast waves (SW/FW) has been 
demonstrated to indicate emotions, behavioral and medical conditions 
[6,7,10-16]. SW/FW ratio was identified as a marker for motivational 
balance between the reward and punishment systems [11]. They 
were also shown to have a negative correlation with fear and anxiety 
[6]. Increase in Beta waves was correlated with fear [12]. Recently a 
decrease in SW/FW ratio was observed after fear stimulus was applied 
[13]. Feedback related negativity was also shown to negatively correlate 
to SW/FW ratio [14]. A negative relationship between theta/beta ratio 
and attentional control was recently identified [7].  

Various stimulus mechanisms and algorithms were used for 
invoking and analyzing emotions. Murugappan et al. used clustering 
algorithms Fuzzy C-Means (FCM) and Fuzzy k-Means (FKM) for 
classifying the emotions like fear in their studies by showing commercial 
movie clips for stimulus [8]. In [6] photographs with happy and fearful 
faces were shown and EEG data was processed for analysis. In [13] eye 
blinking rate and facial temperature were monitored for identifying 
fear along with EEG. Participant’s responses to angry expressions 
invoking fear were monitored using fMRI [17]. Petrantonakis et al. 

used higher order crossings analysis for emotion detection [18] while 
stimulus was provided by showing other humans expressing different 
emotions. In an experiment conducted by Kwang et al. [12] four types 
of visual stimulations were given in randomized method for 10 min 
each with 5 min intervals and EEG data was processed.

The current limitation of the EEG-based emotion recognition 
is that most of the results demonstrated on sophisticated equipment 
without portability and real time detection capabilities. Standard 
electrode arrays consist of 16-32 channels [19]. The multi-channel 
configurations consist of 128-256 electrodes for high density recording 
[5] and thus typically are not suitable for mobile applications. Research 
on usage of single channel EEG is very scarce in the literature to date.

Here we present fear detection using very compact single channel 
portable system. Very small size, no need to use gel for the contact 
with the skin and small computational power required for processing 
of the data from just one channel enable many important real time 
applications for the safety and security.

Data Collection and Experimental Procedure
In this study, normal EEG activity without any additional stimuli 

was continuously recorded during 155 second intervals. It was followed 
by an EEG recording during which the subjects were watching a 
fragment of a PG-13 video that contained several scary episodes.  
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Abstract
Real time detection of emotional state has multiple applications for security, safety and identification of dangerous 

situations. Traditionally electroencephalogram (EEG) based emotion studies are conducted in controlled lab environment 
with multi-channel systems and large signal processing power. In order to be useful in real world situation the system 
for emotion detection has to be miniature, portable and working in real time supported by calculations that can be 
provided by a processor power of a mobile phone. Here we present our results on real time fear detection using portable 
single electrode EEG system conducted on 10 subjects. We studied possibility of translation of the markers previously 
identified for complex multi-electrode system - ratios of slow waves to fast waves into real time portable system. It 
was demonstrated using Student’s t-test that the average value of the monitored parameter during normal state was 
significantly higher than that of during a scary stimulus with a P value of (0.027) ~ 0.03 for Theta/ Beta. The framework 
for portable fear detection together with the markers discussed in this study can enable many applications important 
for the soldiers in the battlefield or police officers while being under attack as an indicator that help is urgently needed.
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Ten healthy human subjects with ages ranging from 18 to 30 years 
(average age 23 years, ± 4 years) old took part in the experiment. Most 
of the subjects were students from the University of South Florida. 
EEG recordings were conducted using commercially available single 
channel electrode- NeuroSky at sampling rate of 512 Hz. The recordings 
were taken from left frontal lobe region of each subject during the 
experiments. This is done in accordance with earlier reported studies. 
Studies [6,7] analyzed EEG recordings from frontal regions have been 
used for correlation between SW/FW ratios and emotions such as fear 
and attention control. Kwang et al. [12] recorded EEG signals at the 
left temporal lobe and observed an increase in beta waves during fear.  

After the experiment each subject was given a questionnaire to 
rate the level of fear that they experienced during the watching of the 
scariest moments from the video. The average rating was 7 out of 10, 
where 10 correspond to the highest level of fear, what means that the 
video was moderately scary. 

The acquired data was initially band pass filtered between 1 Hz 
(lower cutoff frequency) and 40 Hz (upper cutoff frequency) and 
then was processed to extract features in specific frequency bands. 
All the analysis and processing was done in using EEGLAB, an open 
source Matlab toolbox [20]. Additionally, normal EEG recording was 
conducted on one of the subjects four days in a row under controlled 
conditions to test the device reproducibility, followed by statistical 
analysis. In future EEG data can be integrated with other types of data 
thus increasing accuracy of identification [21-25].

Data Analysis
The raw data from the single channel EEG were pre-filtered to 

remove serious and obvious motion artifacts. Next, the short time 
power spectral distribution for the entire duration of the experiment 
was computed using welches spectral estimation technique for every 1 
s segment of the artifact-free signal. Information about three frequency 
bands was extracted, including delta (δ: 1-3 Hz), theta (θ: 4-7 Hz) and 
beta (β: 13-30 Hz). Normalization for the time and the frequency range 
was done according to the formulas (1) and (2), where: i range from 
q=1 Hz to s=3 Hz, w=3 for Delta, and i range from q=13 Hz to s=30 
Hz, w=18 for Beta waves, j was changing between 1 and 155 Seconds. 
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The power densities were log normalized for calculating the 
ratios. Then the ratio of mean power of slow waves and fast waves was 
continuously plotted with time. The ratios of slow waves to fast waves 
during the watching of the scary movie episode were compared to that 
ratio taken in a normal state for each subject. Scary video stimuli for 
one of the subjects was stopped after first scary episode and reported as 
it is. Additionally, ANOVA analysis was performed on the set of four 
times repeated experiments to test the reproducibility of the normal 
data for the same subject. Next Student’s t-test (paired sample t-test) 
was performed with a null hypothesis stating the average value of the 
SW/FW ratio in normal emotional state is same as that during watching 
the scary stimulus to prove that there is significant difference. 

Results and Discussion

The statistical parameters from the reproducibility test on a 
single subject under normal conditions are provided in Table 1. 
The experiment was conducted during 4 consecutive days under 
identical conditions. The SW/FW ratio average over the whole testing 
period (155 seconds) for those four days had mean value 3.20 with a 
standard deviation of 6%. This indicates that the SW/FW ratio is very 
reproducible for the same subject under identical conditions. A single 
factor ANOVA to test for significant difference between means over 
four days, returned a P value 0.1 (>0.05) and thus failed to reject a null 
hypothesis that the means of ratios of slow waves to fast wave over 
four days in normal condition are equal. The power spectra for these 
experiments are provided in Figure 1, it can be clearly seen that there 
is a fluctuation of the signal power from day to day, and the maximum 
values vary substantially, what can be attributed to variability of contact 
between the electrode and the skin.  On the other hand the shape is very 
consistent, what results in stable SW/FW ratio (Table 2). 

Since fear is a subjective emotion, in order to take into account 
personal differences, subjects were given a questionnaire where they 
had to rate the level of fear they experienced on scale from 1 to 10 and 
also identify the scariest moments of the video. Figure 2 demonstrates 
the power spectra generated by fast Fourier transformation of EEG 
signal for episodes indicated as the scariest (b) and the not scary at 
all (a). Similar to what was previously described for the multi-channel 
EEG [12] significant increase in fast wave (beta) activity was observed 
in presence of the scary stimulus.

A plot of the ratio of the power of the slow waves over fast waves 
vs. time for all subjects is shown in Figure 3 (Delta/Beta) and Figure 
4 (Theta/Beta). The data for the normal state are shown in blue and 
during the watching of the scary movie in red. The scariest moments 
of the video are indicated with red solid blocks at the top of the figure. 
The averaged value (155 s) of the SW/FW ratio goes down for the scary 
stimulus. For many subjects the moments of the most pronounced 
decrease corresponded to the scariest episode in the video, while for 
others the ratio was staying low even in between the scariest episodes, 
probably because of anticipation of the fear. Another explanation might 
be that some of the subjects were scared while others just startled. 

A Student’s t test conducted on the data shown in Table 3 shows 
a significant difference with P value of 0.04 (<0.05) in the Delta/Beta 
(SW/FW) ratios for the normal and scared states (Table 4) while Table 
6 shows the statistical analysis conducted on data for Theta/Beta (SW/
FW) (Table 5) with a significant difference value of 0.03 for the normal 
and scared states indicating the strong evidence against null hypothesis 
stating equal means for both states and thus proving that SW/FW ratio 
could be a valid marker for the fear detection with a single channel 
EEG. It can be noticed from the t-tests that the Theta/Beta ratio has 
shown more significant difference compared to the Delta/Beta ratios 
(Tables 4 and 6). 

Conclusion

Day
Normal (SW/FW)

Mean Standard 
Deviation Max Min

1 3.21 1.31 8.48 0.51
2 3.4 1.81 13.38 0.58
3 2.94 2.22 22.86 0.27
4 3.27 1.37 7.83 0.36

Table 1: The results of the reproducibility experiment conducted on the same 
subject under normal conditions over four days in a row.
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Figure 1: Power spectrum for the reproducibility experiment conducted on the same subject under normal 
conditions over four days in a raw. Plots are organized consecutively with day 1 on top left part of the figure.

Figure 1: Power spectrum for the reproducibility experiment conducted on the same subject under normal conditions over four days in a raw. Plots are organized 
consecutively with day 1 on top left part of the figure.

Figure 2: Power spectrum at a) normal conditions b) during the scariest episodes in the video.

Source of Variation SS dj MS F P-value F crit
Between Groups 17.32 3.00 5.77 1.95 0.12 2.62
Within Groups 1819.37 616.00 2.95

Total 1836.69 619.00        

Table 2: ANOVA for the reproducibility experiment conducted during four consecutive days demonstrates a P value >0.05 which fails to reject the null of equal means thus 
supporting that the SW/FW measure is reproducible for the same subject under identical normal conditions.
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Figure 3: The SW/FW (Delta/Beta) ratios plotted vs. time. I to X indicate 10 subjects of the study. a) and b) are for the normal and scary stimulus 
states. The red blocks indicate the scariest moments of the video.Figure 3: The SW/FW (Delta/Beta) ratios plotted vs. time. I to X indicate 10 subjects of the study. a) and b) are for the normal and scary stimulus states. The red blocks 

indicate the scariest moments of the video.

Figure 4: The SW/FW (Theta/Beta) ratios plotted vs. time. I to X indicate 10 subjects of the study. a) and b) are for the normal and scary stimulus 
states. The red blocks indicate the scariest moments of the video.Figure 4: The SW/FW (Theta/Beta) ratios plotted vs. time. I to X indicate 10 subjects of the study. a) and b) are for the normal and scary stimulus states. The red 

blocks indicate the scariest moments of the video.
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In this study we for the first time demonstrate real time fear detection 
using portable single channel EEG. The ANOVA test and standard 
deviation measurements show reproducibility of the SW/FW ratio 
metric conducted in the normal state measured four days in a row. The 
study is in agreement with previous studies on detection of emotional 

state using multi-channel non-portable traditional EEG systems. We 
demonstrated that not only specific emotion can be identified, but it 
can also be done dynamically, in real time, while traditional studies 
normally focus on a static identification with a large number of 
channels. The results are consistent with previous research indicating 
changes in SW/FW ratio during emotional stimulus [6,7,11,12,14]. 
Based on a multimodal experiment [13] for the evaluation of fear, it 
was shown that facial temperature and subjective evaluation were 
more reliable than EEG signal recorded afterwards. Therefore, we 
focused on real time monitoring of EEG change with respect to scary 
stimulus and found the statistically significant reduction in SW/FW 
ratio. Since only 10 subjects were used in this study, further controlled 
experiments should be conducted with more subjects. This might be 
incorporated in wearable emotion detection systems, potentially as one 
of the available sensing modalities. The ability to identify fear in real 
time and potentially transmit this information remotely brings many 
important applications related to safety and security, especially when 
the scared person cannot verbally express this emotion. One example 
can be police officer under attack, so this device can be used to detect 
the danger and send help if needed. Another example can be a child 
that can be so scared of somebody that would never confirm that the 
person can be harmful, while this device would be able to identify the 
source of the fear and help with the protection of the child.
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