
Volume 5 • Issue 4 • 1000190
J Nucl Med Radiat Ther
ISSN: 2155-9619 JNMRT, an open access journal 

Research Article Open Access

Guerrero et al., J Nucl Med Radiat Ther 2014, 5:4 
DOI: 10.4172/2155-9619.1000190

Keywords: 18F-FDG PET/CT; Tumor response; Esophageal cancer;
Quantitative imaging; Radiation therapy

Introduction
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography 

(PET) is routinely used as a tool to diagnose and evaluate response 
in many cancer sites. A body of published evidence has documented 
correlation of standardized uptake value (SUV) with tumor clonogenic 
cell 60 density (or tumor cellularity) and tumor proliferation (e.g., 
Zhou et al. [1], Fischer et al. [2]). For more than 20 years, reports have 
specifically documented correlations between 18F-FDG uptake changes 
and response to therapy (e.g., Wahl et al. [3]). In esophageal cancer and 
gastroesophageal junction tumors, Omloo et al. [4] and Wu et al. [5] 
found mixed results in terms of SUV correlation with survival and/or 
pathological response (both for pretreatment SUV and changes in SUV 
before and after chemoradiation). Even when a correlation between 
SUV and response is established, in most cases no known quantitative 
relationship between SUVs and tumor characteristics and response 
patterns can be identified. 18F-FDG PET imaging, therefore, is typically 
used in a qualitative or semiquantitative manner. The purpose of this 
work is to investigate the quantitative relationship between mean 
patient SUVs and radiobiological parameters (such as cell survival and 
tumor control probability [TCP]) to facilitate quantitative prediction 
of tumor response based on SUVs from 18F-FDG PET before and after 
treatment. One example in which quantitative knowledge of tumor 
control probability is essential in determining which patients are 
suitable candidates for surgery after neoadjuvant chemoradiotherapy 

(CRT) is that of esophageal cancer. Tan et al. [6] showed that the use 
of features from the spatial distribution of SUVs gives a more accurate 
prediction of esophageal cancer patients’ pathological response to 
CRT than the use of a single SUV value, such as the maximum SUV 
(SUVmax) within the tumor. That study was based on a group of 20 
esophageal cancer patients with pretreatment and posttreatment 
18F-FDG PET-CT images that were registered using rigid registration, 
allowing a voxel-to-voxel investigation of changes in SUVs before and 
after treatment [6]. In this work, we investigate the same cohort of 20 
esophageal cancer patients evaluated in our previous study and use 
the mean values of the distribution of SUV in each patient to obtain a 
tumor control probability curve (based on pathological response) as a 
function of mean ratios of SUV before and after CRT.
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Abstract
Background: We investigated the relationship of standardized uptake values (SUVs) to radiobiological 

parameters, such a 25 s tumor control probability (TCP), to allow for quantitative prediction of tumor response based 
on SUVs from 18F fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) before and after treatment for 
esophageal cancer.

Methods: We analyzed data from 20 esophageal cancer patients treated with chemoradiotherapy (CRT) 
followed by surgery. Tumor pathologic response to CRT was assessed in surgical specimens. Patients underwent 
18F-FDG PET imaging before and after CRT. Rigid image registration was performed between both images. Because 
TCP in a heterogeneous tumor is a function of average cell survival, we modeled TCP as a function of <SUVR>, 
a possible surrogate for average cell survival (<SUVR>=<SUVafter/SUVbefore>). TCP was represented by a sigmoid 
function with two parameters: SUVR50, the <SUVR> at which TCP=0.5, and γ50, the slope of the curve at SUVR50. 
The two parameters and their confidence intervals (CIs) were estimated using the maximum-likelihood method. The 
correlation between SUV before CRT and SUV change <SUVbefore – SUVafter> was also studied.

Results: A TCP model as a function of SUV before and after treatment was developed for esophageal cancer 
patients. The maximum-likelihood estimate of SUVR50 was 0.47 (90% CI, 0.30-0.61) and for γ50was 1.62 (90% 
CI, 0-4.2). High initial SUV and larger metabolic response (larger <SUVbefore –SUVafter>) were correlated, and this 
correlation was stronger among responders.

Conclusions: Our TCP model indicates that <SUVafter/SUVbefore> is a possible surrogate for cell survival in 
esophageal cancer patients. Although CIs are large as a result of the small patient sample, parameters for a TCP 
curve can be derived and an individualized TCP can be calculated for future patients. Initial SUV does not predict 
response, whereas a correlation is found between surrogates for initial tumor burden and cell kill during therapy.
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Materials and Methods
Patient cohort and imaging techniques

This Institutional Review Board–approved study was based on 
a cohort of 20 esophageal cancer patients treated at our institution 
with trimodality therapy (CRT followed by surgery) from 2006 to 
2009. All patients underwent both pre-CRT and post-CRT PET/CT 
imaging. PET images were attenuation corrected, with a resolution of 
4.0×4.0×4.0 mm3, and CT images had a resolution of 0.98×0.98×4.0 
mm3. Rigid image registration (VersorRigid3DTransform in the 
Insight Segmentation and Registration Toolkit 4.6.0; National Library 
of Medicine, Bethesda, MD) was used to register post-CRT CTs to 
pre-CRT CTs (details of patient characteristics, imaging protocols, 
and registration technique can be found in Tan et al. [6]). All patients 
were treated with external-beam radiotherapy (50.4 Gy; 1.8 Gy/day, 
5 days/week) with concurrent chemotherapy consisting of cisplatin 
and 5-fluorouracil. The tumor volume in the pre-CRT PET image was 
defined as the region with SUV >2.5 (an SUV of 2.5 has been widely 
used as an uptake threshold for 18F FDG differentiation of benign from 
malignant lesions in various cancers [7,8]). Surgical resection was 
performed in all patients 1–7 weeks following the post-CRT PET/CT, 
and resected specimens was submitted to a pathologist for evaluation. 
The specimen was semiquantitatively categorized into one of three 
groups: pathologic complete response (pCR), microscopic residual 
disease (mRD), or gross residual disease (gRD), according to the 
amount of residual viable carcinoma observed in relation to areas of 
fibrosis [8]. In this study, patients with pCR or mRD were considered 
to be “responders,” because these have been shown to be associated 
with similar survival rates [9,10]. Patients with gRD were considered 
to be “nonresponders.”

Radiobiological modeling

We first considered a Poissonian TCP model: TCP=exp(–NoS), 
where No is the total initial number of clonogenic cells and S is the 
survival fraction after CRT treatment. As other authors have proposed 
[11,12], we want to develop a TCP model based on SUV signal from 
FDG PET images. For simplicity we did not explicitly include a 
repopulation term in TCP; however, the survival fraction S can be 
thought of as an “effective survival” that implicitly accounts for the 
repopulation effect. For a tumor with inhomogeneous response that 
has Nc compartments 120 with different cell survival after CRT and 
S(k) in each compartment k, TCP can be expressed as:
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where No(k) is the initial number of clonogenic cells in compartment 
k with volume vk and can be written as No(k)=Nof(S(k)) with f(S(k)) 
representing the fraction of cells with survival fraction S(k) (equivalently 
the fraction of clonogenic cells in compartment k). Substitution of 
No(k)=Nof(S(k)) in Eq. (1) yields:
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where <S> is the average survival over f(S), the distribution of survival 
fractions across the tumor. Equation 2 shows that if a Poissonian TCP 
is assumed, then TCP depends on the average survival in the tumor 
for any arbitrary inhomogeneous distribution of survival fraction 
f(S). The problem of inhomogeneous response to radiation has been 

studied in the context of modeling hypoxic regions in tumors (e.g., 
Lind and Brahme [13]). Some authors have assumed a distribution of 
radiosensitivities SF2 (survival fraction at 2 Gy) with two compartments, 
one radiosensitive and one radioresistant [13]. Equation 2 is valid 
for any arbitrary distribution of survival fractions S, and no specific 
relation with SF2 is assumed, because S represents effective survival 
after treatment with both radiation and chemotherapy. In order to use 
Equation 2 for TCP it is necessary to find a surrogate for average survival 
fraction using SUV PET values from before and after treatment. If we 
assume that the SUV value in a voxel j of the 18F-FDG 140 PET images 
correlates with the number of clonogenic cells in that voxel, it follows 
that the ratio of SUV values after and before CRT (i.e., SUVR(j)=SUV(j)
after/SUV(j)before) can potentially be a surrogate for the survival fraction 
in that voxel [14]. Therefore, the average of SUVR(j) over all the 
voxels in the tumor delineated on pre-CRT PET can potentially be a 
surrogate for the average survival fraction in the tumor. We calculated 
the average <SUVR>=<SUVafter/SUVbefore> for each patient. We also 
calculated other possible surrogates, such as <SUVafter>/<SUVbefore> and 
<SUVbefore – SUVafter>. The mean values were calculated in the tumor 
region (defined in the PET images before therapy with SUV >2.5). For 
a possible surrogate of the average survival fraction to be useful, its 
values for responders must be significantly different from the values for 
nonresponders. This was evaluated by comparing the average values of 
each possible surrogate for responders and nonresponders with a t test 
at a significance level ≤ 0.05.

Maximum-likelihood estimate of TCP model parameters

Although <SUVR> as defined above is a reasonable surrogate 
for average survival fraction, the explicit functional dependence of 
<SUVR> with survival fraction is not known, so we cannot directly use 
Eq. (2) to relate TCP and <SUVR>. We propose the use of a sigmoid 
function to relate TCP with <SUVR> , as a reasonable starting point. 
The sigmoid function is widely used to model TCP and normal tissue 
complication probability (NTCP) as a function of dose and was used 
previously to model tumor control probability based on PET images 
[11]. Figure 1 is a graphical representation of a typical sigmoid function.

It is constrained to the interval (0–1) and typically defined by two 
parameters: D50, the dose at which TCP is 0.5, and γ50, the normalized 
slope of the (sigmoid) curve at D50. Similarly, we define SUVR50 as the 
value of <SUVR> at which TCP is 0.5 and γ50 as the slope of the curve at 
SUVR50. For convenience we define the tumor recurrence probability 
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Figure 1: The sigmoid function representing the probability of recurrence as 
a function of <SUVR> is characterized by two parameters: SUVR50 and γ50.
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(TRP) as 1–TCP, which is characterized by the same parameters (the 
slope simply changes sign) as TCP. For the functional representation of 
a sigmoid-shaped. TRP we use the error function:

( ) ( )(
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where the error function is the standard definition:
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To determine the parameters SUVR50 and γ50 that best fit our 
data, we use the maximum-likelihood estimate method, which is often 
used to determine TCP and NTCP parameters based on clinical data 
(e.g., as in Dawson et al. [15]). The maximum-likelihood estimate 
method can be summarized as follows. Each patient in the group has a 
specific value of <SUVR> calculated from his or her PET images. For 
given values of SUVR50 and γ50, the probability of tumor recurrence for 
each patient I is expressed as:

( )
50, 50Ri SUV RiP SUV

γ
= ∅                     (5)

The log-likelihood (LL) can be calculated as:
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where Ri=1 if the patient is a nonresponder and Ri=0 if he or she is a 
responder [15]. The most likely values for SUVR50 and γ50 are obtained 
by maximizing LL(SUVR50, γ50). The confidence intervals (CI) for 
SUVR50 and γ50 can be estimated using standard statistical methods 
assuming a Gaussiandistribution with two degrees of freedom (e.g., as 
in Beringer et al. [16]).

Results
Table 1 we present the average values of each of the possible 

survival fraction surrogates for responders and nonresponders, as well 
as standard deviations and their P values. Table 1 shows that <SUVafter/
SUVbefore>, <SUVafter>/<SUVbefore> and <SUVbefore–SUVafter> each 
have significantly different values for responders and nonresponders 
(P<0.05). The fact that <SUVafter/SUVbefore>, <SUVafter>/<SUVbefore> 
and <SUVafter–SUVbefore> are significantly different for responders 
and nonresponders validates these quantities as good candidates for 
surrogates of the effective survival fraction. Here we present our results 
by calculating TRP as a function of <SUVafter/SUVbefore> to illustrate the 
method. Equivalent results can be obtained using <SUVafter>/<SUVbefore> 
or <SUVafter–SUVbefore>. Figure 2 is a two dimensional plot in which the 
x and y axes represent SUVR50 and γ50, respectively, and the color scale 
shows the LL calculated using Equation 6.

The maximum LL value is at SUVR50=0.47 (90% CI, 0.3-0.6) and 
γ50=1.61 (90% 210 CI, 0-4.2). To compare the model with our patient 
data, we divided our patients’ <SUVR> results into three bins (0.2-0.4; 0.4-

0.6; and >0.6). Based on the numbers of responders and nonresponders 
in each group we plotted the histogram with the TRP and compared it 
with the model prediction (Figure 3). Although the error bars are large 
(as well as the confidence interval for the parameters), Figure 3 shows 
that the model describes the data reasonably well and illustrates the 
way in which a TRP and, equivalently, a TCP as a function of SUV can 
be derived from clinical data.

Table 1 also shows that <SUVbefore> tends to be higher for responders 
than for non responders. This trend, although not significant, seems to 
contradict the assumption that SUV is correlated with tumor burden, 
because we expect nonresponders to have higher tumor burdens than 
responders. This trend has been observed before in studies of initial 
SUVmax for lung cancer [17] as well as in esophageal cancer [18]. To 
address this puzzling issue, we studied the correlation of <SUVbefore> 
with <SUVafter/SUVbefore> and <SUVbefore–SUVafter> to determine 

 

6

5

4

3

2

1

00       0.1    0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9      1
SUVR50

-13

-14

-15

-16

-17

-18

-19

-20

-21

-22

γ 5
0

Figure 2: Two-dimensional plot of the log-likelihood as a function of SUVR50 
and γ50. The most likely parameters are defined by the maximum log-
likelihood.
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Figure 3: Tumor recurrence probability model compared to data represented 
in a histogram with 3 bins. The model reasonably represents the data despite 
large error bars resulting from the small patient sample.

Responders Nonresponders P value
<SUVafter/SUVbefore> 0.45 ± 0.11 0.60 ± 0.24 0.04

<SUVafter>/<SUVbefore> 0.41 ± 0.11 0.57 ± 0.23 0.03

<SUVafter-SUVbefore> 2.49 ± 0.93 1.57 ± 0.90 0.02

<SUVbefore> 4.1 ± 0.94 3.50 ± 0.87 0.08

<SUVafter> 1.62 ± 0.38 1.97 ± 0.85 0.13

Table 1: Mean values ± standard deviations of possible surrogates for cell 
survival for responders and non responders with the corresponding P values.



Citation: Guerrero M, Tan S, Lu W (2014) Radiobiological Modeling Based on 18F-Fluorodeoxyglucose Positron Emission Tomography Data for 
Esophageal Cancer. J Nucl Med Radiat Ther 5: 190. doi:10.4172/2155-9619.1000190

Page 4 of 5

Volume 5 • Issue 4 • 1000190
J Nucl Med Radiat Ther
ISSN: 2155-9619 JNMRT, an open access journal 

whether the response surrogates are correlated with the initial SUV 
values. Figure 4 shows a significant correlation between <SUVbefore> 
–<SUVafter> and <SUVbefore> (Pearson correlation coefficient=0.77; 
P=0.0008).

This correlation was even stronger among responders (correlation 
coefficient=0.92; P=0.005). A correlation trend between <SUVR> and 
<SUVbefore> was also found but did not reach statistical significance.

Discussion
This work presents a proof of principle for a method to 

quantitatively relate the ratio of mean SUV after and before treatment 
to the probability of tumor recurrence in patients with esophageal. To 
the best of our knowledge, this is the first study where a quantitative 
relationship between average SUV before and after treatment and 
tumor control probability has been developed.

Although our confidence intervals are large as a result 245 of the 
small sample size, our example shows that a patient-specific TRP curve 
(as depicted in Figure 3) can be derived with this method. This TRP 
curve could potentially be used to estimate the probability of disease 
recurrence after CRT given the value of <SUVR> for a given patient, 
which could help in a personalized medicine approach to determine 
the need for subsequent surgery. Instead of looking for an arbitrary 
cut-off in SUVs and determining the sensitivity and specificity of a 
positive or negative test, our method uses a continuous TRP curve 
and offers the advantage of easily identifying patients for whom PET 
imaging response results should be labeled as inconclusive. In our 
example, patients with <SUVR> between 0.3 and 0.6 (CI for SUVR50) 
have a 50/50 chance of recurrence. In that case, <SUVR> should not 
be used as a determining factor for sending the patient to surgery. A 
limitation of our approach is that the patient number was small and 
a larger patient population may be needed to obtain TCP values with 
reasonably small CIs to clinically validate the model parameters. We 
used a sigmoid function to represent the TRP because it is a common 
choice for TCP versus dose and it is restricted to values from 0 to 1. 
The sigmoid function also has the property that for a steep slope it 
reproduces a step function, which is commonly used to report 18F-FDG 
PET imaging results.

The derivation of the radiobiological model rests in part on 
the assumption that SUVs are correlated with tumor burden. This 
assumption has been a topic of investigation in a number of studies 
for esophageal cancer that have shown mixed results. In an extensive 
review of 18F-FDG-PET parameters as prognostic factors in esophageal 
cancer, Omloo et al. [4] found that 12 of 15 studies showed that 
although pretreatment 18F-FDG uptake is a predictor for survival in 
univariate analysis, only 2 studies showed such uptake to be a predictor 
of survival in multivariate analysis. In our study, we did not find a 
statistically significant correlation between initial SUV and pathological 
response; in fact, we identified a small trend showing higher initial 
SUVs for responders. Rizk et al. [18] found that pretreatment SUV 
was a significant predictor of survival for patients managed with 
surgery only (low SUV, greater survival). However, in a subsequent 
report, Rizk et al. [19] found that pretreatment SUVs did not predict 
survival for patients treated with chemoradiation, in part because of 
the fact that patients with higher pretreatment SUVs responded better 
to therapy than those with lower SUVs. In a study of 103 patients 
Brown et al. [20] also found that high initial 18F-FDG SUV on PET in 
esophageal cancer patients was a predictor of survival only for those 
treated with surgery; in patients treated with neoadjuvant therapy this 
difference disappeared, and a trend toward better survival was seen in 
patients with higher initial SUV. These results are consistent with our 
findings, in which we identified a trend toward higher initial SUV in 
the CR group and a correlation between better response and higher 
initial mean SUV, in agreement with the results of Rizk et al. [18]. 
Whether pretreatment SUV is associated with better outcomes, tumor 
cell density, or tumor proliferation is not a crucial assumption for our 
current work. The key assumption in our modeling is that the ratio 
of <SUVafter>/<SUVbefore> or the difference <SUVbefore>–<SUVafter> are 
surrogates of mean effective cell survival in the tumor.

The correlation of changes in SUV uptake after chemoradiation 
has been studied by several groups with mixed results: 4 of 10 studies 
in the review by Omloo et al. [4] found such correlation. Most of 
these studies, however, relied on SUVmax rather than the mean SUV, 
and some focused on survival as an endpoint rather than pathological 
response. Tan et al. [6] showed that using the average values (and other 
features of the distribution) can improve the predictive accuracy of 
18F-FDG PET in esophageal cancer. Our study showed a significant 
correlation of pathological response with changes in average SUV. 
Other groups have also found that considering the spatial extent 
properties of SUVs can increase predictive accuracy [21,22]. We used 
<SUVR> as our surrogate for cell survival, but other possible surrogates 
quantifying change in SUV could be used, for example <SUVbefore> 
–<SUVafter> or the ratio of the means of <SUVafter>/<SUVbefore>, 
because both parameters are significantly different for responders than 
nonresponders. Moreover, this method could potentially be applied in 
other imaging modalities when a parameter is significantly different for 
responders and nonresponders. We believe that the development and 
validation of quantitative models of TCP as a function of molecular 
imaging markers will advance the understanding of the radiobiology 
of those markers.

The correlation of <SUVbefore> – <SUVafter> with <SUVbefore> shown 
in Figure 4 underscores the complexity interpretation of SUVs. If SUV 
is representative of tumor burden, responders would be expected to 
have smaller <SUVbefore>; the result (Table 1) shows a trend that is 
opposite to this reasoning. Although changes in SUV before and after 
treatment are typically used to characterize response (e.g., as in Aerts 
et al. [23]), it is believed that tumor regions with higher initial SUVs 
are at higher risk of recurrence (the basis of dose painting strategies). 
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However, the fact that in our group of esophageal cancer patients 
subjects with higher <SUVbefore> tended to have larger decreases in 
SUV as represented by <SUVbefore> – <SUVafter> (a stronger response) 
shows that simple interpretations may not work because of the 
complex correlations among radiobiological parameters. As discussed 
above, other groups have also found correlations between initial SUV 
and response to chemoradiation [19-21] but those studies focused on 
either pathological response or patient survival as endpoints. To the 
best of our knowledge, this is the first study to investigate and find a 
correlation between initial average SUV and change in average SUV 
before and after treatment for esophageal cancer patients. Our result 
helps explain the findings from previous investigators as discussed 
above [18-21] and make the case for the need of systematic studies of 
these correlations to help understand and improve the interpretation of 
18F-FDG PET images as 325 well as other molecular imaging markers.

Conclusions
The TCP model was characterized using SUV in tumor before 

and after therapy. According to the TCP model, <SUVafter/SUVbefore> 
is a possible surrogate for cell survival in esophageal cancer patients. 
Despite the fact that CIs are large because of the small patient sample, 
parameters for a TCP curve can be derived and an individualized TCP 
can be calculated for future patients. Initial SUV did not predict for 
response, and a correlation was found between surrogates for tumor 
burden and cell kill.
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