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Abstract

This paper explores the quasi-deformation scheme devised by Hartwig, Larsson and Sil-
vestrov as applied to the simple Lie algebra sl2(F). One of the main points of this method
is that the quasi-deformed algebra comes endowed with a canonical twisted Jacobi identity.
We show in the present article that when the quasi-deformation method is applied to sl2(F)
via representations by twisted derivations on the algebra F[t]/(tN ) one obtains interesting
new multi-parameter families of almost quadratic algebras.
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1 Introduction

In a series of papers [1, 3, 4] two of the present authors have developed a new deformation
scheme for Lie algebras. The last paper [4] is concerned with this deformation scheme when
applied to the simple Lie algebra sl2(F), where F is a field of zero characteristic, and it is on
that paper the present one builds and elaborates on.

Let us briefly explain the aforementioned deformation procedure. By F we denote the un-
derlying field of characteristic zero and by g the Lie algebra we wish to deform. Let ρ : g →
Der(A) ⊆ gl(A) be a representation of g in terms of derivations on some commutative, associa-
tive algebra A with unity. The Lie structure on Der(A) is of course given by the commutator
bracket, induced from the Lie algebra structure on gl(A), the algebra of linear operators on
A. The deformation procedure now takes place on this representation by changing the involved
derivations to σ-derivations, that is, linear maps ∂σ : A → A satisfying a generalized Leibniz
rule: ∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b), for all a, b ∈ A, and for an algebra endomorphism σ on A.

In the course of this deformation we also deform the commutator [·, ·] to a σ-deformed version
〈·, ·〉. The deformation procedure is thus an assignment Der(A) 3 ∂ ///o/o/o ∂σ ∈ Derσ(A) such
that [·, ·] Ã 〈·, ·〉 and where Derσ(A) is the vector space of σ-derivations on A. Remember that
∂ represents an element of g.

In general, the new product 〈·, ·〉 is not closed on Derσ(A). It is, however, true that it is closed
on the left A-submodule A · ∂σ of Derσ(A), for ∂σ ∈ Derσ(A) subject to some (mild) conditions.
This is the content of Theorem 1. This theorem also establishes a canonical Jacobi-like relation
on A·∂σ for 〈·, ·〉, reducing to the ordinary Jacobi identity when σ = id, i.e., in the ”limit” case of
this deformation scheme corresponding to the Lie algebra g. We remark that in some cases, for
instance when A is a unique factorization domain, A · ∂σ = Derσ(A) for suitable ∂σ ∈ Derσ(A)
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(see [1]). In particular, this means that we have two ”deformation parameters” for this scheme,
A and σ. Note, however, that they are not independent. Indeed, σ certainly depends on A.

Diagrammatically, our deformation scheme can be given as

g
ρ // gl(A)

²² ²O
²O
²O

g̃

”limit”

ee

// g̃l(A)

P

xx

Suppose the Lie algebra g is spanned as a vector space by elements {gi}i∈I , where I is some
index set. The representation ρ yields the assignments gi 7→ ai · ∂, for ai ∈ A. This can
clearly be extended linearly to the whole of g by the linearity of ρ. Now the deformation is
ai · ∂ Ã ai · ∂σ ∈ A · ∂σ ⊆ Derσ(A). Put g̃i := ai · ∂σ. The set {g̃i}i∈I spans a linear subspace
g̃ of A · ∂σ. Restricting the bracket on A · ∂σ, given by Theorem 1, to g̃ gives us an algebra
structure on g. This restriction is denoted by P in the above diagram. So, forgetting that
g̃i is ai∂σ, {g̃i}i∈I spans an abstract (i.e., not associated with some particular representation)
algebra g̃ with multiplication 〈·, ·〉 and structure constants given by (2.3a) of Theorem 1. This
algebra is then to be viewed as the deformed version of g. Another way to look at this is to
actually compute the deformed commutator in terms of the basis elements g̃i and leaving the
right-hand-side as it is given by (2.3a). This gives us a set of relations in degree one and two
in the basis elements, which can, considered as an associative algebra given by generators and
relations, be viewed as an analogue of the universal enveloping algebra U(g) to a Lie algebra g,
for the algebra g̃.

The quotation marks in ”limit” is to indicate that we may not actually retrieve the original
g by performing the appropriate (depending on the case considered) limit procedure. This is
because for some ”values” of the involved parameters the representation or specific operators
collapse, so even taking the limit becomes meaningless in these circumstances. This is why we
choose to call our deformations quasi-deformations. Another complication that arises is that the
pull-back P ”forgets relations”. That is to say that the operators in A ·∂σ may satisfy relations,
for instance coming from the twisted Leibniz rules, that the abstract algebra does not satisfy.

Now, the Lie algebra sl2(F) can be realized as a vector space generated by elements H, E
and F subject to the relations (see for instance [6])

〈H, E〉 = 2E, 〈H, F 〉 = −2F, 〈E, F 〉 = H (1.1)

Our basic starting point is the following representation of sl2(F) in terms of first order differential
operators acting on a vector space of functions in the variable t: E 7→ ∂, H 7→ −2t∂, F 7→ −t2∂.
To quasi-deform sl2(F) means that we replace ∂ by ∂σ in this representation. At our disposal
are now the deformation parameters A (the ”algebra of functions”) and the endomorphism σ.

In [4], where we studied mostly some of the algebras appearing in the quasi-deformation
scheme in the case when A = F[t]. But we also have constructed quasi-Lie deformations in the
case A = F[t]/(t3) yielding new interesting unexpected parametric families of algebras. In [5],
we have constructed quasi-Lie deformations when A = F[t]/(t4). This case leads typically to
six relations instead of three which might have been thought as natural as sl2(F) only has three
relations.

In this paper we extend the construction to the general class of quasi-Lie deformations when
A = F[t]/(tN ). In Section 2 we recall the necessary background material and fix notation.
Section 3 deals with the general quasi-deformation scheme as applied to sl2(F). Finally, in
Section 3.1 we explore this scheme when A = F[t]/(tN ).
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2 Quasi-Lie algebras associated with σ-derivations

We now fix notation and state the main definitions and results from [1, 3] needed in this paper.
Throughout we let F denote a field of characteristic zero and A be a commutative, associative
F-algebra with unity 1. Furthermore, σ will denote an endomorphism on A. Then by a twisted
derivation or σ-derivation on A we mean an F-linear map ∂σ : A → A such that a σ-twisted
Leibniz rule holds: ∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b).

In the paper [1] the notion of a hom-Lie algebra as a deformed version of a Lie algebra
was introduced, motivated by some of the examples of deformations of the Witt and Virasoro
algebras constructed using σ-derivations. However, finding examples of more general kinds of
deformations associated to σ-derivations, prompted the introduction in [3] of quasi-hom-Lie
algebras (qhl-algebras) generalizing hom-Lie algebras. Quasi-hom-Lie algebras include not only
hom-Lie algebras as a subclass, but also colour Lie algebras and in particular Lie superalgebras
[3].

We let Derσ(A) denote the vector space of σ-derivations on A. Fixing a homomorphism
σ : A → A, an element ∂σ ∈ Derσ(A) and an element δ ∈ A, we assume that these objects
satisfy the following two conditions:

σ(Ann(∂σ))
(a)

⊆ Ann(∂σ), ∂σ(σ(a))
(b)
= δσ(∂σ(a)), for a ∈ A (2.1)

where Ann(∂σ) := {a ∈ A | a · ∂σ = 0}. Let A · ∂σ := {a · ∂σ | a ∈ A} denote the cyclic A-
submodule of Derσ(A) generated by ∂σ and extend σ to A · ∂σ by σ(a · ∂σ) = σ(a) · ∂σ. The
following theorem, from [1], introducing an F-algebra structure on A ·∂σ making it a quasi-hom-
Lie algebra, is of central importance for the present paper.

Theorem 1. If (2.1a) holds then the map 〈·, ·〉 defined by

〈a · ∂σ, b · ∂σ〉 = (σ(a) · ∂σ) ◦ (b · ∂σ)− (σ(b) · ∂σ) ◦ (a · ∂σ) (2.2)

for a, b ∈ A and where ◦ denotes composition of maps, is a well-defined F-algebra product on the
F-linear space A · ∂σ. It satisfies the following identities for a, b, c ∈ A:

〈a · ∂σ, b · ∂σ〉 (a)
= (σ(a)∂σ(b)− σ(b)∂σ(a)) · ∂σ, 〈a · ∂σ, b · ∂σ〉 (b)

= −〈b · ∂σ, a · ∂σ〉 (2.3)

and if, in addition, (2.1b) holds, we have the deformed six-term Jacobi identity

ªa,b,c

(〈σ(a) · ∂σ, 〈b · ∂σ, c · ∂σ〉〉+ δ · 〈a · ∂σ, 〈b · ∂σ, c · ∂σ〉〉
)

= 0 (2.4)

where ªa,b,c denotes cyclic summation with respect to a, b, c.

The algebra A · ∂σ in the theorem is then a qhl-algebra with α = σ, β = δ and ω = − idA·∂σ .
For the detailed proof of Theorem 1 see [1].

3 Quasi-Deformations of sl2(F)

Let A be a commutative, associative F-algebra with unity 1, t an element of A, and let σ denote
an F-algebra endomorphism on A. Also, let Derσ(A) denote the linear space of σ-derivations
on A. Choose an element ∂σ of Derσ(A) and consider the F-subspace A · ∂σ of elements on the
form a · ∂σ for a ∈ A. We will usually denote a · ∂σ simply by a∂σ. Notice that A · ∂σ is a left
A-module, and by Theorem 1 there is a skew-symmetric algebra structure on A · ∂σ given by

〈a · ∂σ, b · ∂σ〉 = σ(a) · ∂σ(b · ∂σ)− σ(b) · ∂σ(a · ∂σ) = (σ(a)∂σ(b)− σ(b)∂σ(a)) · ∂σ (3.1)
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where a, b ∈ A. The elements e := ∂σ, h := −2t∂σ and f := −t2∂σ span an F-linear subspace
S := LinSpanF{∂σ,−2t∂σ,−t2∂σ} = LinSpanF{e, h, f} of A · ∂σ. We restrict the multiplication
(3.1) to S without, at this point, assuming closure. Now, ∂σ(t2) = ∂σ(t · t) = σ(t)∂σ(t)+∂σ(t)t =
(σ(t) + t)∂σ(t). Under the natural assumptions σ(1) = 1, ∂σ(1) = 0 (see [4]), (3.1) leads to to

〈h, f〉 = 2σ(t)t∂σ(t)∂σ, 〈h, e〉 = 2∂σ(t)∂σ, 〈e, f〉 = −(σ(t) + t)∂σ(t)∂σ (3.2)

Remark 1. Note that if σ = id and ∂σ(t) = 1 we retain the classical sl2(F) with relations (1.1).

3.1 Quasi-Deformations of sl2(F) with base algebra F[t]/(tN)

Now, let F include all N th-roots of unity and take as A the algebra F[t]/(tN ) for positive integer
N ≥ 2. This is obviously an N -dimensional F-vector space and a finitely generated F[t]-module
with basis {1, t, . . . , tN−1}. For i = 0, . . . , N − 1, let gi = cit

i∂σ, ci ∈ F, ci 6= 0. Put

∂σ(t) = p(t) =
N−1∑

k=0

pkt
k, σ(t) =

N−1∑

k=0

qkt
k (3.3)

considering these as elements in the ring F[t]/(tN ). The equalities (3.3) have to be compatible
with tN = 0. This means in particular that (if s(t) = (σ(t)− q0)/t)

σ(tN ) = (q0 + s(t)t)N =
N∑

ν=0

(
N

ν

)
qν
0 (s(t))N−νtN−ν = q0

N∑

ν=1

(
N

ν

)
qν−1
0 (s(t))N−νtN−ν = 0

implying (and actually equivalent to) qN
0 = 0 and hence q0 = 0. Furthermore,

∂σ(tN ) =
N−1∑

j=0

σ(t)jtN−j−1∂σ(t) = p(t)
N−1∑

j=0

s(t)jtjtN−j−1

= p(t)tN−1
N−1∑

j=0

s(t)j = p0t
N−1

N−1∑

j=0

s(t)j = p0{N}q1t
N−1 = 0 (3.4)

where {N}q1 =
∑N−1

j=0 qj
1. It thus follows that (1 + q1 + q2

1 + . . . + qN−1
1 )p0 = 0. In other words,

if p0 6= 0 we generate deformations at the zeros of the polynomial uN−1 + . . . + u2 + u + 1, that
is at N ’th roots of unity; whereas if p0 = 0 then q1 is a true formal deformation parameter.

As before we assume that σ(1) = 1, ∂σ(1) = 0 and so relations (3.2) still hold. Moreover,
since for k ≥ 0 we have ∂σ(tk+1) =

∑k
j=0 σ(t)jtk−j∂σ(t) = p(t)tk

∑k
j=0 s(t)j , we obtain by (3.1)

〈gi, gj〉 = cicj〈ti∂σ, tj∂σ〉 = cicj [σ(ti)∂σ(tj)− σ(tj)∂σ(ti)]∂σ

= cicj [σ(t)i∂σ(tj)− σ(t)j∂σ(ti)]∂σ (3.5)

By (2.2) the bracket can be computed abstractly on generators gi, gj as

〈gi, gj〉 = 〈cit
i∂σ, cjt

j∂σ〉 = cicj [(σ(ti)∂σ) ◦ (tj∂σ)− (σ(tj)∂σ) ◦ (ti∂σ)]

= ciσ(t)i∂σ ◦ gj − cjσ(t)j∂σ ◦ gi (3.6)

Expanding according to the multinomial formula s(t)k = (q1 + q2t + . . . + qN−1t
N−2)k and

σ(tk) = σ(t)k = tks(t)k, we obtain

〈gi, gj〉 = ci(s(t)iti∂σ) ◦ gj − cj(s(t)jtj∂σ) ◦ gi
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= cii!
( ∑

i1,...,iN−1≥0
i1+...+iN−1=i

i2+2i3+...+(N−2)iN−1<N−i

qi1
1 · · · qiN−1

N−1

i1! · · · iN−1!
gi+i2+2i3+...+(N−2)iN−1

◦ gj

ci+i2+2i3+...+(N−2)iN−1

)

− cjj!
( ∑

j1,...,jN−1≥0
j1+...+jN−1=j

j2+2j3+...+(N−2)jN−1<N−j

qj1
1 · · · qjN−1

N−1

j1! · · · jN−1!
gj+j2+2j3+...+(N−2)jN−1

◦ gi

cj+j2+2j3+...+(N−2)jN−1

)

The bracket is closed on linear span of gi’s as for N − 1 ≥ i, j ≥ 0, by (3.1), we have

〈gi, gj〉 = cicj [∂σ(tj)σ(t)i − σ(t)j∂σ(ti)]∂σ

= cicj

|j−i|−1∑

k=0

sign(j − i)
∑

k1,k2,...,kN−1≥0
k1+k2+...+kN−1=k+min{i,j}
k2+2k3+...+(N−2)kN−1<N

(k + min{i, j})!
k1!k2! · · · kN−1!

× qk1
1 qk2

2 . . . q
kN−1

N−1 tk2+2k3+...+(N−2)kN−1

N−1∑

l=0

plt
i+j+l−1∂σ

= cicj

N−1∑

l=0

pl

|j−i|−1∑

k=0

sign(j − i)
∑

k1,k2,...,kN−1≥0
k1+k2+...+kN−1=k+min{i,j}

k2+2k3+...+(N−2)kN−1≤N−i−j−l

(k + min{i, j})!
k1!k2! · · · kN−1!

× qk1
1 qk2

2 . . . q
kN−1

N−1

gi+j+l−1+k2+2k3+...+(N−2)kN−1

ci+j+l−1+k2+2k3+...+(N−2)kN−1

(3.7)

where sign(x) = −1 if x < 0, sign(x) = 0 if x = 0 and sign(x) = 1 if x > 0.

Remark 2. It would be of interest to determine the ring-theoretic properties of these algebras
e.g, for which parameters are they domains, Noetherian, PBW-algebras, Auslander-regular etc.
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