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Introduction
Corrosion, a constant and continuous problem, is the deterioration 

of metal by chemical attack or reaction with its environment. Although 
there are numerous options for controlling the corrosion of metals, 
the use of inhibitors is one of the best methods for protecting metals 
against corrosion. Severe corrosion problems arise due to the wide use 
of hydrochloric acid for pickling, descaling and cleaning processes of 
metal surfaces [1]. Aluminium show excellent corrosion resistance 
due to the formation of a thin and protective, naturally formed oxide 
film on its surface [2]. Unfortunately, when aluminium is exposed 
to aggressive environments such as acid pickling solutions, chemical 
etching, industrial cleaning or scale dissolving, these processes lead to 
significant mass loss of aluminium [3]. Corrosion inhibitor reported 
has involved the use of anti-malaria, sulpha, antifungal and antibacterial 
drugs, extracts from plants, because of the presence of hetero-atoms 
in the backbone of their structure as active centres, high solubility in 
water, high molecular size [4-6].

Theoretical chemistry has been used recently to explain the 
mechanism of corrosion inhibition, such as quantum chemical 
calculations. Recently, density functional theory (DFT) has emerged 
as a reliable and inexpensive method that is capable of successfully 
predicting the properties of the chemical systems [7]. It is important 
to create a synergy between experimental and computational studies to 
explain the adsorptive behaviour and mechanism of organic inhibitors. 
We have carried out previous work on the efficiency of Chloroquine 
as Corrosion Inhibitor for Aluminium [8]. Therefore, this article is 
devoted to study the inhibitory action of Amodaquine and Nivaquine 
for aluminium in hydrochloric acid using weight loss method and 
quantum chemical techniques.

Experimental Methods
Materials

The materials used for the study were aluminium sheets of 
composition (wt%): Si (0.125), Mn (0.0158), Cu (0.536), Zn (0.007), 
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charged metal surface.

Ti (0.21), Fe (0.454), Sn (0.017), Pb (0.001) and Al (98.635) obtained 
from KOLORKOTE, Sango-Ota, Nigeria. Each sheet was mechanically 
pressed cut to form different coupons, each of dimension 4 cm by 3 
cm by 0.45 mm. These coupons were used as supplied without further 
polishing, but were degreased in absolute ethanol, dried in acetone, 
weighed and stored in moisture free desiccators, prior to use. All 
reagents used for the study were Analar grade and distilled water 
was used for their preparation. Aggressive solution of 1 M HCl was 
prepared by dilution of analytical grade HCl (37.25%) with distilled 
water in a standard flask. Stock solution of Amodaquine and Nivaquine 
were each made in 50 ml ethanol and then made up to 1 dm3 of distilled 
water to have the highest concentration (10 × 10-3 M) from which other 
concentrations were prepared. The chemical structures of Amodaquine 
and Nivaquine are given in Figures 1 and 2.

Gravimetric (weight loss) measurement

The gravimetric experiments were performed on a previously 
weighed aluminium coupon completely immersed in 50 ml of the 
test solution in an open beaker in absence and presence of different 
concentration of the inhibitors. The beaker was inserted into a water 
bath maintained at 30°C for 8 hours, the specimen were taken out, 
washed in a solution containing a mixture of 50% NaOH and 100 g/L of 
zinc dust. The washed coupons were dipped in acetone and allowed to 
air dry before re-weighing. The difference in weight was taken as total 
weight loss. The experiment was repeated at 60°C. From the evaluated 
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weight loss, the inhibition efficiency (% IE) of the inhibitor, degree of 
surface coverage (Ө) and corrosion rates (CR) were calculated using 
equations (1)-(3) respectively [9,10].
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Where W1 and W2 are the weight losses (g) for aluminium in the 
presence and absence of the inhibitor in HCl solution; Ө is the surface 
coverage of the inhibitor; A is the area of the aluminium coupons (in 
cm2); t is the period of immersion (in hours) and W is the weight loss 
of aluminium after time, t. All the measurements were performed in 
triplicate and the mean value recorded.

Computational details

Quantum descriptor calculations were performed using Density 
Functional Theory (DFT), B3LYP with 6-311++G**. The quantum 
descriptors obtained were EHOMO, ELUMO, ELUMO-EHOMO (Eg ), Total energy, 
Dipole moment (µ), The absolute electronegativity (χ), The absolute 
hardness (η), softness (σ) where obtained using Koopman’s reactant index.

NCl

NH

OH

N

CH3

CH3
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Figure 1: The chemical molecular structure of Amodaquine.
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Figure 2: The chemical molecular structure of Nivaquine.

Temperature (°C) Concentration (M) Corrosion Rate (× 10-3mg/cm hr) Inhibition efficiency (%) Surface Coverage
Blank 5.61 . .

2 × 10-3 3.75 33.07 0.3307
4 × 10-3 3.3 41.14 0.4114

30°C 6 × 10-3 2.81 49.94 0.4994
8 × 10-3 2.26 59.61 0.5961
10 × 10-3 1.86 66.83 0.6683

Blank 5.98 ... ...
2 × 10-3 4.23 29.37 0.2937

60°C 4 × 10-3 3.75 37.31 0.3731
6 × 10-3 3.29 45.01 0.4501
8 × 10-3 2.78 53.53 0.5353
10 × 10-3 2.41 59.24 0.5924

Table 1: Calculated values of corrosion rate (CR), surface coverage (Ө) and Inhibition Efficiency (%IE) of aluminium corrosion in different concentration of Amodaquine at 
30°C and 60°C.
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η
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Results and Discussion
Effect of inhibitor concentration

The corrosion parameters obtained by weight loss measurement 
for aluminium in the absence and presence of different concentrations 
of the inhibitors in 1 M HCl at different temperatures are tabulated in 

Tables 1 and 2 for Amodaquine and Nivaquine respectively. As seen 
from the table, the increase in the concentration of the inhibitors 
afforded decrease in the corrosion rate values while inhibition 
efficiency increased. The decrease with the rise in temperature, indicate 
that at higher temperature, dissolution of aluminium predominates 
on the surface. This effect can be explained by the decrease in the 
strength of the adsorption process at high temperature; suggesting 
physical adsorption [11]. The inhibition efficiency and surface coverage 
were found to be higher in Nivaquine whereas the corrosion rate was 
observed to be higher in Amodaquine.

Adsorption isotherm and thermodynamic parameters

Adsorption isotherm study describes the adsorptive behavior of 
organic inhibitors which explains the adsorption mechanism. Two 
types of adsorption may be distinguished i.e., physical and chemical. 

Temperature (°C) Concentration (M) Corrosion Rate (× 10-3mg/cm hr) Inhibition efficiency (%) Surface Coverage
Blank 5.61 .

2 × 10-3 3.53 37.01 0.3701
4 × 10-3 2.66 52.55 0.5255

30°C 6 × 10-3 1.14 79.62 0.7962
8 × 10-3 0.7 88.05 0.8805

10 × 10-3 0.34 93.87 0.9387
Blank 5.98 ... ...

2 × 10-3 3.99 33.33 0.3333
60°C 4 × 10-3 3.34 44.12 0.4412

6 × 10-3 2.91 48.72 0.4872
8 × 10-3 2.24 62.58 0.6258

10 × 10-3 1.69 71.77 0.7177

Table 2: Calculated values of corrosion rate (CR), surface coverage (Ө) and Inhibition Efficiency (% IE) of aluminium corrosion in different concentration of Nivaquine at 
30°C and 60°C.
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Figure 3: Freundlich adsorption isotherm plot as log (% IE) versus log C for aluminium coupons in 1 M HCl solution containing different concentration of Amodaquine.
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Figure 4: Freundlich adsorption isotherm plot as log (% IE) versus log C for aluminiumcoupons in 1 M HCl solution containing different concentration of Nivaquine.
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However, which predominates over the other is detected from the 
temperature studies. Physisorption predominates if inhibition efficiency 
decreases with increase in temperature. Hence, it can be concluded 
that in the adsorption of the inhibitors, it is the physisorption which 
predominates because Inhibition efficiency decreased with increase in 
temperature. Furthermore, a plot of log (%IE) vs log C gives a straight 
line indicating Freundlich adsorption isotherm (Figures 3 and 4). The 
correlation coefficient R2 was used to choose the isotherm that best 
fit experimental data. The Freundlich adsorption isotherm was found 
to be the best description of the adsorption behaviour of the studied 
inhibitor on the aluminium surface as the correlation coefficient were 
0.980 at 30°C and 0.988 at 60°C for Amodaquine and 0.972 at 30°C 
and 0.961 at 60°C for Nivaquine with a negligible deviation of the slope 
from unity. According to this isotherm, the inhibition efficiency (%IE) 
is related to the equilibrium adsorption constant Kads and the inhibitor 
concentration C according to the equation:

%IE=KCn   (7)

Where 0<n<1, or

log%IE=log Kads+nlogC                     (8)

The free energy of adsorption ∆G°
ads calculated using the equation 

below, is presented in Table 2.

∆G°
ads=-RTln (55.5Kads)              (9)

Where R is the molar gas constant, T is the absolute temperature 
and 55.5 is the concentration of water in solution in mol-1 [12].

The value of ∆G°
ads of the inhibitor was found to be -25.733 kJ/mol at 

30°C and -27.975 kJ/mol at 60°C for Amodaquine and -28.83 kJ/mol at 
30°C and -28.714 kJ/mol at 60°C for Nivaquine (Table 3). The negative 
value of ΔGads indicated spontaneous adsorption of the inhibitor on the 
aluminium surface. From the result, Nivaquine spontaneously adsorbs 
more than Amodaquine. Generally, the magnitude of ΔGads -20 kJ/mol 
or less negative indicates electrostatic interactions between inhibitor 
and the charged metal surface (i.e., physisorption). Those around -40 
kJ/mol or more negative are indicative of charge sharing or transferring 

from organic species to the metal surface to form a coordinate type 
of metal bond (i.e., chemisorptions) [13]. In the present work, the 
calculated values of ΔG° at 303 K for aluminium is -25.733 kJ/mol and 
-28.83 kJ/mol, which indicate that adsorption of the inhibitor on the 
aluminium surface involves physical process [14-16]. The inhibition 
efficiency decreased with increasing temperature indicating inhibitor 
adsorbed predominantly physically on the surface of mild steel. The 
efficiency of an organic compound as corrosion inhibitor depends 
not only on the characteristics of the environment in which it acts, 
the nature of the metal surface and electrochemical potential at the 
interface, but also on the structure of the inhibitor itself, which includes 
the number of adsorption active centers in the molecule, their charge 
density, the molecule size, the mode of adsorption, the formation 
of metallic complexes and the projected area of the inhibitor on the 
metallic surface.

Effect of temperature

The effect of temperature on the corrosion rate of aluminium in 1 
M HCl solution in the absence and presence of different concentrations 
of the inhibitors were studied at 30°C and 60°C by weight loss 
measurements. The data in Tables 1 and 2 shows that the % IE decreases 
as the temperature increases and with decrease in concentration of 
studied inhibitors.

In acidic solution, the corrosion rate is related to temperature by 
Arrhenius equation.

Log CR=log A - Ea/2.303RT            (10)

Where CR, is the corrosion rate determined from the weight loss 
measurement. Ea, the apparent activation energy. A, the Arrhenius 
constant. R, the molar gas constant and T, the absolute temperature.

The values of activation energies were calculated and given in Table 
4. These values indicated that the presence of both inhibitors generally
increases the activation energy of metal dissolution. The adsorption of 
the studied inhibitors is assumed to occur on the higher energy sites 
and the presence of the inhibitor, which results in the blocking of the 

Inhibitor Temperature (°C) Adsorption Parameter
Kads ∆Gads (kJ/mol) Slope R2 Intercept

Amodaquine 30 492.04 -25.733 0.44 0.98 2.692
60 440.55 -27.975 0.44 0.99 2.692

Nivaquine 30 1682.7 -28.83 0.615 0.97 3.226
60 638.26 -28.714 0.464 0.96 2.760

Table 3: Adsorption parameters from Freundlich Isotherm for Aluminium coupons in 1 M HCl containing different concentrations of the inhibitors at 30°C and 60°C.

Inhibitor Concentration (M) Activation Parameter
Ea (kJ/mol) A ∆H (kJ/mol) ∆S (kJ/mol K)

Amodaquine Blank 1.7864 0.0114 -0.8545 -291.03
2 × 10-3 3.3689 0.0143 0.7282 -236.09
4 × 10-3 3.5754 0.0136 0.9348 -232.09
6 × 10-3 4.4106 0.0162 1.7703 -230.67
8 × 10-3 5.7919 0.0225 3.1515 -227.92
10 × 10-3 7.2456 0.033 4.6049 -223.56

Nivaquine Blank 1.7864 0.0114 -0.8545 -291.03
2 × 10-3 3.426 0.0137 0.7855 -232.02
4 × 10-3 6.367 0.0333 3.7265 -224.67
6 × 10-3 26.211 37.538 23.57 -166.22
8 × 10-3 32.532 283.3 29.891 -149.42

10 × 10-3 44.85 18264 42.209 -114.77

Table 4: Activation parameters from Arrhenius and Transition state Equations for the rate of corrosion of aluminium coupons in 1 M HCl solution containing different 
concentration of Amodaquine and Nivaquine.
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the entropy of activation ∆S° were obtained from the transition state 
equation:

CR=(RT/Nh) exp (∆S°/R) exp- (∆H°/RT)             (11)

Where h, is the Planck’s constant, N; is the Avogadro’s number; 
T, is the Absolute temperature and R is the molar gas constant. Plots 
of log (CR/T) as a function of 1/T (Figures 5 and 6) were made and 
straight lines were obtained. ∆H° and ∆S° were computed from the 
slope and intercept respectively from the linear plots. The computed 
values of the thermodynamics parameters of activation for the 
dissolution of aluminium at different temperature are presented in 
Table 4. Examination of these data reveals that the values of ∆H° and 
∆S° in the presence of the additives increase over that of the uninhibited 
solution. This implies that the energy barrier of the corrosion reaction 
in the presence of inhibitors increased, which is expected. The value 
of ∆H° and ∆S° for the inhibited is more than of the uninhibited. The 
positive values of ∆H° show the endothermic nature of the process 
in the inhibited system. ∆S° is positive, meaning that a decrease in 
disorderliness takes place in going from reactants to the activated 
complex.

Quantum descriptors

Quantum-chemistry calculations have been performed in order to 
study the molecular structure and the reaction mechanisms to interpret 
the experimental results as well as to solve chemical ambiguities and 
to correlate the inhibition efficiency to the molecular properties of 
inhibitor. The optimized geometry of the inhibitors as well as the nature 
of their molecular orbitals, HOMO (Highest Occupied Molecular 
Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) are shown 

Figure 5: Frontier Molecular Orbital Diagram (HOMO) of Amodaquine.

Figure 6: Frontier Molecular Orbital Diagram (HOMO) of Nivaquine.

Figure 7: Optimized structure of Amodaquine.

Figure 8: Optimized structure of Nivaquine.

active sites, must be associated with an increase in the activation energy 
of aluminium corrosion in the inhibited state. The higher values of 
Ea in the presence of inhibitors compared to that in the absence and 
the decrease in the IE% with rise in temperature is interpreted as 
physisorption [17]. The values of the enthalpy of activation ∆H° and 

Figure 9: Frontier Molecular Orbital Diagram (LUMO) of Amodaquine.

Figure 10: Frontier Molecular Orbital Diagram (LUMO) of Nivaquine.
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in Figures 5-10. According to the frontier molecular orbital theory, 
the formation of a transition state is due to an interaction between 
the highest occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO) of reactants [18]. The energy of 
the HOMO is directly related to the ionization potential and the energy 
of the LUMO is directly related to the electron affinity. The HOMO-
LUMO gap, i.e., the difference in energy between the HOMO and 
LUMO, is an important stability index [19]. A large HOMO-LUMO 
gap implies high stability for the molecule in chemical reactions [20]. 
The concept of activation hardness has been also defined on the basis of 
the HOMO-LUMO energy gap. The qualitative definition of hardness 
is closely related to the polarizability, since a decrease of the energy gap 
usually leads to easier polarization of the molecule [21].

Quantum chemical parameters related to the molecular electronic 
structure such as, EHOMO, ELUMO, energy gap (∆E=ELUMO-EHOMO) and 
the dipole moment (µ), total energy (TE), absolute hardness (η), 
absolute electronegativity (χ), and softness (σ) were calculated. It is 
found that, high EHOMO values of the inhibitors led to higher electron 
donating ability to appropriate acceptor molecules with low energy 
empty molecular orbitals. Low ELUMO value of the inhibitors suggests 
that it accept electrons easily from donor molecules. The difference in 
energy, Eg, is the energy required to move an electron from HOMO to 
LUMO. The smaller value of Eg of the inhibitors facilitates adsorption 
of the molecule and thus will cause higher inhibition efficiency, because 
the energy to remove an electron from the last occupied orbital will 
be low. A hard molecule has a large energy gap and a soft molecule is 
associated with a small energy gap. Therefore, soft molecules are more 
reactive than hard molecule [22,23]. The most widely used quantity to 
describe the polarity is the dipole moment of the molecule [24]. The 
dipole moment (μ) and Polarizability for Nivaquine was found to be 
higher than that of Amodaquine, this favoured greater accumulation 
of Nivaquine molecules on the metallic surface; the Polar surface area 
according to Table 5 implies that it has a good inhibitive potential. 

Excellent corrosion inhibitors are usually those organic compounds 
that not only donate electrons to unoccupied orbital of the metal surface 
but also accept free electrons from the metal [25].
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Softness 0.489 0.444

Absolute hardness 2.045 2.25
Absolute electronegativity 3.775 3.27

CPK PSA 34.659 86.566
Dipole moment (Debye) 6.54 14.22

Polarizability 68.57 73.36

Table 5: Quantum parameters for Amodaquine.
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