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Abstract

In this paper we study quantizations, associativity constraints and braidings in the
monoidal category of monoid graded modules over a commutative ring. All of them can
be described in terms of the cohomology of underlying monoid. The case when the monoid
is a finite topology has the main interest for us. The cohomology classes which are invari-
ant with respect to homeomorphism group produce remarkable algebraic constructions. We
study in details the Sierpinski and discrete topology and show the relations with the Clif-
ford algebras, the Cayley algebra and their quantizations. All of them are α-associative and
σ-commutative for suitable associativity constraints α and braidings σ.

Dedicated to Maks A. Akivis on the occasion of his
85th birthday and 65 years of scientific activity

1 The monoidal category of graded modules

Throughout this paper, let M be a finite commutative monoid. Let k be a commutative ring
with unit. Denote by kM -mod the strict monoidal category of M -graded k-modules. The objects
in the category are M -graded k-modules and the arrows are the M -graded morphisms. kM -mod
has the strict monoidal structure where the tensor product of two objects X = ⊕i∈MXi and
X ′ = ⊕j∈MX ′

j is the k-module X ⊗k X ′ with grading

(X ⊗k X ′)m = ⊕i+j=m(Xi ⊗k X ′
j)

The ring k is a unit object e as we define k to be indexed by 0 ∈ M and components indexed

by m ∈ M , m 6= 0, are all zeros. Thus we have isomorphisms λ and ρ, e⊗k X
λ∼= X

ρ∼= X ⊗k e.
An algebra 〈A,µ, η〉 in the monoidal category kM -mod is called M -graded k-algebra. Here

µ and η are morphisms of multiplication µ : A ⊗ A → A and unit η : e → A such that µ is
associative and unit-preserving. Note that µ maps Ai ⊗ Aj to Ai+j . In the same manner one
defines an M -graded A-module as a module X with an action ν : A⊗X → X in the monoidal
category kM -mod.

Let X be a M -graded k-module. Denote by {πm : X → X}m∈M a family of projectors where
πm is the projector X on Xm , Xm = Im (πm),

∑

m∈M

πm = 1X and πm πm′ = 0

if m 6= m′. Any such family of projectors determines a M -grading on a k-module X.
Consider the algebra of all k-valued functions on M , k (M). Then functions {θm}m∈M ,

θm

(
m′) =

{
0 if m′ 6= m,
1 if m′ = m
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for m,m′ ∈ M , constitute a basis of the algebra. We define a k (M)-module structure on the
M -graded k-module X by putting θm · x = πm (x) for m ∈ M and x ∈ Xm. For any function
f ∈ k (M) we define the action of f on X as follows

f · x =

( ∑

m∈M

f (m) θm

)
· x def=

∑

m∈M

f (m) πm (x)

If X is a k-module, then X is a k (M)-module if and only if it is a M -graded k-module. Hence,
we get an isomorphism between the monoidal category of M -graded k-modules and the category
of k (M)-modules.

1.1 Group gradings and actions

Let G be a finite abelian group and Ĝ be the dual group of G consisting of all group homomor-
phisms G → T, Ĝ = Hom (G,T), where T = {z ∈ C | |z| = 1} is the 1-dimensional torus.

In this section we will show that Ĝ-grading gives G-action, and the other way around, and that
we have an isomorphism between the Ĝ-graded C-modules and G-modules. This isomorphism
will be useful in applications of the theory developed in this paper.

Denote by {δg}g∈G =
{
θ∗g

}
g∈G

the the basis consisting of Dirac δ-functions in the dual of
the function algebra C [G] = C (G)∗ = HomC (C (G) ,C), where C [G] is the group algebra of G.
Note that G-module structure and C[G]-module structure induce each other.

The Fourier transform F is the algebra isomorphism between C [G] = C (G)∗ and C
(
Ĝ

)

F : C [G] → C
(
Ĝ

)

given by F (δg) (κ) = κ (g), for g ∈ G, κ ∈ Ĝ, and

F−1 (f) =
1
|G|

∑

κ∈Ĝ
g∈G

λκ κ
(
g−1

) · δg

where f =
∑
κ∈Ĝ λκθκ ∈ C

(
Ĝ

)
. We get the following commutative diagram:

C[G]⊗X - X

C(Ĝ)⊗X

F ⊗ id

?
- X

id

?

which shows that if X is a G-module we get a C
(
Ĝ

)
-module structure on X by f ·x = F−1 (f)·x,

for x ∈ X, f ∈ C
(
Ĝ

)
, and, conversely, if X is a Ĝ-graded C-module, then we get an action of

G on X by g · x = F (δg) · x, for x ∈ X, g ∈ G. This establishes an isomorphism between the
monoidal category of G-modules and Ĝ-graded modules over C, [3].

2 Associativity constraints, braidings and quantizations

Recall that an associativity constraint α, see [7], in a monoidal category C is a natural isomor-
phism

α : X ⊗ (Y ⊗ Z) →̃ (X ⊗ Y )⊗ Z, X, Y, Z ∈ Ob (C)
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that satisfies the Mac Lane coherence condition.
A braiding of a monoidal category C is a natural isomorphism

σ = σX,Y : X ⊗ Y →̃Y ⊗X

for X, Y ∈ Ob (C), which preserves the unit and the associativity constraint, α ◦ σ ◦ α =
σ ⊗ 1 ◦ α ◦ 1 ⊗ σ and α−1 ◦ (σ ⊗ 1) ◦ α = 1 ⊗ σ ◦ α−1 ◦ σ. Let A ∈ Ob (C) be an algebra with
multiplication µ : A⊗A → A. We say that A is σ-commutative if µ = µ ◦ σ, see [5].

A quantization, see [6], of a monoidal category C is a natural isomorphism of the tensor
bifunctor

qX,Y : X ⊗ Y →̃X ⊗ Y

for X, Y ∈ Ob (C), which preserves the unit and the associativity, q ◦ (q ⊗ 1)◦α = (q ⊗ 1)◦ q ◦α.
Any braiding σ can be quantized as follows

σq
X,Y = q−1

Y,X ◦ σX,Y ◦ qX,Y

and σq is a braiding too.
We define a quantization Aq of an algebra A given by a quantization q in the category C to

be the same object A equipped with a new multiplication

µq = µ ◦ qA,A : A⊗A → A

Aq = (A,µq, η) is an algebra, see [6]. If an algebra A is σ-commutative, then Aq is σ-
commutative. If X is a left A-module in the category with the action ν : A⊗X → X, then by
a quantization Xq of the A-module X we mean the same object X equipped with a new action

νq = ν ◦ qA,X : A⊗X → X

Xq = (X, νq) is also a left A-module in C, see [6].
The following theorems give the complete description of the associativity constraints, quan-

tizations and braidings in the category of graded modules as in [3].

Theorem 1. Any associativity constraint α in the category kM -mod of M -graded k-modules has
the form

α : xi ⊗ (yj ⊗ zl) 7−→ α (i, j, l) (xi ⊗ yj)⊗ zl

where α : M ×M ×M → U (k) is a normalized 3-cocycle, α ∈ Z3 ( M, U (k)) with values in the
group of units U (k). Furthermore, the orbits of all associativity constraints under the action
of natural isomorphisms of the tensor bifunctor are in one-to-one correspondence with the 3rd

cohomology group H3 (M, U (k)).

Theorem 2. Any quantization q of the category of M -graded k-modules has the form

q : xi ⊗ yj 7−→ q (i, j)xi ⊗ yj

where q : M ×M → U (k) is a normalized 2-cocycle. Moreover, the orbits of all quantizations
under the action of unit-preserving natural isomorphisms of the identity functor are in one-to-
one correspondence with the 2nd cohomology group, H2 (M, U (k)).
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Theorem 3. A braiding σ in the category kM -mod a normalized 2-cochain of M such that
σ (i, l) σ (l, i) = 1, that is, any braiding in kM -mod is a symmetry. Furthermore, the following
equations are satisfied

σ (i + j, l) =
α (i, l, j)

α (i, j, l) α (l, i, j)
σ (i, l) σ (j, l) (2.1)

σ (i, j + l) =
α (i, j, l) α (j, l, i)

α (j, i, l)
σ (i, j)σ (i, l) (2.2)

If the associativity constraint α is trivial we get the bihomomorphism conditions

σ (i + j, l) = σ (i, l) σ (j, l) , σ (i, j + l) = σ (i, j) σ (i, l)

3 Cohomology of the Sierpinski topology

In this section we calculate the zero, first, second and third cohomology groups of the Sierpinski
topology. We will use these groups to find possible quantizations and associativity constraints
of the category of modules graded by the Sierpinski topology.

The Sierpinski topology τ is the topology of the Sierpinski set; the two-point set Ω = {a, b}
where the point a is open and the point b is closed. Hence, the topology τ consists of {∅, {a} , Ω}.
Denote ∅ by 0, {a} by a and Ω by 1, then the monoid structure on τ is given by

0 + a = a + 0 = a, 1 + t = t + 1 = 1 and a + a = a, t = a, 0

Note that, a τ -graded k-algebra can be viewed as algebra

A = A0 ⊕Aa ⊕A1

where A0 is a k-algebra, Aa and A1 are A0-algebras and, in addition, A1 is an Aa-algebra.
Straight forward calculations, see [2], show that cohomology groups of the Sierpinski topology

with coefficients in an abelian group G are the following:

H0 (τ, G) = G, H1 (τ, G) = 1, H2 (τ, G) = 1, H3 (τ, G) = G

Hence, for the category of τ -graded k-modules there are no non-trivial quantizations, but there
are non-trivial associativity constraints. They have the following description.

Theorem 4. Any 3-cocycle α : τ ×τ ×τ → U (k), on the Sierpinski topology τ has the following
form:

α (i, j, l) = rf1(i,j)rf2(j,l)

where r ∈ U (k), i, j, l ∈ τ , and f1, f2 : τ×τ → τ , are functions such that f1 (a, 1) = f2 (1, a) = 1
and f1 (i, j) = f2 (i, j) = 0 for all other (i, j) ∈ τ × τ.

4 The power algebra P (Ω)

Let Ω be a set consisting of n elements Ω = {a1, . . . , an} and let P (Ω) denote the power algebra
of Ω, that is, the algebra of all subsets of Ω. P (Ω) has the group structure with respect to
symmetric difference (A,B) 7−→ A¤B = A ∪B\A ∩B. The passing to characteristic functions
gives us an isomorphism from this group to the additive group of characteristic functions on Ω
with values in Z2 = {0, 1}, hence P (Ω) ∼= (Z2)

n.
From now on we distinguish the following two group structures; the multiplicative group,

(Z2, ·) = ({1,−1} , ·), denoted by Z·2, and the additive group, (Z2, +) = ({0, 1} , +), denoted by
Z+

2 .
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4.1 The Fourier-Hadamard transform

Let k ⊃ Q and X be a k-module and ρ : Z·2 → AutR (X) be a representation. Note that
ρ (−1)2 = ρ (1) = 1. Then the operators

π1 =
(ρ (1)−ρ (−1))

2
and π2 = 1− π1 =

(ρ (1)+ρ (−1))
2

are projectors such that X = π1 (X)⊕ π2 (X) is a Z·2-graded k-module.
Let {θ1, θ−1} be the basis of k (Z·2) as a vector space over k and let {δ1, δ−1} =

{
θ∗1, θ

∗
−1

}
the

basis of k [Z·2] = k (Z·2)
∗. We have

δm ·X = ρ (m) (X)

for all m ∈ Z·2. If we define

θ1 ·X = π2 (X) =
(δ1 + δ−1)

2
·X and θ−1 ·X = π1 (X) =

(δ1 − δ−1)
2

·X

then we get k (Z·2)-module structure on X. This operator one can consider as a ”change of
rings”, see [3], with respect to the algebra isomorphism

F : k (Z·2) → k [Z·2]

where

θ1 7−→ (δ1 + δ−1)
2

and θ−1 7−→ (δ1 − δ−1)
2

This is the Fourier transform for Z·2. For (Z·2)
n we define an algebra isomorphism

k ((Z·2)
n) = k (Z·2)⊗ · · · ⊗ k (Z·2)︸ ︷︷ ︸

n−times

F⊗···⊗F' k [(Z·2)
n] = k [Z·2]⊗ · · · ⊗ k [Z·2]︸ ︷︷ ︸

n−times

This is the Fourier-Hadamard transform and it allows us to establish an isomorphisms between
the monoidal categories of Z·2-graded modules and of Z·2-modules.

4.2 The cohomology group of P (Ω) with coefficients in U (R) .

Here we describe cohomology of the power algebra P (Ω) with coefficients U (R) in a form
suitable for us. Let k = R and U (k) = R \ {0}. We only need to calculate the cohomology with
coefficients in Z·2 ⊂ U (R). Now,

Hr
(
Z+

2 ,Z·2
)

= (Z2, ·)

for all r ≥ 0. The trivial cohomology classes are represented by f = 1. The non-trivial
cohomology classes are represented by f ∈ Zr

(
Z+

2 ,Z·2
)
, with f (x1, . . . , xr) = (−1)x1···xr . Hence,

H∗ (Z·2,Z·2) ∼= Z2 [l]

where Z2 [l] is the polynomial algebra with coefficients in Z2.
Let n ≥ 2. The correspondence P ∈ Cr

(
M,Z+

2

) 7−→ (−1)P ∈ Cr (M,Z·2) establishes an
isomorphism between Hr

(
M,Z+

2

)
and Hr (M,Z·2) for any monoid M . Therefore

H∗ ((
Z+

2

)n
,Z·2

) ∼= H∗ ((
Z+

2

)n
,Z+

2

) ∼= H∗ (
Z+

2 ,Z+
2

)⊗ . . .⊗H∗ (
Z+

2 ,Z+
2

)
︸ ︷︷ ︸

n−times
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by the Künneth formula, we get

H∗ ((
Z+

2

)n
,Z·2

) ∼= Z2 [l1]⊗ . . .⊗ Z2 [ln] ∼= Z2 [l1, . . . , ln]

where each li is the ith coordinate function from (Z2, +)n to the commutative ring Z2. Hence,
for the power algebra we get

Hr (P (Ω) ,Z·2) ∼= Zr
2 [l1, . . . , ln]

which is the subspace of the polynomial algebra consisting of all homogeneous polynomials of
degree r with coefficients in (Z2,+, ·). Each f ∈ Cr (P (Ω) ,Z·2) has the form

f (x1, . . . , xr) = (−1)P (l1,...,ln)(x1,...,xr)

where

P (l1, . . . , ln) (x1, . . . , xr) =
n∑

i1,...ir=1

ai1...ir li1 (x1) · · · lir (xr)

is a homogeneous polynomial of degree r and ai1 ...ir ∈ Z+
2 . It follows that a representative

f for the cohomology classes of degree 1 is represented by a vector in the vector space (Z2)
n

a representative of the cohomology of degree 2 is represented by a symmetric n × n matrix
A = (aij) with entries in Z+

2 , and similarly for higher dimensions.

5 Aut (Ω)-invariant cohomology groups

In this section we investigate quantizations and associativity constraints on P (Ω)-graded alge-
bras invariant under permutations.

Denote by Aut (Ω) ∼= Sn the group of all automorphisms of Ω. Any s ∈ Aut (Ω) introduces
an automorphism on the power algebra P (Ω) by

B 7→ χB ◦ s−1

B ∈ P (Ω) and χB is the characteristic function of B on Ω. We need cohomologies represented by
Aut (Ω)-invariant cohomology classes, i.e. that are independent on the labelling of the elements
of Ω. They correspond to f ∈ Zr (P (Ω) ,Z·2), f = (−1)P , P ∈ Zr

(
P (Ω) ,Z+

2

)
where if P is

symmetric and therefore is a polynomial of the elementary symmetric polynomials s1, . . . , sn in
n variables l1, . . . , ln.

5.1 The Aut (Ω)-invariant second cohomology and quantizations

Let a representative of a non-trivial second cohomology class f = (−1)P ∈ Z2 (P (Ω) ,Z·2) be
Aut (Ω)-invariant. Then P is a Z2-linear combination of the symmetric polynomials

P ∈ {
s2
1, s2, s

2
1 + s2

}

5.1.1 Quantizations of the two-point algebra

For the case n = 1, Ω has only one point, P (Ω) ' (Z2, +) and we have only one symmetric
quantization, q = (−1)s2

1 .
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Consider invariant quantizations of the Z+
2 -graded algebra A = A0̄ ⊕ A1̄ = R

[
Z+

2

]
(the two-

point algebra) with the basis {1, e}, with the property e2 = 1. We get the quantized R-algebra
As2

1
by introducing a new multiplication, ∗s2

1
, on A. For e ∈ A1̄,

e ∗s2
1
e = (−1)s2

1 e2 = (−1)l(1)l(1) = −1

As2
1

has as the basis {1, e} with the property e2 = −1, hence As2
1

= C. If we now again quantize
As2

1
by q we are back at the monoidal algebra R

[
Z+

2

]
.

5.1.2 Quantizations of the four-point algebra

For n ≥ 2 we have the three non-trivial possibilities for P described above. For the case n = 2,
Ω consists of two points and P (Ω) has four elements.

Let A = R
[(
Z+

2

)2
]

be the four-point algebra of rank 4 over R with the basis {1, e1, e2, e1e2}
where e1 corresponds to the grading by (1, 0) and e2 to (0, 1) and has the properties e2

1 = 1 =
e2
2 and e1e2 = e2e1. We get the following quantizations of this algebra.

The matrix algebra, Mat2 (R) : Take P = s2 = l1l2. Then the quantized algebra As2 is the
algebra with properties

e1 ∗s2 e1 = 1
e2 ∗s2 e2 = 1

e1 ∗s2 e2 + e2 ∗s2 e1 = 0

This algebra is isomorphic to Mat2 (R).

The tensor algebra, C⊗RC : Now take P = s2
1 = l21 + l22. Then for the quantized algebra

As2
1

is the algebra with properties

e1 ∗s2
1
e1 = −1

e2 ∗s2
1
e2 = −1

e1 ∗s2
1
e2 = e2 ∗s2

1
e1

which is isomorphic to C⊗RC.

Quaternions, H : Take P = s2
1 + s2 = l1l2 + l21 + l22. Then in the quantized algebra As2

1+s2
is

the algebra with properties

e1 ∗s2
1+s2

e1 = −1

e2 ∗s2
1+s2

e2 = −1

e1 ∗s2
1+s2

e2 + e2 ∗s2
1+s2

e1 = 0

which is isomorphic to the quaternion algebra H.

Remark 1. The 3 algebras we now have described, C⊗RC, Mat2 (R), H, make out the complete
list of the semisimple R-algebras of rank 4, and the two last ones are the Clifford algebras.
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5.1.3 Quantization of the n-point algebra

For the case n ≥ 2 we get 3 different quantizations of the n-point algebra An = R
[(
Z+

2

)n]
. For

the cohomology class represented by P = s2 the quantized algebra An
s2

has a basis consisting of
all combinations ei1 ∗ · · · ∗ eir with i1 < · · · < ir, 1 ≤ r ≤ n satisfying

ei ∗s2 ei = 1, i = 1, . . . , n

ei ∗s2 ej + ej ∗s2 ei = 0, i, j = 1, . . . , n

An
s2

is isomorphic to the Clifford algebra C ′
n.

For P = s2
1 the algebra An

s2
1

has the same basis but with the properties

ei ∗s2
1
ei = −1, i = 1, . . . , n

ei ∗s2
1
ej = ej ∗s2

1
ei, i, j = 1, . . . , n

An
s2
1

is isomorphic to C⊗R· · · ⊗RC︸ ︷︷ ︸
n−times

.

Further, for P = s2+ s2
1 we get the algebra An

s2+s2
1

with the basis as above with the properties

ei ∗s2+s2
1
ei = −1, i = 1, . . . , n

ei ∗s2+s2
1
ej + ej ∗s2+s2

1
ei = 0, i, j = 1, . . . , n

An
s2+s2

1
is isomorphic to the Clifford algebra Cn.

5.2 The Aut (Ω)-invariant third cohomology and associativity constraints

For Ω with n elements let α = (−1)P ∈ Z3 (P (Ω) ,Z·2) be an Aut (Ω)-invariant representation of
a third cohomology class of P (Ω) with coefficients in Z·2. There are 7 possibilities for Aut (Ω)-
invariant P :

P ∈ {
s3
1, s2s1, s3, s

3
1 + s2s1, s

3
1 + s3, s2s1 + s3, s

3
1 + s2s1 + s3

}

The representatives α of cohomology groups of degree 3 are associativity constraints on P (Ω)-
graded R-algebras A =

∑
i∈P(Ω) Ai such that

ai (ajal) = α (i, j, l) (aiaj) al

We require α (i, i, i) = (−1)P (i,i,i) = 1, that is, P (i, i, i) = 0.
Let Ω consist of one point. Then we have one possible symmetric associativity constraint

P = s3
1 = l3, but this does not satisfy P (i, i, i) = 0.

Let Ω consist of two points. We have 3 possibilities for P , that is, s3
1, s1s2 and s3

1 + s1s2.
Only P = s1s2 does satisfy the condition P (i, i, i) = 0, but s1s2 = 0 as a function over (Z2, +),
so in this case we only have the trivial associativity constraint.

6 The Cayley algebra

Let Ω consist of three points. For algebras graded by P (Ω) there are 7 possibilities for P , but
only P = s1s2 + s3 satisfies the property P (i, i, i) = 0.
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Let {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3} be the basis of the Cayley algebra or octonions C,
[8], with the multiplication table

1 e1 e2 e1e2 e3 e1e3 e2e3 e1e2e3

1 1 e1 e2 e1e2 e3 e1e3 e2e3 e1e2e3

e1 e1 −1 −e1e2 e2 −e1e3 e3 e1e2e3 −e2e3

e2 e2 e1e2 −1 −e1 −e2e3 −e1e2e3 e3 e1e3

e1e2 e1e2 −e2 e1 −1 −e1e2e3 e2e3 −e1e3 e3

e3 e3 e1e3 e2e3 e1e2e3 −1 −e1 −e2 −e1e2

e1e3 e1e3 −e3 e1e2e3 −e2e3 e1 −1 e1e2 −e2

e2e3 e2e3 −e1e2e3 −e3 e1e3 e2 −e1e2 −1 e1

e1e2e3 e1e2e3 e2e3 −e1e3 −e3 e1e2 e2 −e1 −1

.

C is an alternating algebra of rank 8 over R and is in classical point of view nonassociative and
noncommutative C is obviously graded by P (Ω).

Let 1, e1, e2 and e3 have the gradings (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively
in

(
Z+

2

)3. We see that the Cayley algebra is α-associative with respect to the associativity
constraint

α = (−1)s1s2+s3

and is σ-commutative with respect to the symmetry

σ = (−1)l1l2+l2l1+l1l3+l3l1+l2l3+l3l2+δ(g)

where g ((1, 1, 1)) = 1 and g (x) = 0 for x 6= (1, 1, 1).

If we now quantize C, the three non-trivial Aut (Ω)-invariant quantizations, q1 = (−1)s2 ,
q2 = (−1)s2

1 and q3 = (−1)s2
1+s2 , the result is new α-associative algebras with commutativities

different from the commutativity of C. Denote these by Cs2 , Cs2
1

and Cs2
1+s2

respectively. All
are α-associative as quantizations preserve the associativity given by α. They have the basis of
1, e1, e2, e3 and all combinations ei1 · · · eir with i1 < · · · < ir, 1 ≤ r ≤ 3 satisfying

ei (ejel) = − (eiej) el, i, j, l = 1, 2, 3

For Cs2 the basis has the properties

e2
i = −1, eiej = ejei, i, j = 1, 2, 3

Further, the properties of Cs2
1

are

e2
i = 1, eiej = −ejei, i, j = 1, 2, 3

Cs2
1+s2

has the properties

e2
i = 1, eiej = ejei, i, j = 1, 2, 3

Assume Ω is of dimension n. The 2n-dimensional Cayley algebra Cn is in the category of P (Ω)
-graded modules equipped with the associativity constraint α = (−1)s1s2+s3 and the symmetry

σ = (−1)l1l2+l2l1+l1l3+l3l1+l2l3+l3l2+δ(g)

Note that Cn has the basis consisting of all combinations ei1 · · · eir with i1 < · · · < ir, 1 ≤ r ≤ n
satisfying

e2
i = −1, i = 2, . . . , n



44 H. L. Huru and V. Lychagin

eiej = −ejei, i, j = 1, . . . , n

ei (ejel) = − (eiej) el, i, j, l = 1, . . . , n

When Cn is quantized we get the following 3 algebras with the same basis and all are α-associative
with respect to α = (−1)s1s2+s3 such that

ei (ejel) = − (eiej) el

for all i, j, l = 1, . . . , n. The quantization q1 = (−1)s2 produces the algebra Cn,s2 such that

e2
i = −1, i = 2, . . . , n

eiej = ejei, i, j = 1, . . . , n

Cn,s2 is σ′-commutative with respect to the symmetry

σ′ = (−1)δ(g)

The quantization q2 = (−1)s2
1 gives the algebra Cn,s2

1
with the properties

e2
i = 1, i = 2, . . . , n

eiej = −ejei, i, j = 1, . . . , n

which is σ-commutative with respect to the symmetry

σ = (−1)l1l2+l2l1+l1l3+l3l1+l2l3+l3l2+δ(g)

Furthermore, the quantization q3 = (−1)s2
1+s2 produces Cn,s2

1+s2
with the properties

e2
i = 1, i = 2, . . . , n

eiej = ejei, i, j = 1, . . . , n

which is σ′-commutative, with respect to

σ′ = (−1)δ(g)
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