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Introduction
Brain tumour is one of the most frequent cancers worldwide. 

An oligodendroglioma tumour is a slow growing brain tumour  that 
is believed to originate from the oligodendrocytes  of the brain or 
from a glial precursor cell. They occur primarily in adults (9.4% of 
all primary brain and central nervous system tumours) but are also 
found in children (4% of all primary brain tumours). The average 
age at diagnosis is 35 years [1]. These tumours are frequently located 
within the frontal, temporal or parietal lobes and cause seizures in 
a relatively high percentage of patients. Many oligodendrogliomas 
contain little specks of calcium (bone) and can easily. Based on both 
FISH and LOH findings [2], the present study suggests that the 1p/19q 
co-deletion in pure oligodendroglia tumours can be considered as a 
diagnostic, rather than a prognostic marker. 1p/19q genetic status 
has been examined in malignant gliomas since Cairncross et al. who 
described the clinical implications of 1p/19q co-deletion in patients 
with anaplastic [3-5]. Thus Oligodendrogliomas are characterized by 
1p/19q co-deletion. Because oligodendrogliomas are less aggressive 
than their grade matched astrocytic counterparts, differentiating 
between an astrocytoma and an oligodendroglioma is a key component 
of surgical neuropathology. Unfortunately, such discrimination suffers 
from high inter-observer variability. 

Furthermore, as cost control becomes more of an issue in 
medicine, upfront reflex molecular diagnostic testing for lesions like 
1p/19q co-deletion may not be appropriate. An accurate, unbiased 
way to predict the likelihood of 1p/19q co-deletion would greatly 
improve cost-effectiveness, reserving this expensive test for cases in 
which co-deletion is reasonably possible. The recognition of molecular 
subsets among oligodendrogliomas has raised the question whether 
distinct mutations in associated genes may serve as prognostic markers 
(Figure 1). Recently, more and more research starts to focus on the 

relationship between morphological features and oligodendrogliomas 
[6-9]. Partial oligodendroglial morphological features in GBMs were 
more frequently detected in tumours with 1p loss. In Ueki’study, which 
indicate that morphological features do necessary follow the genetic 
profile [10,11]. In that case; predict 1p/19q co-deletion status based on 
the morphologic features circularity ratio is desirable to achieve. From 
Scheie’s study, there is a strong association between phenotype and 
genotype in oligodendroglial tumours. And even when all significant 
variables are accounted for, perfect prediction (100%) of 1p/19q 
status cannot be obtained [12]. So to find out a more accurate way to 
predict 1p/19q co-deletion status based on the morphologic features 
is a necessary. On the other hand, image texture features, which is 
a set of metrics calculated in image processing designed to quantify 
the perceived texture of an image, are still play an important role in 
image classification [13,14], as well as in prediction. However, to our 
knowledge, no study has documented a detailed method to mining the 
correlation between texture features and 1p/19q co-deletion status, to 
say nothing of, combine the morphologic features and texture features 
to predict 1p/19q co-deletion status.

In this paper, our first contribution is that we proposed a 
methodology that associated nuclei morphology which released from 
tissue slides images with the 1p/19q co-deletion status. Haematoxylin 
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Abstract
Oligodendrogliomas are characterized by 1p/19q co-deletion, which generally correlates with subjective morphologic 

features like nuclei circularity ratio and texture features of the cancer nuclei. As cost control becomes more of an issue 
in medicine, upfront reflex molecular diagnostic testing for lesions like 1p/19q co-deletion may not be appropriate. This 
paper aims to develop a rigorous, unbiased digital imaging segmentation algorithm and statistical models that can 
accurately predict the likelihood of 1p/19q co-deletion based on morphology and texture, which would greatly improve 
cost-effectiveness in clinic trail. In this study, totally 28 gliomas of haematoxylin and eosin stained slides are comprised 
in this test cohort. Selected areas that had high tumour cell density were digitally analysed with a high-throughput image 
segmentation algorithm to automatically delineate the boundaries of the cell nuclei. Then we extracted the morphologic 
features and texture features based on the segmentation result, and applied them in to Lasso-logistic regression to build 
the correlation between these features with 1p/19q co-deletion status. As a comparison, we also used PAM (Prediction 
Analysis of Microarrays), RPA (Recursive Partitioning Analysis) to compare the predication performance. We find out that 
the circularity ratio of the cell, the variance of cell area for each patient, and parts of texture features effect the 1p/19q 
co-deletion status, and the false prediction rate of leave one out cross validation is at most around 10%. Moreover, we 
conduct survival analysis and find out two morphologic features and one texture features are significant influential to 
patients’ survival time.

http://www.cedars-sinai.edu/Patients/Health-Conditions/Brain-Tumors-and-Brain-Cancer.aspx
http://en.wikipedia.org/wiki/Oligodendrocytes
http://en.wikipedia.org/wiki/Brain
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and eosin stained slides from 28 gliomas comprised the training cohort. 
Selected areas that had high tumour cell density (i.e., minimal non-
neoplastic tissue contamination”) were digitally analysed with a high-
throughput image segmentation algorithm to automatically delineate 
the boundaries of the cell nuclei (typically hundreds in one image 
patch). Representative morphological features, such as the mean and 
variability of nuclear area, shape, circularity ratio, and perimeter and 
texture morphological features were collected based on segmentation 
result. Our second contribution is that we constructed three statistical 
models that can accurately predict the likelihood of 1p/19q co-deletion 
based on morphological features and texture features. Through 
the stepwise selection results for Lasso-logistic regression model 
significant image markers (variability of circularity ratio and two 
texture features) are selected. Based on these selected image markers, 
the Lasso model was constructed to predict the 1p/19q status for new 
cases. As comparison, PAM (Prediction Analysis of Microarrays) and 
RPA (Recursive Partitioning Analysis) were also used to select the 
significant image markers, trained and tested. At last, leave one out 
cross validation was used to compare the prediction performance (the 
false prediction rate) of Lasso with PAM and Recursive Partitioning 
Analysis. The accuracy of predicting 1p/19q status is significantly 
improved by our proposed models.

Furthermore, recent prospective randomized clinical trials have 
validated associations between combined 1p/19q co-deletion and 
prolonged overall survival of patients treated with radiation therapy 
with or without chemotherapy [3,4,15]. Just the same case like predicting 
1p/19q co-deletion status, the work related to predict survival time and 
mining the hazard rate of patients and their morphologic features and 
texture features extracted from gliomas of haematoxylin and eosin 
stained slides are vacant in related research. In this paper, we also 
retrieve the previous study: analysis the difference of patients’ survival 

time under different 1p/19q co-deletion status. Moreover, we built Cox 
proportional hazards model of patient and take extracted morphologic 
features and texture features as covariate. Two morphological features 
and one texture features are selected by forward stepwise selection. 
And we consider this as out third contribution.

Materials and Methods
Cell segmentation

A seed-controlled repulsivelevel setmethod [16,17] is applied 
to brain tumour cell segmentation in histopathology image.Since 
the number and the position of cells are not available, a prior, it is 
challenging to separate touching cells from each other. To this end, 
we employed a robust single-pass voting algorithm to accurately locate 
cell geometric centers, which are defined as seeds in this work. For each 
pixel (x,y) in image I(x,y), it defines a cone-shape voting area A with 
vertex at (x,y) and votes towards the direction of negative gradient 
based on the magnitude ( )| I x, y |∇ . To update the voting map V(x,y)
with the same dimension as I(x,y), a Gaussian kernel κ(u,v,μ,Σ) is 
incorporated into the voting procedure [16]:

( ) ( )
(u,v) A

V x, y V x, y || I(x, y) || (u, v, , )
∈

= + ∇ κ µ Σ∑ ,       (1)

Where A is defined as a cone-shape region by the radial range
( )min maxr , r and the angular range

( ) ( )max min max minr r cos r r sin
. x , y

2 2
− θ − θ 

∆ µ = + − 
 

denotes the mean of Gaussian kernel, and 2

2IΣ = σ  represents the 
covariance matrix. The Gaussian kernel in (1) weights the magnitude 
for each pixel based on the distance between the pixel and the vertex. 
The closer it is to the cell center, the higher value it achieves. As a 

Figure 1: The flow chart of this study.

http://en.wikipedia.org/wiki/Hazard_rate
http://en.wikipedia.org/wiki/Covariate
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sequence, the kernel encourages the voting toward the cell centre and 
the central pixels would finally obtain higher voting values compared 
with those near cell boundaries. Using a threshold to select these 
central pixels as seed candidates, mean shift [18] is applied to final seed 
detection by clustering the candidates. Since the candidates are always 
located in the cell central region, the final seeds would be correctly 
detected at the geometric centres.

With the detected seeds as warm initialization, a repulsive level 
set model [17] is employed to extract cell boundaries. Based on an 
interactive scheme, repulsive level set not only uses the competition of 
evolving contours to determine the membership of each pixel, but also 
applies the repulsion to prevent adjacent contours from overlapping. 
Let Ci (i=1,…,N) present the contours evolving toward the boundaries 
of N cells in image I, the level set energy function for cell segmentation 
with the interactive scheme can be expressed as follows:

( )
( )

( )( )( ) ( )

i b

N
2 2

1 2 N 0 i b b
i 1 in C

1 N N N
'

i i i j
i 1 i 1 j 1, j i0

E C ,C , ,C I c dxdy I c dxdy

g I C q | C q | dq A A

= Ω

= = = ≠

… = λ − + λ −

+η ∇ +ω

∑ ∫ ∫

∑ ∑ ∑∫ 

 

                        (2)

Where Ai, i=1, N denotes the region closed by contour Ci and bΩ  
represents the background. The in ( ) operator denotes the region 
inside cells. The ci, cb are the mean intensities of the cell region and 
background region, respectively. The λ0, λ1, η and ω are weights for the 
terms of cell region, background region, cell boundary, and repulsive 
scheme, respectively. Function g is chosen as a sigmoid function in the 
implementation with α representing the slope of the output curve and 
β representing the window size: 

( )
1x

g x 1 e
 

−−
α


β



 
= +  
 

,                (3)

Cell segmentation is achieved by minimizing (2) using the level 
set framework. By introducing the Euler-Lagrange representation, 
equation (2) can be solved iteratively with the gradient descent method 
[17]. Due to the last term in (2), touching cells can be automatically and 
efficiently separated from each other (Figure 2). 

Totally 28 gliomas of haematoxylin and eosin stained slides which 
cropped (select specific region of each pathology image to analysis) 
from the image provided by Norton Brain Tumour Centre, which are 
comprised in this test cohort. Each slide corresponds to a particular 
patient whose 1p/19q status is known. Selected areas that had high 
tumour cell density (i.e., minimal non-neoplastic tissue contamination) 
were digitally analysed with a high-throughput image segmentation 
algorithm to automatically delineate the boundaries of the cell nuclei 
(typically hundreds in one image patch).

Feature extraction

Based on the segmentation results, geometric features including 
nuclear area, perimeter, circularity index, and ratio between major 
and minor axes, are extracted for description. Due to the diversity 
among different cells within each image, the measurement of each 
feature would result in producing a unique distribution [19]. We 
apply the mean and the standard deviation to the geometrical features. 
Furthermore, one more robust texture feature, texton [20], is also 
calculated because of its strong discriminative power for classification 
[21]. In total, we extract 30 features consisting of 8 geometric features 
and one texton histogram containing 22 textons.

Figure 2: Cell segmentation result (a) orginal gliomas slides (b) segmention with boundaries of the cell nuclei (c) detail of one segmentation(marked as yellow); 
Figure 2a shows 16 out of 28 orginal gliomas slides; Figure 2b shows the 18 segmentation results with boundaries of the cell nuclei; Figure 2c shows a detail 
of one particular segmentation result.
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Texton-based feature is one type of widely used texture features 
recently, and has achieved great successes in image segmentation 
[22], recognition [23], classification [24], etc. Textons are defined as 
the prototype filter response vectors, which are calculated by applying 
a filter bank to the images. In order to handle variation in cell size, 
intensity, and shape, the filter bank we used consists of 48 filters with 
36 elongated filters at 6 orientations, 3 scales, and 2 phases, 8 center-
surround difference of Gaussian filters, and 4 low-pass Gaussian filters. 
Therefore, each pixel is transformed into a 48-dimensional vector. 
Since the sliding windows are overlapping when we perform filtering, 
the responses will be overly redundant such that we can cluster them 
to form a compact representation. In the implementation, we use 
K-means for clustering (K is empirically set as 22). Each of the K-means 
centers (textons) encodes certain features so that similar pixels together 
with its neighbors should be mapped to the same class. The clustering 
center set actually forms a texton histogram which can be used as a 
texture feature for classification.

Statistical Models
Lasso-logistic regression

In traditional statistical analysis, we usually use ordinary least 
square (OLS) to obtain unbiased estimators, which is not satisfied 
due to the prediction accuracy and the difficulty in interpretation. To 
enhance the prediction accuracy, we sacrifice a little bias to reduce 
the variance by add penalty terms; to make it easy to interpret, we 
often would like to determine a smaller subset of among feature space 
that exhibits the strong effects. The lasso (shorted for least absolute 
shrinkage and select operator) which was originally proposed for linear 
regression models has become a popular model selection and shrinkage 
estimation method. It shrinks some coefficients and sets others to 0, 
and hence tries to retain the good features of both subset selection and 
ridge regression. In that case, lasso is a popular method for regression 
that uses an l1 penalty to achieve a sparse solution [25,26]. The lasso 

estimate ˆˆ( , )α β can be defined as follows:

( )
2

N

i j ij
i 1 j

ˆˆ , arg min y x
=

   α β = −α − β  
   

∑ ∑
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j

tβ ≤∑                    (4)

Where t is a tuning parameter,( yi,xij) is the data set, i= 1,2,…,N and 
β=(β1,β2,…βp )

t

In particular, when the response variable is binary, the linear 
logistic regression model is often used. Updating the yi in equation (4) 

by i

i

log
1
 π
 − π 

,
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i
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π = = β =
+ −β

                      (5)

In 2008, Friedman wrote a R package ‘glmnet ’to achieve a 
computational solution for lasso model, including lasso-logistic 
regression model (lasso two classification. The algorithms use cyclical 
coordinate descent, computed along a regularization path. The 
methods can handle large problems and can also deal efficiently with 
sparse features [27,28].

In our case, we want to predict 1p/19q co-deletion status more 
accurately by using a subset of representative features among all the 
features we extracted. Due to the sparse property of lasso, the lasso- 

logistic regression model is a wise choice and can be applied to solve 
this problem. Using the lasso package: glmnet. We selected a 3-feature 
classifier among 30 features by stepwise selection: variability of 
circularity ratio, textons 9 and textons 12. 

PAM (prediction analysis of microarrays) 

PAM (Prediction Analysis of Microarrays) is a statistical technique 
for class prediction from gene expression data using nearest shrunken 
centroids. It is described in Tibshirani, Hastie, Narasimhan and Chu 
[26]. The method of nearest shrunken centroids identifies subsets of 
genes that best characterize each class. Shortly, we shrink the class 
centroids toward the overall centroids after standardizing by the 
within-class standard deviation for each gene. This standardization has 
the effect of giving higher weight to genes whose expression is stable 
within samples of the same class. Such standardization is inherent in 
other common statistical methods such as linear discriminant analysis.

Let 
( )
ij i

ik
k i 0

x x
d

m s s
−

=
+

                         (6)

Where xij be the expression for genes i=1,2,…p, samples j=1,2,…n, 

K is the number of class, and k k
1m 1/ n
n

 = + 
 

 makes the mk sj 

equal to the estimated standard error of the numerator in dik. In the 
denominator, the value s0 is a positive constant (with the same value for 
all genes), included to guard against the possibility of large dik values 
arising by chance from genes with low expression levels. We set s0 equal 
to the median value of the si over the set of genes. Then each dik is shank 
toward zero, giving '

ikd and yielding shrunken centroids or prototypes 
dik, where

( )( )'
ik ik ikd sign d d

+
= − ∆                        (7)

+ means positive part (t+ = t if t > 0 and zero otherwise). This method 
usually produces more reliable estimates of the true means.

The technique is general and can be used in many other classification 
problems. It can also be applied to image classification. PAM Software 
for the R package [29] has been available for some time now.

Using PAM, we selected a 7-feature among 30 features: they are 
mean of circularity ratio, variability of circularity ratio, variability of 
nuclear area, textons 9, textons 12, textons 6 and textons 3.

RPA (recursive partitioning analysis)

Recursive partitioning methods have become popular and widely 
used for non-parametric regression and classification in many fields. 
Especially random forests, which can deal with large numbers of 
predictor variables even in the presence of complex interactions, 
have been applied successfully in genetics, clinical medicine and 
bioinformatics within the past few years.

Classification and regression trees are a simple nonparametric 
regression approach. Their main characteristic is that the feature 
space, the space spanned by all predictor variables, is recursively 
partitioned into a set of rectangular areas, as illustrated below. The 
partition is created such that observations with similar response values 
are grouped. After the partition is completed, a constant value of the 
response variable is predicted within each area [30].

There is a R package “rpart” available to achieve this method for 
classification [31]. As a comparison of lasso model, we use PAM and 
RPA. We selected a 6-feature among 30 features: they are mean of 
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circularity ratio, variability of circularity ratio, textons 3, textons 6, 
textons 9 and textons 12.

Cox proportional hazards model

Proportional hazards models are a class of survival models, which 
states that covariates are multiplicatively related to the hazard. Sir 
David Cox observed that if the proportional hazards assumption 
holds (or, is assumed to hold) then it is possible to estimate the effect 
parameter without any consideration of the hazard function.

Result
Based on the representative morphological features we computed 

from segmentation result and texture feature cropped from original 
gliomas of haematoxylin and eosin stained slides, and applied them 
into our three statistical classification models, we get the following 
feature selection result.

As expected, only parts of features out of 30 total features indeed 
are highly significantly correlated with 1p/19q co-deletion (Table 1).

From Table 1, we can find variability of circularity ratio; textons 9 
and textons 12 are significant feature in all the three model, which may 
play an most important role in predicting 1p/19q co-deletion.

Variability of circularity ratio, textons 3 and textons 6 occur two 

times in the three statistical models, which may contribute secondarily 
to the performance of 1p/19q co-deletion prediction.

Figure 3a shows the stepwise features selection result for lasso-
logistic model. Clearly, variability of circularity ratio, textons 9 and 
textons 12 are chosen under that method. Figure 3b shows the model 
deviance by choosing different value of penalty parameters. The left 
vertical curve is the penalty parameter chosen by minimizing the 
model deviance, while the right vertical curve is the penalty parameter 
chosen by minimizing the 1 standard error of deviance. In practical, we 
prefer the 1 standard error criteria since it reflect more variability [27] 
(Figure 3).

Figure 4a shows features selection result for PAM and Figure 4b 
shows the performance of each selected feature in predicting 1p/19q 
co-deletion status (Figure 4).

Leave one out cross validation
Cross validation, sometimes called rotation estimation, is a 

technique for assessing how the results of a statistical analysis will 
generalize to an independent data set. It is mainly used in settings 
where the goal is prediction, and one wants to estimate how accurately a 
predictive model will perform in practice. One round of cross validation 
involves partitioning a sample of data into complementary  subsets, 
performing the analysis on one subset (called the training set), and 

Table 1: Feature selection result.

Method M.CR V.CR V.A Textons3 Textons6 Texstons9 Textons12
Lasso Y Y Y
PAM Y Y Y Y Y Y Y
RPA Y Y Y Y Y Y

M.CR: Mean of Circularity Ratio; V.CR: Variability of Circularity Ratio; V.A: Variability of Nuclear Area.

Figure 3: Lasso-logistic model (a) features selection (b) choose of penalty.

http://en.wikipedia.org/wiki/Survival_analysis
http://en.wikipedia.org/wiki/David_Cox_(statistician)
http://en.wikipedia.org/wiki/David_Cox_(statistician)
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Accuracy
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Complement_(set_theory)
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validating the analysis on the other subset (called the validation set or 
testing set). To reduce variability, multiple rounds of cross-validation 
are performed using different partitions, and the validation results are 
averaged over the rounds [32].

Leave-one-out cross-validation (LOOCV) is widely used when the 
data size we have is limited. As the name suggests, it involves using a 
single observation from the original sample as the validation data, and 
the remaining observations as the training data. This is repeated such 
that each observation in the sample is used once as the validation data. 
Leave-one-out cross-validation is computationally expensive because it 
requires many repetitions of training. 

As we only collect the information from 28 patients, LOOCV was 
used to compare the prediction performance of Lasso, PAM and RPA.

We find out that the false prediction rates are 7.14%, 17.85% and 
10.71%, respectively, for Lasso, PAM and RPA.

Compared to PAM and RPA, Lasso-logistic regression model 
achieved least false prediction rate (7.14%), while PAM which include 
the most features have a worst prediction performance. On the other 
hand, RPA model have the best prediction performance result when the 
patient has 1p/19q co-deletion (false prediction rate is 0). To sum up, 
we declare that variability of nuclear area is not as much as important 
to other 6 features in Table 1; mean of circularity ratio, variability of 
circularity ratio, textons 3, textons 6 are more important features when 
the patient has 1p loss then not.

Survival analysis 

To further study, we conduct survival analysis of patients’ survival 
time to 30 morphologic. In the group with 19p loss, a significantly 
better (p = 0.022) survival period was found for the patients (median 
was three times longer than those with 1p loss). In that case, we’d like 

to believe that 1p/19q co-deletion status is a critical factor to influence 
the survival time for brain tumour patients. Since we have already built 
the relationship between morphologic features and texture features 
and 1p/19q co-deletion status, to construct cox proportional hazards 
model of patient and take extracted morphologic features and texture 
features as covariate is appropriate. Three significant features (mean 
of circularity ratio, variability of circularity ratio and textons 3) are 
selected by forward stepwise selection method (Figure 5).

From that we can see mean of circularity ratio (p = 0.0048), 
variability of circularity ratio (0.0049) and textons 3 (p = 0.0207) have 
the parameter estimate 0.0968, 0.0121 and 0.024 respectively. It means 
the survival hazard rate will 0.0968, 0.0121 and 0.024 times higher than 
the baseline hazard rate we pre-choose for any unit increase in mean of 
circularity ratio, variability of circularity ratio and textons 3.

Discussion and Conclusion
The major aim of the study is to investigate the correlation 

between nuclei morphology, nuclei texture features and 1p/19q co-
deletion status based on our proposed segmentation methodology. 
Based on a cohort of 28 patients, we have achieved at most 93% 
prediction accuracy through three statistical model, which confirms 
the long-standing observation that nuclear morphology (variability of 
circularity ratio) and parts texture features (textons 9 and 12) are highly 
correlated with 1p/19q co-deletion status. The Lasso-logistic regression 
model produces the best prediction results using these discovered 
image markers. Furthermore, survival analyses are conducted based 
on patients’ survival time to those image markers and 1p/19q co-
deletion status respectively. We also detect the significant difference of 
survival time with or without 1p loss, and cox model is used to select 
those image markers regarding to survival time. Mean of circularity 
ratio, variability of circularity ratio and textons 3 are selected, which 
means they are influential to survival time. However, our study has two 

Figure 4: PAM (a) features selection (b) performance of each selected feature.

http://en.wikipedia.org/wiki/Covariate
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limitations. Firstly, the morphologic features we chose is subjective, 
and there might be possible we have ignored some other influential 
morphologic features. Secondly, we cropped/selected specific region of 
each pathology image to analysis instead of the whole image region. 
In that case, some critical latent nuclei might be ignored. In the future 
work, the additional morphologic features are currently being explored 
to further enhance prediction accuracy. Once a segmentation algorithm 
is sufficiently optimized, a validation cohort from Norton Brain 
Tumour Centre will be analysed. Additionally, instead of calculating 
from select regions, we also plan to apply the automatic image analysis 
on the whole slide scanned pathology images.
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