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Introduction
In statistical modeling, regression has been developed to 

quantify the relationship between dependent variable (outcome) and 
independent variables (covariates) for over 200 years. The classic 
regression has been one of the most widely used statistical methods to 
capture the effects at the mean. These conventional regressions assume 
that the regression coefficients/covariates effects are constant across the 
population. However, such average effects are not always of interest 
in many areas, and sometimes quite heterogeneous. For example, 
Quantile regression (QR) with applications by exploring the relation 
of the foreign direct investment and economic growth [1,2] and in 
“precision health/medicine” [3,4] have been widely adopted in related 
fields currently. A lot of researchers, economists, financial investors, 
clinicians and policymakers have showed increasing attention on 
group differences across the entire population rather than that solely 
on the average. Mean regression cannot satisfy with all of these needs 
or requirements.

Developed by Koenker and Bassett in 1978 [5], QR complements 
and improves the traditional mean regression models. In this situation 
of homogeneity assumption violated, QR quantifies the heterogeneous 
effects of covariates through conditional quantiles of the outcome 
variable, and provides a comprehensive scan of the whole distribution 
of the outcome. Additionally, it is well known that when asymmetries 
and heavy tails exist, the sample median (the 50th percentile), one of 
the best-known example of quantiles, provides a better summary of 
centrality than the mean. As a consequence, compared to the standard 
mean regression models, QR is more robust to outliers and more 
flexible, because the distribution of the outcome does not need to be 
strictly specified as certain parametric assumptions. Although mean 
regression-based methods still dominate the statistical modeling 
field, QR can be viewed as a critical extension and complement when 
assumptions are violated. Thus, QR has become a subject of intense 
investigation and application in the past decades.

QR has attracted considerable research interest in decades, and 
has been widely applied to independent data and time-to-event 
data. Recently, the use of QR for longitudinal data has also received 

increasing attention. This review article is organized to provide a brief 
overview of QR models and associated statistical methods for these 
three types of data with applications in different areas.

QR Models for Independent Data
In analogy with traditional linear regression, QR model for 

independent data was formally formulated by Koenker and Bassett 
[5] in 1978 as an extension from the notion of ordinary percentiles.
The different QR approaches can be roughly classified into two groups: 
(i) minimization of weighted absolute deviations, which is a typical
inferential method used in QR; and (ii) the maximization of a Laplace
likelihood.

The former is based on Koenker and Bassetts work [5], which 
estimated the conditional median and a full range of other quantile 
functions by minimizing asymmetrically weighted absolute residuals. 
Generally, let yi and xi denote the outcome of interest and the 
corresponding covariate vector for subject i (i=1, . . . , n), where yi is 
independent scalar observations of a continuous random variable with 
common cumulative distribution function (cdf) ( )

iyF ⋅ . The QR model 
with τth quantile for the response yi given xi takes the form of

( ) ( )  | ,
iy i iQ x g xτ β= ,      (1)

where ( ) ( )1  
i iy yQ F −⋅ = ⋅  is the inverse of cdf of yi given xi evaluated at τ 

with 0<τ<1, g(∙) is a known function. The regression coefficient vector 
β is estimated by minimizing

1
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Abstract
Quantile regression (QR) has received increasing attention in recent years and applied to wide areas such as 

investment, finance, economics, medicine and engineering. Compared with conventional mean regression, QR can 
characterize the entire conditional distribution of the outcome variable, may be more robust to outliers and mis-
specification of error distribution, and provides more comprehensive statistical modeling than traditional mean regression. 
QR models could not only be used to detect heterogeneous effects of covariates at different quantiles of the outcome, 
but also offer more robust and complete estimates compared to the mean regression, when the normality assumption 
violated or outliers and long tails exist. These advantages make QR attractive and are extended to apply for different 
types of data, including independent data, time-to-event data and longitudinal data. Consequently, we present a brief 
review of QR and its related models and methods for different types of data in various application areas.
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Where ρτ(∙) is the check function defined by ρτ(u)=u(τ−I(u<0)) 
and I(∙) denotes the indictor function. A full discussion of this class 
of methods could be found from many related publications [5-8]. 
Traditional QR makes minimal assumptions on the form of the error 
term, which is flexible, but inference for these models is challenging, 
particularly when the data features are complicated.

The latter is built on the asymmetric Laplace distribution (ALD) 
[9-11], and other parametric distributions, like an infinite mixture of 
Gaussian densities [12]. ALD, which is closely related to the check 
function for QR, has been discussed in the literature [6,9,11,13]. 
A random variable Y is said to follow ALD if its probability density 
function (pdf) with parameters µ, σ and τ is given by 

(1 )| , , ) exp( yyf τ
τ τ µµ σ τ ρ

σ σ
−  −  = −  

  
,                            (3)

Where ρτ(u)=u(τ−I(u<0)) is the check function, I(•) is the indicator 
function, 0<τ<1 is the skewness parameter, σ>0 is the scale parameter 
and −∞<µ<∞ is the location parameter. The range of y is (−∞, ∞). We 
denote the above distribution by ALD (µ, σ, τ).

Briefly, if Y ∼ ALD (µ, σ, τ), then Pr(y ≤ µ)=τ and Pr(y>µ)=1−τ, 
which shows that the parameters µ and τ in ALD satisfy µ to be the τth 
quantile of the distribution. However, the ALD is not smooth and thus 
difficult to maximize its likelihood function. Fortunately, as shown in 
these studies [14,15], the ALD has various mixture representations. 
A hierarchical mixture of exponential and normal distributions is 
utilized to develop algorithms for the QR models [14,15]. These 
important features of ALD have been generally adopted for likelihood 
based quantile inference, as well as the Bayesian inference. See Yu 
and Zhang’s work [11] for further properties and generalizations of 
this distribution as well as its close relationship with QR. By utilizing 
this property, under independent data setting, a large number of QR-
based statistical models and various associated analysis methods have 
been investigated in the literature. For example, a likelihood-based 
goodness-of-fit test has been proposed for QR [6]; Bayesian QR [9] , 
and the Bayesian estimation procedure for the Tobit QR model with 
censored data [16,15], have also been developed.

Importantly, these two classes of QR inferential methods are not 
mutually exclusive. The relationship between the check function and 
ALD can be used to reformulate the QR method in the likelihood 
framework. Considering σ a nuisance parameter, it can be easily shown 
that the minimization of equation (2) in the former method with 
respect to the parameter β is exactly equivalent to the maximization of 
an ALD-based likelihood function in the latter.

It has been demonstrated that QR is widely used to analyze 
independent data in many important application areas. First, due to 
the importance of modeling extreme values accurately, the foreign 
direct investment (FDI), finance and economics are the most 
important area where QR is utilized. Girma and Gorg [1] and Zhou 
[2] used QR modeling to explore relationship between the foreign 
direct investment and economic growth. Several economists have 
examined wage structure and wealth distribution using QR [17-19]. 
Specifically, research has been conducted to explore the gap in wage 
and wealth distribution [20], including the effect of gender on wage 
[21,22], wage differences between public and private entities [23-25], 
wealth inequality between urban and rural areas [26], and the impact 
of education on wage [27-29] and intergenerational earnings [30]. 
Focusing on the women group, Moshe Buchinsky studied female 
wage distribution in the USA [22] and their return to education [31] 

using QR as an analytic tool. In addition, QR has also been applied in 
economic-based discipline. In the area of economics and education, 
QR has been applied to examine the impact of school choice [32] and 
quality [33,34] on student performance and achievement [33]. With 
the application of economics on management, QR has been used to 
study the effect of innovation on firm growth [35] and relationship 
between companys foreign ownership and production efficiency [36] 
as well as association of FDI and economic growth [1,2]. In the sub-
area of economics and policy, existing corruption levels have been 
explored [37] and the relationship between FDI and corruption level 
[38] has been examined using QR models. In the finance field, QR has 
been adopted to study housing price [39], capital structure [40], FDI 
and investment treaties [1] and stock market returns [41] based on 
cross-sectional data.

In addition, QR is becoming more popular in clinical, biomedical, 
and other health related research. For example, Austin et al. [42] 
examined the varying gender differences in the delivery of thrombolysis 
in patients with an acute myocardial infarction by QR. Briollais and 
Durrieu [43] provided a review of recent applications of QR to the area 
of genetics. Azagba and Sharaf [44] identified that increasing the intake 
of fruits and vegetables may be an effective dietary strategy to control 
weight and mitigate the risk of obesity, which is more effective at the 
higher quantiles of the body mass index (BMI) distribution. More 
applications of QR to independent data could be found in various 
fields, such as public health [45,46], bioinformatics [47], healthcare 
[48,49], environmental science [50], and ecology [51,52].

QR Models for Time-to-Event Data
Time-to-event data arise when interest is focused on the time 

elapsing before an event is experienced. Application to analysis of this 
kind of data, called survival analysis or duration models, is objective to 
investigate the effects of covariates on the survival/duration time. These 
effects can be heterogeneous on low, medium, and high risk subjects. 
In other words, covariates may have greater effects at an early period of 
survival, and weaker effects or even no effect later, or vice versa. QR has 
been considered to apply to measure the differences of covariates effects 
at different quantiles of survival/duration time [53]. Furthermore, the 
survival/duration time often exists non-normality and long tails, and 
thus QR-based survival models provide more robust estimation than 
traditional mean regression-based ones.

Although, Coxs proportional hazard model is the most often 
used for survival analysis, it is rarely generalized to QR-based models. 
Alternatively, the accelerated failure time (AFT) model with the 
transformed survival time can be employed to QR field, in which 
logarithm transformation is the most commonly used one [53-56]. Due 
to the complexity of the time-to-event data, large number of studies 
has contributed to the QR-based AFT model under different scenarios. 
Ying et al. [57] studied a semiparametric procedure for median 
regression. Yang [54] extended the median regression with weighted 
empirical survival and hazard functions based estimation. Portnoy 
[58] generalized the principle of the Kaplan-Meier estimate under QR 
framework. Yin et al., [59] investigated the quantile regression model 
for correlated failure time data. Peng and Huang [60] developed an 
estimator which is very close to Nelson-Aalen estimator. Most recently, 
great work is still expanding this area to recurrent events [61-63], 
various censoring types [64-66], competing risks [65,67-69].

There are many applications of QR to survival analysis or duration 
models. For instance, in finance and economics, Schaech [70] assessed 
the association among bank liability structure and time to failure by a 
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QR approach. In clinical research, Carey et al. [71] found that AIDS 
patients with lower growth velocity (below the 10th quantile) had 
significantly increased risk of death. In healthcare, Austin et al. [42] 
determined patient and system characteristics associated with the 
waiting time of essential medical treatment by QR, and found that 
gender had a greater impact upon those patients who had the greatest 
delays in treatment. Other interesting applications could also be found 
in economics [72-74], clinical and biomedical research [75,76], and 
healthcare areas [77,78].

QR Models for Longitudinal Data
Longitudinal data, sometimes called panel data, show great 

complexity in statistical analysis and application due to the correlation 
between and within repeatedly measured observations. In statistics, 
mixed-effects models are becoming increasingly popular in longitudinal 
data analysis. However, the majority of longitudinal modeling methods 
are based on mean regression to concentrate only on the average effect 
of covariate and the mean trajectory of longitudinal outcome. Thus, 
mimic to independent data, QR has also been extended and applied 
to longitudinal data. Longitudinal QR has the capability, at both of the 
population and individual level, to identify heterogeneous covariates 
effects, and describe differences in longitudinal changes at different 
quantiles of the outcome, and provides more robust estimates when 
heavy tails and outliers exist.

Similar as QR for independent data, longitudinal QR models, 
specifically QR-based mixed-effects models have been proposed via 
different statistical approaches, which could also be classified into 
two categories: distribution-free and likelihood-based. In details, for 
example, Jung [79] firstly developed a quasi-likelihood method for 
median regression considering correlations between repeated measures 
for dependent data. He et al. [80] proposed a median regression 
based linear mixed-effects model for longitudinal data. Koenker [81] 
generalized his previous work on QR to longitudinal data via penalized 
least squares method. Other methods or algorithms used to QR includes 
Barrodale-Roberts algorithm [82], Expectation-Maximization (EM) 
algorithm [83], Monte Carlo Expectation-Maximization (MCEM) 
algorithm [13,84,85], and Bayesian approach by Markov chain Monte 
Carlo (MCMC) procedure [86-93]. Longitudinal QR has been rapidly 
expanded in many areas, including investment and finance [94,95], 
economics [96], environmental science [97,98], geography [99], public 
health [100,101] and biomedical research [102-105]. In investment 
and finance areas, Bassett and Chen [94] utilized longitudinal QR to 
provide additional information from the time series data of portfolio 
returns based on the way style that affects returns at places other than 
the expected value of return. In economics, Buchinsky [96] studied US 
wage structure from 1963 to 1987 with the application of longitudinal 
QR. It provided a full scan of information among time effects, 
education level, and years of experience in different wage quantile. In 
public health, Smith et al. [100] revealed that the association between 
high blood pressure and living in an urban area has evolved from 
positive to negative, with the strongest changes occurring in the upper 
tail. In meteorology, Timofeev and Sterin [97] utilized longitudinal QR 
to analyze various changes in climate characteristics. In biomedical 
studies, Revzin et al. [104] investigated the effect of a naturally derived 
biological peptide, P28, and found that it produced slower rates of 
growth in the upper quantiles of melanoma tumor volumes in mice.

Data collected in many longitudinal studies record much 
information, not only repeated measures, but also time-to-event 
information. For example, in HIV/AIDS studies, viral load (the 

number of copies of HIV-1 RNA) and CD4 cell counts are important 
biomarkers of the severity of a viral infection, disease progression, and 
treatment evaluation, and their time trends of longitudinal measures 
may also be predictive of the risk of a terminal event. Thus, joint models 
are an active area of statistics, because of its capability on the bias 
reduction and improvement of estimates’ efficiency. More recently, QR 
has been extended to more complicated joint models in AIDS research. 
Farcomeni and Viviani [85] developed QR-based longitudinal-
survival joint models in the presence of informative dropout. Huang 
et al. proposed QR-based mixed-effects joint models by considering 
many longitudinal data features simultaneously, including covariate 
measurement errors [90,93,89], missing [90,91], non-normality [90-
92], left-censoring [89,92], and time-to-event outcomes [91].

Summary and Conclusion 
This review provided a general overview of QR-based models and 

methods targeting different types of data and application areas. We have 
illustrated that QR is a powerful tool to detect heterogeneous effects 
of covariates at different quantiles of the outcome, and complements 
excellently the mean regression when data are in presence of outliers 
and long tails. Recent developments and extensions in QR-based 
models offer increasing ability and flexibility in capturing independent, 
time-to-event, and longitudinal data with different data features, which 
can benefit applications in various scientific and finance areas.

We believe that QR, a comprehensive strategy, has a bright future. 
In financial/investment market, QR is more powerful for investors to 
predict investment strategies; in medicine, according to the idea of 
“precision medicine”, QR is more precise for physicians to evaluate 
treatment and make clinical decisions, compared to mean regression 
models. In statistics, especially in the “big data” era, data sources get 
richer, data structures become more complicated, extreme values and 
heterogeneity increase. Instead of the mean regression, which hardly 
meets our expectation, QR methods dig deeper into the data, grab more 
information, and become more relevant. Last but not the least, as the 
power of the computer has advanced, the computational load for QR-
based models and methods has decreased substantially. Thus, more 
complicated QR-based models could be considered under a Bayesian 
framework [89-93] and applied to more diverse areas in near future.

A final note that we would like to make is possible software to 
implement QR modeling methods. The most widely used software 
for QR models is R with “quantreg” package [106]. It covers linear, 
nonlinear parametric and non- parametric (total variation penalized) 
models for conditional quantiles of a univariate response, and several 
methods for handling censored time-to-event data. Other R packages 
are also available for specific QR topics. For example, R package 
“cmprskQR” [69] is developed for analysis of competing risks using 
QR; package “lqmm” [107], and “qrLMM” [108], deal mainly with 
longitudinal data via QR-based linear or non-linear mixed-effects 
models. SAS currently also includes a “quantreg” procedure, which is 
similar as the R “quantreg” package. Stata software has “qreg” function 
to fit QR models, but the capabilities are limited. QR also has been 
added to SPSS (version 22.0.0 or later), just simply estimate one or more 
conditional quantiles for a linear model. When the model components 
are very complicated, especially for survival and longitudinal data with 
multiple data features, which bring extremely heavy computational 
load, the Bayesian method shows its advantages. The WinBUGS 
software [109] interacted with the package “R2WinBUGS” in R and 
“Rstan” package [110] in R are good choices with a lot of flexibility for 
Bayesian inference.
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