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Abstract
This study examines the use of square wave voltammetry (SWV) to quantify reduced glutathione (GSH) dissolved 

in phosphate buffer (pH 7.5) using a static mercury drop electrode (working), Ag/AgCl electrode (standard) and a 
platinum wire (auxiliary). The applied voltage ranged from -0.7 to -0.2 V. Increasing concentrations of GSH (13-188 
µmol/L) correlated with the voltammogram peak area (R2=0.99) and with the current at peak potential (Ip) (R=0.99). 
The reaction of GSH with diamide was monitored for validation of the method. Addition of increasing concentrations 
of diamide (13.3-50.8 μmol/L) to a fixed concentration of GSH (120 μmol/L) decreased the Ip, and the results 
obtained presented a relative deviation (RD) ≤ 14.5% (compared with expected concentrations by stoichiometry) 
for GSH concentrations above 33.8 µmol/L, whereas the spectrophotometric method (Elman’s reagent) presented 
RD ≤ 25.6%. These data indicate that SWV method is more accurate and presented equal precision (SD<8%) as 
compared to the commonly used spectrophotometric method. This method seems suitable for measuring GSH 
concentrations at room temperature and pH 7.5 (near biological conditions). Other advantages of this method that 
make it highly desirable for rapid diagnostic purposes include low cost, simplicity, sensitivity, rapid response and no 
prior sample preparation.

Keywords: Square-wave voltammetry; Static mercury drop electrode;
Reduced glutathione; Oxidative stress

Introduction 
The reduced glutathione/glutathione disulfide ratio (GSH/GSSG) 

is crucially important for maintaining an appropriate redox state 
necessary for cellular metabolic functions. Many proteins, including 
enzymes of cell metabolism and regulation [1-6], transcription factors 
and regulators of cellular cycle [7-9] are potentially influenced by the 
formation of glutathione adducts [6]. In addition to regulating these 
processes, GSH participates in the antioxidant system as a preferred 
target of radical species. It chelates metal ions and is a substrate for the 
enzyme glutathione peroxidase, which maintains adequate levels of 
hydroperoxides (H2O2 or ROOH) [10-12]. GSH also acts as a substrate 
for transferase enzymes, linking these compounds to electrophilic 
xenobiotics to form S-conjugates that are exported from the cell to the 
blood or from the body to the environment [12,13].

Even small changes in GSH concentrations are related to oxidative 
stress, which, depending on its intensity, has been associated with the 
onset or progression of many diseases such as atherosclerosis, cancer, 
psoriasis, Alzheimer's, hypertension, heart and liver disease and with 
important physiological processes such as aging and physical exercise 
[12,14-21].

Therefore, it is of great importance to develop or improve methods 
to detect and quantify GSH and other thiols under biological conditions. 
Several techniques for the quantification of these species are described 
in the literature. Among these techniques is high performance 
liquid chromatography coupled to various detection methods [22-
32], capillary electrophoresis, mass spectrometry, nuclear magnetic 
resonance [33] and the spectrophotometric method based on the 
Elman’s reagent [34-36]. Furthermore, Wang et al. [37] have proposed 
an electrochemical method (using a gold electrode) to quantify GSH 
that uses the decrease in the voltammogram of piazselenole induced by 
the reaction with GSH dissolved in Britton-Robinson buffer at pH (2.0).

Because the redox pair GSH/GSSG can donate electrons in negative 
potentials (using the Ag/AgCl electrode as a reference), voltammetric 

techniques, especially those based on mercury electrodes, appear to be 
able to detect and quantify GSH and other thiols in biological samples 
[13,38].

The electrode reaction of GSH at the static mercury drop has 
been studied by means of square-wave voltammetry (SWV) [13]. 
At potentials more positive than -0.350 V (vs. Ag/AgCl (3 mol/L 
KCl)), the oxidation of the mercury electrode in the presence of GSH 
produces a sparingly soluble mercury-GSH complex that deposits onto 
the electrode surface. Under cathodic potential scan, the deposited 
complex acts as a reducible reactant resulting in a well-defined cathodic 
stripping reversible SW response. In this study, quantitative results were 
not obtained. SWV appears to be an appropriate method for this type of 
analysis; its main advantages are speed of acquisition and good signal 
definition [39].

The objective of this study was to quantify GSH by SWV under 
near-physiological conditions using a static mercury drop electrode as 
the working electrode.

Materials and Methods
All chemicals were of analytical reagent grade. GSH is a product 

of Sigma, whereas all of the other chemicals were purchased from 
Merck. Double distilled water was used in all experiments. A stock 
solution of GSH was prepared by dissolving GSH in double distilled 
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water. Phosphate buffer (0.10 mol/L), pH 7.5, prepared from Na2HPO4 
and NaH2PO4, was used as supporting electrolytes. Pure nitrogen was 
used to purge the electrolyte solutions for 5 min followed by 2 min 
of rest prior to each measurement. Thereafter, a nitrogen blanket was 
maintained over the electrolyte solution.

All voltammograms were recorded using an Autolab multimode 
potentiostat/galvanostat (PGSTAT) 101 (Metrohm, Netherlands) 
connected to a static mercury drop electrode (SMDE), Model 663 VA 
(Metrohm, Netherlands). A platinum wire was used as an auxiliary 
electrode and Ag/AgCl (3 mol/L KCl) (MME-Metrohm, Netherlands) 
was used as the reference electrode. To minimize noise, the cell was 
kept inside a grounded Faraday cage. Origin 6.0 was used for statistical 
analyses and to generate the graphs.

The formation of thionitrobenzoic acid (TNB) by the reaction 
between GSH and Elman’s reagent [5,5'-dithiobis-(2-nitrobenzoic 
acid)-DTNB] was monitored at 412 nm [35]. The reaction between 
GSH and diamide was monitored by the change in absorbance at 298 
nm [40]. Measurements were performed 7 min after the addition of 
reagents.

Results and Discussion
SW voltammetric responses to increasing concentrations of 
reduced glutathione

A typical SW voltammetric response of GSH (61.5 µmol/L) at a 
static mercury drop electrode recorded in phosphate buffer at pH 7.5 is 
shown in figure 1. The net SW component, calculated as the difference 
between the cathodic and anodic currents, provides information on 
both the reduction and oxidation half electrode reactions and can be 
observed as a single bell-shaped curve with a peak potential of Ep=-
0.506 V. This Ep is less than that reported by Mladenov et al. [13], 
possibly because those authors used slightly different experimental 
parameters, including different GSH concentrations and phosphate 
buffer at pH 7.0.

Mladenov et al. [13] showed that the electrochemical activity of -SH 
groups is related more to the complexation reaction between GSH and 
mercury than its redox transformation; however, because the objective 
of this study was to quantify GSH levels, only the changes in the analyte 
concentration (GSH) that are directly correlated with variations in the 
signal (voltammogram) are relevant.

Figure 2 shows the means of the SW voltammograms obtained with 
increasing concentrations of GSH (from 12.5 to 187.5 µmol/L) for five 
independent experiments (n=5).

The concentration of GSH directly correlates with the peak area 

and the results are presented in figure 3. The equation that fits the curve 
is:
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where: 

Figure 1: SW voltammogram (δ current) of GSH (62.5 µmol/L) dissolved in 
0.1 mol/L phosphate buffer, pH 7.5. The experimental conditions were: SW 
frequency f=50 Hz; SW amplitude Esw=0.02 V; step potential dE=0.005 V; 
deposition potential Edep=1.1 V and deposition time tdep=5 s.

Figure 2: SW voltammograms (δ current) of increasing concentrations of GSH 
dissolved in 0.1 mmol/L phosphate buffer (pH 7.5). a=12.5; b=37.5; c=62.5; 
d=125; e=187.5 µmol/L. Each voltammogram represents the mean of five 
independent experiments. Other experimental conditions were the same as 
those described in figure. 1.

Figure 3: Plot of the value of the Integral of the SW-voltammograms curves 
(described in figure 2) as a function of the increasing concentrations of 
GSH (12.5-187.5 µmol/L) dissolved in 0.1 mol/L phosphate buffer (pH 7.5). 
The regression equation is described in the text. Error bars denote standard 
deviation from 5 independent experiments.

x=[GSH] (µmol/L)

y=Int.I(E).dE (µA.V)

a=2.7.10-6 (± 5.4.10-7) (µA.V.L2/µmol2)

(R2=0.99) obtained by integrating the curves of the voltammograms 
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The concentration of GSH, also correlates with the current intensity 
of the peak (Ip/μA) (R=0.99), and the data was described in figure 4. Ip 
was defined as the point of maximum current in the voltammograms. 
The equation that fits the curve is:

 ( )y bx a
−=                       (2)

where:

x=[GSH] (µmol/L)

y=Ip (µA)

a=slope=0.005 (± 0.0003) (µmol/L/µA)

b= f(0)=0.13 (± 0.02) (µA)

It should be noted that at lowest concentrations of GSH, the 
standard deviation between experiments is smaller, and therefore, the 
measurement is more precise in these conditions. The concentrations 
greater than 200 µmol/L, the mercury drop could not be sustained long 
enough to perform the measurement. Because the concentrations of 
GSH in mammalian cells range from 0.5 to 10 mmol/L [12,41,42], such 
samples must be diluted to precisely quantify GSH by this method. The 
dilution of biological samples is advantageous because it enables the use 
of smaller quantities of biological material conveniently dissolved in a 
suitable buffer.

Reaction between GSH and diamide

To validate the proposed method, the reaction between GSH and 
diamide, a specific ligand, was studied. Diamide [diazenedicarboxylic 
acid bis(N,N-dimethylamide)] has been shown to produce a rapid 
decrease in GSH concentration in rat erythrocytes [40] both in vitro 
and in vivo [43]; this process can be reversed by treatment with glucose 
[40] and is reversed more quickly with reduced cysteine [22,43]. In 
mitochondria from the rat liver, diamide induced a rapid efflux of Ca2+ 
associated with increased respiratory state 4, collapse of the membrane 
potential and large mitochondrial swelling; these effects were related 
to the decrease in GSH and NADPH [44,45]. These studies indicate 

that diamide could be used to induce controlled decreases of GSH in 
biological samples in vitro and in vivo. The stoichiometric diamide/
GSH ratio is 0.5 (1 mol of diamide to 2 mol of GSH) [40,46].

GSH can be quantified by the Elman’s reagent (DTNB), which 
reacts with GSH to produce TNB, which absorbs light at 412 nm [35]. 
In the presence of excess of DTNB, the stoichiometric ratio between 
GSH and TNB is 1:1 [34-36]. Figure 5 shows the effect of increasing 
concentrations of diamide (8.25-77 μmol/L) on the absorbance of 
TNB (412 nm) produced from the remaining GSH. At the first point, 
the GSH concentration is 100 μmol/L; upon addition of diamide, 
the concentration of GSH decreases. The curve shows two distinct 
behaviors: for the first seven points, the absorbance decreases as a 
function of GSH concentration; for all other points, the absorbance is 
constant, tending toward zero. Each point represents the mean of five 
independent experiments (n=5) and the measurements were performed 
at least 7 minutes after the addition of GSH.

Figure 4: Plot of the value Ip (peak current intensity) of the SW-voltammograms 
curves (described in figure 2) as a function of the increasing concentrations 
of GSH (12.5-187.5 µmol/L) dissolved in 0.1 mol/L phosphate buffer (pH 7.5). 
The linear regression is described in the text. Error bars denote standard 
deviation from 5 independent experiments.

Figure 5: Effect of addition of increasing concentrations of diamide (8.25-57 
µmol/L) to a fixed GSH concentration (100µmol/L). The TNB, that absorbs 
412 nm was produced when the remaining GSH were reduced by DTNB. All 
reagents were dissolved in 0.1 mol/L phosphate buffer (pH 7.5). Error bars 
denote standard deviation from 5 independent experiments.

Figure 6: Effect of increasing concentrations of diamide (13.25-63.2 
µmol/L) on the SW voltammograms (δ current) of reduced glutathione (120 
µmol/L) dissolved in 0.1 mol/L phosphate buffer (pH 7.5). Voltammograms 
that decreases as a function of the concentration of diamide are described 
with solid line and those that increase in dashed line. Each voltammogram 
represents the mean of five independent experiments. Other experimental 
conditions were the same as those described in figure 1.

b=7.2.10-4 (± 1.0.10-4) (µA.V.L/µmol)

c=f(0)=0.02 (± 0.003) (µA.V)
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This reaction was also performed using the SWV, the 
voltammograms are described in figure 6 and the Ip values from these 
voltammograms are shown in figure 7. In this experiment, increasing 
concentrations of diamide (13.25-63.2 µmol/L) were added to a fixed 
concentration of GSH (120 μmol/L). Each point represents the mean 
of five independent experiments (n=5) and the measurements were 
performed at least 7 minutes after the addition of GSH as described 
for figure 5. The curve shows two distinct behaviors for the first seven 
points, the Ip decreases as a function of the diamide concentration and 
for the last two points, the Ip increases. Changes in the integral of the 
voltammograms area indicate a high standard deviation.

It should be noted that for the last two points, both in figures 5 and 
7, the diamide/GSH ratio exceeded the stoichiometric ratio (0.5), but 
the behaviors were different. The spectrophotometry results (Figure 5) 
behaved as predicted by the rate constant of the reaction, which is quite 
high (300 mol/L in aqueous buffer pH 7.3) [40].

To explain the increase in Ip above the stoichiometric ratio, several 

control experiments were performed, as shown in figure 8. First, the 
absorbance of 90 µmol/L of diamide (298 nm) [40] was monitored for 
15 minutes (Figure 8, line a), and no change in absorbance was observed 
during this time. Next, the absorbance of GSH alone was monitored; 
this absorbance remained near zero (Figure 8, line b). Upon addition of 
a fixed concentration of GSH (100 μmol/L) and varying concentrations 
of diamide (Figure 8, lines c, d, e, f), the diamide absorbance remained 
constant. When the diamide/GSH ratio was lower than 0.5, the diamide 
was completely consumed, and the absorbance decreased to a level 
similar to that observed with only GSH (Figure 8, lines c and d compared 
with line b). However, when the ratio was greater than 0.5, diamide 
became the excess reagent, and its absorbance could be detected (Figure 
8, lines e, f), as predicted by the reaction mechanism. Notably, the 
absorbance of the diamide did not change during the period monitored, 
indicating that the reaction occurred before the start of measurements. 
This experiment demonstrates that the spectrophotometric (Figure 5) 
and voltammetric measurements (Figure 7), which were performed 
7 minutes after initiating the reaction, represent the endpoint of the 
reaction, which is not reversible, as predicted by the rate constant of 
this reaction, which is high [40]. These findings rule out the possibility 
of increased Ip values, for points at which the diamide/GSH ratio is 
greater than 0.5 (Figure 7) due to the presence of GSH, because this 
compound would be completely consumed prior to signal acquisition 
and the reaction is not reversible.

Precision and accuracy 

To demonstrate the precision and accuracy of the proposed method, 
the GSH concentrations for the first seven points of figure 7 (diamide 
concentration versus Ip) were compared with the values expected by the 

Figure 7: Effect of increasing concentrations of diamide (13.25-63.2 µmol/L) on 
the SW voltammogram peak potential current (Ip) of reduced glutathione (120 
µmol/L) dissolved in 0.1 mol/L phosphate buffer (pH 7.5). The voltammograms 
are presented in figure 6. Error bars denote standard deviation from 5 
independent experiments.

Figure 8: Variation of diamide induced absorbance during 15 min reacting 
with GSH (100 µmol/L) dissolved in 0.1 mol/L phosphate buffer (pH 7.5). (a) 
Only diamide (90 µmol/L); (b) Only GSH; (c) diamide (6 µmol/L) plus GSH; (d) 
diamide (30 µmol/L) plus GSH; (e) diamide (60 µmol/L) plus GSH; (f) diamide 
(90 µmol/L) plus GSH.

Figure 9: SW voltammogram (δ current) of 15 µmol/L diamide solution, 
dissolved in 0.1 mol/L phosphate buffer (pH 7.5), recorded in phosphate (pH 
7.5). Other conditions as described in figure 1.

Another explanation for the increase in Ip is that diamide could be 
interacting with the electrodes to generate a voltammogram. Figure 9 
depicts the SW voltammogram for 15 μmol.L-1 of diamide in phosphate 
buffer at pH 7.5. One current peak is observed near -0.1 V. Because 
diamide also interacts with the mercury electrode, it is possible that 
this compound may be responsible for the increase in Ip for the points 
at which the diamide/GSH ratio is greater than 0.5 (Figure 5). No 
experiments were performed to investigate whether hydrazine (other 
reaction product) interacts with the electrodes, although this reaction 
does not appear to occur at the first seven diamide concentrations.
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reaction stoichiometry. These data are shown in table 1. The values for 
percent standard deviation (SD%) between the voltammograms are all 
below 8%, indicating an acceptable precision (low dispersal data). When 
the GSH concentrations obtained from the voltammograms (Obtained) 
were compared with those expected by the reaction stoichiometry, the 
percent relative deviation values (RD%) were equal or less than 14.5% 
for GSH concentrations greater than or equal to 33.8 µmol/L.

Similarly, GSH concentrations obtained for the first eight points 
of figure 7 (diamide concentration versus absorbance at 412 nm) were 
compared with the values provided by the reaction stoichiometry. The 
data in table 2 shows acceptable precision at all GSH concentrations 
used (SD ≤ 12.8). Accuracy was acceptable only at GSH concentrations 
greater than or equal to 57.5 μmol.L-1 GSH (RD ≤ 5.8%).

The results in tables 1 and 2 indicate that the data obtained for the 
parameter Ip of the SW voltammograms, under the conditions described 
herein, are more accurate than and show precision equivalent to those 
obtained by the spectrophotometric method described by Favier [35]. 
It can be seen that the lowest concentration of GSH quantified with 
acceptable accuracy by the Elman’s method was 57.5 µmol/L comparing 
with 33.8 µmol/L obtained by the voltammetric method (58.8% less). 
Thus, the voltammetric method showed higher accuracy compared to 
the spectrophotometric method.

The experiments performed in the present study cannot determine 
whether reactions between diamide and GSH or between GSH and the 

electrode occur under ideal conditions, i.e., at 100% yield. However, the 
data were obtained at room temperature and pH 7.5, which is similar 
to biological conditions, thus indicating its use in biological samples.

Conclusion
This work demonstrates that it is possible to quantify GSH using 

both the area as the peak current (Ip) of the SWV voltammograms 
recorded using the static mercury drop electrode and the Ag/AgCl 
as standard electrode. These results were validated by monitoring 
the specific reaction with diamide that presented equal precision 
and better accuracy when compared to the results obtained by the 
spectrophotometric method that uses the Elman’s reagent. 

Our results indicating the use of this method for use in samples 
containing cells, extracellular fluids, tissue homogenates or isolated 
proteins under physiological and pathological conditions, where 
monitoring alterations in the antioxidant capacity is a relevant factor.

The main advantage of using the mercury drop electrode is 
that a new drop is used for each reading. Therefore, there much less 
interference from other molecules, particularly proteins that encrust 
solid electrodes and reduce the signal or even passivate the electrode, 
thereby decreasing its selectivity and sensitivity [47-49].

The advantages of this method include the low cost of 
instrumentation, operational simplicity, speed of response, high 
sensitivity [37] and simple preparation (only suspension and dilution 
in buffer); these properties are desirable for rapid diagnostic methods. 
These properties indicate the importance of future applications of this 
method using biological samples.
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