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Introduction
Interest in the role of genome-wide patterns of methylation in 

human disease has increased in recent years [1]. The epigenome, in 
general, and the methylome, more specifically, have the potential for 
large effects in disease etiology. DNA methylation has already been 
associated with many cancers [2], and different cell types are known 
to differ in their methylation patterns. Illumina has been developing 
genome-wide methylation arrays that enable epigenome-wide 
association studies of human disease [3]. These arrays are based on 
BeadChip technology, and the most recent ones contain probes for over 
480K CpG sites. These sites cover 99% of RefSeq genes with multiple 
probes per gene, and 96% of CpG islands from the UCSC database.

This new array utilizes some of the site-specific probes from the 
previous generation chip that contains probes for 27K CpG sites [4]. 
Probes for the sites from the 27K array use the Infinium I assay, while 
the newer probes use the Infinium II assay. The Infinium I assay is 
based on separate beads for methylated and unmethylated DNA, and 
the Infinium II assay relies on a single bead for both methylated and 
umethylated DNA [3]. Both assays result in red- and green-channel 
intensities, which are normalized using a proprietary method in 
BeadStudio [5].

Regardless of the probe design, tests for differential methylation 
involve comparing the relative methylated/unmethylated signal among 
experimental conditions [5]. The standard output from BeadStudio 
provides estimates of the percent signal that is methylated, usually 
denoted by β. This value is a natural way to summarize the relative 
methylated/unmethylated signal. Although β is a convenient way to 
summarize the extent of methylation for any given CpG site, statistical 
analyses aimed at detecting differential expression may be optimized 
using other measures. Recently, Du et al. [6] showed that using a 
logistic transformation of β, named M-value, may yield better results. 
However, neither β nor M take into account, the variability in both 
the methylated and unmethylated signal. We investigated statistical 
approaches that utilize a weighted logistic transformation of the 
methylated and unmethylated signals, with the goal of improving the 
analyses aimed at detecting differential methylation. The method that 
we develop below takes into account the probe specific variances in 
summarizing methylation levels.

Another aspect to ensuring accurate results is the need for data 
normalization, prior to statistical testing for differential methylation. 
The Illumina software does normalize probe signals in calculating the 
methylated and unmethylated signals. While much work has focused 
on normalizing data obtained using BeadArrays for gene expression, 
less research has focused on normalization of the methylation arrays 
[5]. While not all studies normalize data beyond that supplied through 
BeadStudio, some studies have used various normalization strategies, 
including quantile [7,8], and mean normalization [9,10]. We observed 
that some arrays in our data had very different distributions of signals 
after normalization based on the Illumina software, and we were 
therefore, concerned about between array normalization. Sun et al. [11] 
has examined the use of various normalization methods for adjusting 
for batch effects. Teschendorff et al. [7] examined several approaches to 
normalization, examining several factors that could affect the analyses, 
including batch, DNA input and bisulfite conversion efficiency, as 
measured using control probes. The optimal normalization for their 
data was a linear regression that included batch, DNA input and 
bisulfite conversion efficiency. Bell et al. [12] normalized β to follow 
the standard normal distribution, and then used this normalized β 
in all analyses. We demonstrate below that our proposed method 
for summarizing methylation levels also has the advantage, in that it 
appropriately normalizes relative methylation levels.

Materials and Methods

Definitions of β-value, M-value and N-value
The Illumina software provides several measures for summarizing 

methylation levels: the average signal for both methylated and 
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Abstract
The role of genome-wide patterns of methylation in human disease has drawn attention increasingly in recent 

years, because the methylome has the potential for large effects in disease etiology. Most analyses of methylation have 
utilized the percent signal that is methylated, known as β-value, or the logistic transformation of β, named M-value, as 
the summary measures. However, in general, these summary measures do not follow a Normal distribution and lead 
to statistical tests sensitive to outlying samples. In this paper, we proposed the N-value, a type of weighted logistic 
transformation of β that accounts for signal variability among beads for analyses of differential methylation. Our analysis 
of 27K Illumina array data showed that the N-value follows a desirable shape of sample distribution, and its test is robust 
to outliers. Through a simulation study, we presented results that show the t-tests of the N-value is more consistent, and 
has greater power under the presence of heterogeneity of samples and in different sample sizes.
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unmethylated “probes” (Infinium I utilizes separate probes, while 
Infinium II utilizes a single probe to generate both a methylated and 
unmethylated signal), the standard deviation of both methylated and 
unmethylated signals, and an estimate of the percent of chromosomes 
that are methylated, known as β-value. The β-value for the ith CpG site 
on the jth array, where i =1,.. .,I and j =1,.. .,J, is defined as the ratio of 
the average signal of the methylated probe (methylated signal) divided 
by the total average signal of both the methylated and unmethylated 
probes (methylated and unmethylated signal),

,
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hich is equivalent to a log2 logistic transformation of β with a 
constant offset α.

To define the N-value incorporating the standard deviations 
of signals, we assume that the logarithm of the average signal is 
proportional to the logarithm of the standard deviation of signal. Let 
m
ijS  denote the standard deviation of the methylated signal, and let u

ijS
denote the standard deviation of the unmethylated signal for the ith site 
on the jth array. The linear relationship between average and standard 
deviation of signal in log-scale is then described using two regression 
models,
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here 0 1 0 0, , and ϒ ϒ ϒ ϒm m u u  are regression coefficients, and ∈mij  and ∈uij  
are normal random errors with zero means and constant variances, 
respectively for the methylated and unmethylated signals.

We define the N-value based on a scaled β. First, we obtain scaled 

estimates of average methylated signal, 
ms
ijy  and unmethylated signal, 

us
ijy  by utilizing estimated parameters 0 1 0

ˆ ˆ ˆ, , ,ϒ ϒ ϒm m u  and 1ϒ̂
u  in the 

above regression models. In fact, the exponential residuals from the 
two regression models, ˆexp( )∈mij  and ˆexp( )∈uij , are scaled average 
signals, with respect to standard deviations of signals:
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Next, the scaled average signals, ms
ijy  and us

ijy , are used to define a 
scaled β,
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The N-value is based on adjusting both the methylated and 
unmethylated signals relative to the expected signals, given the observed 
standard deviations for signals. While these normalized signals have 
little meaning in themselves, the induced β measures the relative 
strength of the methylated and unmethylated signals in relation to the 
expected signals, given the standard deviations. The important measure 
in this case is the normalized β. Comparing equations (1) and (2) shows 
that the N-value can be viewed as a version of the M-value rescaled 
by the standard deviation. We will further show that this rescaling 
results in a normalization of the signals, adjusting the distribution of 
intensities that vary among samples with different standard deviations. 
The analysis of differential methylation using all three quantification 
methods (β, M, and N), is next considered using data from a pilot 
experiment.

Obesity dataset

We utilize data collected from 7 obese samples (case samples) and 7 
age-matched lean control samples, using the 27K Illumina array (27,578 
CpG sites [13]; NCBI’s Gene Expression Omnibus accession number 
GSE25301). These 14 subjects were identified from the participants 
(n=534) in the Lifestyle, Adiposity, and Cardiovascular Health in Youth 
(LACHY) study, using the following inclusion criteria: (1) African 
American ancestry; (2) male; (3) having leukocyte DNA available; (4) 
obese cases having a body mass index (BMI) ≥ 99th percentile for age 
and sex, and lean controls having BMI ≤ 10th percentile for age and 
sex. The LACHY study consisted of roughly equal numbers of African 
American and European American adolescents, aged 14 to 18 years, of 
both sexes recruited from high schools in the Augusta, Georgia area 
[14].

Simulation settings

We conducted a simulation study to compare the performance 
of testing for differential methylation, using a t-test and each of the 
three measures of methylation level. In this simulation study, the 
percent of CpG sites designated as being differentially methylated was 
5%, 10%, 15%, or 20%, with the specific sites being chosen randomly 
to be differentially methylated. Data for both cases and controls 
were simulated using the same distributions for all sites designated 
as not differentially methylated. Data for cases and controls were 
simulated from different distributions for all sites designated as being 
differentially methylated. Some differentially methylated sites were 
simulated with the case samples having a different distribution from 
the null distribution, and some sites were simulated with the control 
samples having a different distribution from the null distribution.

We simulated the average signals and standard deviations of signal, 
which were then used to calculate the β-, M, and N-value as above. 
The methylated and unmethylated signals were simulated separately, 
since these two signals had slightly different distributions in the obesity 
data. We simulated standard deviations of methylated signal, *m

ijS  and 

unmethylated signal, *u
ijS , for the CpG site i, and the sample j, from 

lognormal distributions such that
* 2log ( , )

m m m
ij s sS N µ σ  And * 2log ( , ).

u u u
ij s sS N µ σ

The means and standard deviations used in the simulation 
were estimated using the obesity data. Intensities were simulated 
next, by using simple linear regression models of log intensity on 

where ,ij my  is the methylated signal, ,ij uy  is the unmethylated signal, 
and α is a constant offset (α=100 by default). Du et al. [6] suggested the 
M-value,
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log standard deviation for the intensities of the obesity data such 

that 0 1= ϒ + ϒ +∈m m m m m
ij ij ijy S and 0 1= ϒ + ϒ +∈u u u u u

ij ij ijy S , where 
2(0, )∈∈ 

k k
ij N σ and 0 1( , )ϒ ϒm m  and 0 0

ˆ ˆ( , )ϒ ϒu u  are regression coefficients.

The least square estimators of these regression coefficients, 

0 1
ˆ ˆ( , )ϒ ϒm m  and 0 1

ˆ ˆ( , )ϒ ϒu u , follow normal distributions such that 

0 1
ˆ ˆ( , ) ( , )ϒ ϒϒ ϒ Σ

m m m mN µ and 0 1
ˆ ˆ( , ) ( , )ϒ ϒϒ ϒ Σ

u u u uN µ , where 

, ,ϒ ϒ ϒΣ
m u mµ µ and ϒΣ

u  are means and variances of the estimated 
regression coefficients. We estimated the variances of regression errors 
through the best quadratic unbiased estimators denoted by 2ˆ∈

mσ  and 
2ˆ∈
uσ . Similarly, we have estimated means and variances of regression 

coefficients, ˆϒ
mµ  and ˆ m

ϒΣ  for methylated signals, and ˆϒ
uµ and ˆ

ϒΣ
u  for 

unmethylated signals based on the regressions fit separately for each 
sample.

Random samples of regression coefficients were then 

generated by * *
0 1 ˆˆ( , ) ( , )ϒ ϒϒ ϒ Σ

m m m mN µ  for methylated probes and 
* *

0 1 ˆˆ( , ) ( , )ϒ ϒϒ ϒ Σ

u u u uN µ  for unmethylated probes. These simulated 

regression coefficients were then used to simulate the intensities using 

the regression equations
* * * * *
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ij N σ and * 2ˆ(0, ).∈∈ 

u u
ij N σ

The distribution of signal intensity is heterogenous across samples 
in the obesity data. The simulation procedure described above does 
not result in the heterogeneity observed in the data. We, therefore, 
also simulated data with increased heterogeneity, in which the data 
from one subject, subject o, came from modified distributions. For 
the methylated probes, the standard deviations were generated by 

* 2log [ ,(0.3 ) ].

m m m
io s sS N µ σ  To maintain the linear relationship 

between the standard deviations and the intensities, regression 

coefficients were sampled from * *
0, 1, ˆˆ( , ) ( 0.7, ).ϒ ϒϒ ϒ + Σ

m m m m
o o N µ  These 

regression coefficients were then used to generate the sample intensities 
as above.

The unmethylated probes were simulated using larger 
standard deviations than the methylated probes, such that 

* 2log [ ,(0.5 ) ].

u u u
io s sS N µ σ  The linear relationship between 

standard deviation and intensity was generated using 
* *

0, 1, ˆˆ( , ) ( 1, ).ϒ ϒϒ ϒ + Σ

u u u u
o o N µ

Differences between cases and controls were generated by shifting 
the standard deviations in the case samples. In one set of simulations, 
these standard deviations were shifted by 1, and in another set of 
simulations these standard deviations were shifted by -1.

We examined 1,000 simulations for all scenarios. Two sample 
sizes for cases and controls were considered: 10 and 20, under two well 
known significance levels α (Type I error): 0.05 and 0.01.

Results
Signal intensity mean and standard deviation

Two measurements are made for each CpG site, one methylated 
and the other unmethylated. Any measure of relative methylation 

levels will ultimately depend on these signal intensities. As such, we 
first examined the distribution of the mean signal intensity, as well 
as the standard deviation of the signal intensity for each CpG site. 
Comparing the distribution of the mean signal intensity among samples 
showed that the samples are not homogenous, with the signal standard 
deviation showing a similar pattern (Figure 3). Of note was case sample 
#5, which has a wider range in mean and standard deviation of the 
signal. Further, the signal distributions showed greater variability 
among cases than among controls. A linear relationship between the 
mean and the standard deviation of the signals appeared to underlie 
these differences (Figure 4). We utilized this linear relationship to 
obtain our proposed N-value (Equation 2).

Distributions of measures of methylation level

Although the distributions of the original signals showed clear 
differences among samples, these differences need not translate into 
differences in the three summary statistics, β, M, and N. As noted above, 
β ranged from 0 to 1, with 0 indicating that none of the DNA molecules 
in that sample were methylated, and 1 indicating that all of the DNA 
molecules in that sample were methylated. Although β provided an 
easily interpretable measure of methylation level, its distribution 
for each sample was highly skewed and slightly bimodal (Figure 1). 
General concerns about analyzing proportions suggest that a logistic 
transformation might be appropriate (e.g. M-value, Equation 1). The 
distribution of the M-value for each sample was bimodal, with the two 
peaks being more prominent than that for β. While the distribution of 
β and M for case sample #5 did not appear to be as drastically different 
from the other samples, the variability in the distribution of both β 
and M was greater among the cases than among the controls. This 
heterogeneity in distributions suggested the need for normalization.

Given the linear relationship observed between mean signal 
intensity and the standard deviation of the signal, the sample specific 
signal for any given CpG site could be considered as the deviation 
from the expected relationship between mean and standard deviation 
(Figure 4). Using these adjusted signal intensities, we defined the 
N-value (Equation 2). The distribution of the N-value was symmetric, 
and more importantly, showed less variability among samples than that 
observed for β and M (Figure 1).

Being a proportion, the variance in β among samples was likely to 
be associated with the mean of β, which was what we observed (Figure 
2). This relationship for β occurred mostly when 0.2 ≤ β ≤ 0.8. The 
M-value also showed a relationship between the standard deviation and 
mean among the samples (Figure 2). Our proposed N-value was quite 
different, with no obvious relationship between the mean N-value and 
the standard deviation of the N-value (Figure 2). This property should 
result in the N-value being more appropriate for testing for differences 
in methylation levels based on a test of mean differences such as a t-test.

Comparison of differential methylation analyses 

We compared the results of our analyses to detect differential 
methylation, using the three summary measures, β, M, and N. We 
used t-tests to test for differential methylation on a per site basis, using 
all three summary measures. Using all samples, the analysis using β 
resulted in 2,091 CpG sites at the 0.05 significance level (Table 1). 
Analysis using M identified 2,115 sites, and analyses of N identified 
1,508 sites. The number of sites identified when case #5 is excluded 
from the analyses, changed with β identifying 1,901 sites, M 2,137 sites, 
and N 1,549 sites. Although both β and M identified a larger number 
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Figure 1: Distributions of β, M, and N for obesity data. The first column shows dot plots of the respective summary statistic of methylation levels for each sample, with 
controls and cases plotted separately. The middle and the right columns show kernel density estimates of each sample separately for cases and controls. Samples are 
color coded as follows: — sample #1, — sample #2, — sample #3, — sample #4, — sample #5, — sample #6, and — sample #7.

The differentially methylated CpG sites have been identified by two-sample t-test, with p ≤ 0.05 for 7 control samples and 7 case samples over 27,578 CpG sites. By 
including an outlying sample, case #5, the identified number of CpG sites is changed. Columns (a), (b) and (c) summarize the number of CpG sites identified to be 
differentially methylated under t-tests, with or without case #5: (a) t-tests identify corresponding sites only when case #5 is included; (b) t-test identify the sites regardless 
of inclusion of case #5; and (c) t-test identify the sites only when case #5 is excluded. The total column presents the number of identified CpG sites, with or without case 
#5 by three summary measures.

Table 1:  Number of identified CpG sites as being differentially methylated in obesity data.

Measure
Site with p ≤ 0.05

Total(a) (b) (c)
with case #5 regardless #5 without case #5

β-value 809 (29.85%) 1,282 (47.31%) 619 (22.84%) 2,710
M-value 592 (21.69%) 1,523 (55.81%) 614 (22.50%) 2,729
N-value 361 (18.90%) 1,147 (60.05%) 402 (21.05%) 1,910

of candidate CpG sites under both analyses, these analyses showed the 
lowest consistency, as determined by the percent of the CpG sites that 
have p ≤ 0.05 in both analyses (Table 1). This improved consistency 
suggested that the N-value results are more stable, mainly due to the 
normalization that is inherent in N compared to both β and M.

Simulation study

Our simulations were based on simulating the mean signal and 
signal standard deviation based on our observations in the obesity 
study. We simulated data, with and without the sample heterogeneity 
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Figure 2: Relationship between means and standard deviations of summary measures of methylation levels among samples. β-value (top, left), M-value (top, right) and 
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n R
Without Heterogeneity (α=0.05) Without Heterogeneity (α=0.01)

β M N β M N

10

5 38.77 (1.07) 42.65 (0.95) 50.32 (0.69) 63.77 (2.04) 69.02 (1.77) 80.26 (1.02)
10 55.44 (0.92) 59.42 (0.81) 66.97 (0.63) 77.55 (1.37) 81.39 (1.13) 89.11 (0.61)
15 67.13 (0.76) 70.58 (0.67) 76.96 (0.52) 84.94 (0.97) 87.71 (0.81) 93.04 (0.41)
20 73.40 (0.70) 76.60 (0.59) 82.07 (0.42) 88.27 (0.80) 90.57 (0.63) 94.74 (0.33)

20

5 48.81 (0.82) 50.71 (0.71) 52.43 (0.69) 79.26 (1.23) 81.52 (1.02) 84.56 (0.78)
10 65.37 (0.71) 67.09 (0.65) 68.72 (0.58) 88.22 (0.72) 89.68 (0.60) 91.57 (0.46)
15 75.67 (0.56) 77.10 (0.51) 78.43 (0.47) 92.47 (0.47) 93.44 (0.39) 94.72 (0.32)
20 80.89 (0.47) 82.23 (0.44) 83.43 (0.40) 94.26 (0.40) 95.11 (0.32) 96.14 (0.25)

n R
With Heterogeneity (α=0.05) With Heterogeneity (α=0.01)

β M N β M N

10

5 40.51 (1.21) 32.88 (1.27) 46.41 (0.83) 65.63 (2.38) 62.37 (2.99) 73.59 (1.40)
10 57.64 (1.09) 49.11 (1.26) 63.18 (0.71) 79.35 (1.59) 76.47 (2.12) 84.57 (0.87)
15 68.59 (0.91) 61.25 (1.09) 74.11 (0.59) 86.00 (1.11) 83.98 (1.59) 90.26 (0.57)
20 74.89 (0.76) 67.72 (0.98) 79.42 (0.49) 89.14 (0.90) 87.22 (1.27) 92.43 (0.48)

20

5 51.73 (0.90) 48.49 (1.05) 52.31 (0.68) 81.26 (1.34) 80.26 (1.52) 84.23 (0.80)
10 68.04 (0.74) 65.23 (0.86) 68.59 (0.59) 89.59 (0.78) 88.94 (0.85) 91.38 (0.48)
15 77.50 (0.61) 75.41 (0.65) 78.33 (0.48) 93.25 (0.50) 92.89 (0.56) 94.61 (0.33)
20 82.55 (0.49) 80.54 (0.58) 83.36 (0.41) 94.92 (0.40) 94.52 (0.47) 96.03 (0.26)

The average (standard deviation) of the true positive percent in 1,000 simulations is shown. The significance level (Type I error) of the test is α, the per group sample size 
is n, and the percent CpG sites that are differentially methylated is denoted by R. Results shown are for the scenario in which the case standard deviation was shifted by 1

Table 2: True positive rates for all CpG sites in simulation study without and with sample heterogeneity.
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that was observed in our data. Our proposed N-value had the highest 
right decision makings, say true positive rates, based on using t-tests, 
where the significance level 0.1 brought a higher true positive rate 
than the significance level 0.05 (Table 2). All three summary measures, 
β, M and N, were affected by the introduction of heterogeneity into 
the data. Interestingly, the true positive rate for β increased when 
sample heterogeneity was added to the simulations, whereas M and 
N both exhibited decreased true positive rates. Overall, N tended to 
have higher true positive rates than β and M, although there was no 
significant difference between β and N for sample sizes of 20, when 
sample heterogeneity was present under significance level 0.05 (Table 
2).

In addition to having better true positive rates, we also examined the 
consistency between results, with and without sample heterogeneity. 
All three summary measures showed increasing robustness with 
increasing sample size (Table 3). Regardless of sample size, our 
proposed N-value always showed greater consistency than β and M, 
while β always showed greater consistency than M.

Interestingly, while the true positive rate was affected by the 
proportion of sites differentially methy-lated (Table 2), the consistency 
between results for simulations with and without sample heterogeneity 
was slightly affected by the proportion of sites differentially methylated 
(Table 3).
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Figure 3: Distribution of signal intensities and standard deviations. (a) Each plot is a dot plot showing the means and standard deviation of the signal for each target 
site, with control samples on the left and case samples on the right. Red vertical lines indicate the data for either control sample #5 or case sample #5 (b) Kernel density 
estimates are shown that correspond to the dot plots in (a) Samples are color coded as follows:— sample #1, — sample #2, — sample #3, — sample #4, — sample #5, 
— sample #6, and — sample #7.
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Discussion
We proposed the N-value as a weighted logistic transformation of 

β, with the advantage that N also normalizes data across arrays. Using 
our existing obesity data to compare N with both β and M, we showed 

that the use of N yielded more stable results. Although results were 
more stable with N, it produced fewer discoveries. The effect sizes in 
an experiment comparing obese subjects with matched controls are 
expected to be small, and the number of sites showing differential 
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Figure 4: Regression for intensities on standard deviations. Each plot is a scatterplot of mean signal against the signal standard deviation, with the fit regression line 
included (p-value<0.01 and R2 ≥ 0.9).

n R  (α=0.05)  (α=0.01)
β M N β M N

10 5 47.94 (1.06) 34.95 (0.88) 68.05 (0.92) 45.12 (1.76) 23.23 (1.36) 62.06 (1.55)
10 53.40 (0.93) 35.48 (0.78) 72.50 (0.79) 49.78 (1.43) 23.59 (1.02) 63.03 (1.19)
15 56.29 (0.80) 35.81 (0.68) 76.31 (0.66) 50.66 (1.33) 23.55 (0.88) 65.68 (1.00)
20 58.54 (0.73) 35.26 (0.62) 76.91 (0.59) 51.64 (1.11) 22.96 (0.79) 64.49 (0.92)

20 5 64.06 (0.90) 55.51 (1.10) 82.00 (0.68) 67.72 (1.43) 49.97 (1.57) 90.46 (0.71)
10 71.30 (0.74) 61.32 (0.99) 87.49 (0.48) 71.77 (1.02) 51.61 (1.24) 93.51 (0.48)
15 75.14 (0.58) 64.53 (0.81) 90.98 (0.36) 72.16 (0.82) 51.85 (0.97) 94.97 (0.35)
20 77.83 (0.57) 65.32 (0.81) 92.69 (0.31) 73.10 (0.73) 50.63 (0.89) 95.12 (0.32)

The average (standard deviation) of the percent of sites with p ≤ 0.05, in both a simulation with and a simulation without sample heterogeneity is shown, summarized 
for 1,000 simulations. Tests have been performed under the given significance level α. The per group sample size is n, and the percent CpG sites that are differentially 
methylated is denoted by R. Results shown are for the scenario in which the case standard deviation was shifted by 1

Table 3: Consistency of test results between analyses with and without heterogeneity.
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methylation is likely to be small. The p-value in this case is more likely 
to be close to uniformly distributed. As such, the smaller number of 
discoveries with N in the obesity data may be more reflective of true 
signals. The potential increased accuracy of N relative to β and M was 
confirmed in our simulations. Further, the simulations demonstrated 
that N produces results that are more robust to the type of heterogeneity 
that we observed. Of note is that analyses of M result in increased 
accuracy, relative to β only when no sample heterogeneity was present, 
while β was more robust to sample heterogeneity. Our results suggest 
that N should be preferred to both β and M, with β being preferred to 
M.

Our results were entirely based on data obtained using the Infinium 
I assay. Most of the probes on the 450K array are based on the Infinium 
II assay, which may suggest that our results are not applicable here. The 
distribution of β is known to differ between Infinium I and Infinium II 
assays, and the distribution of the signal values will also differ between 
Infinium I and Infinium II. However, our proposed N-value only 
depends on separate methylated and unmethylated signals, in which 
there is a relationship between the signal standard deviation and the 
signal mean. Importantly, our method accounts for the uncertainty 
in mean signal, and appropriately adjusts for the variability in signal. 
Therefore, the N-value should show improved performance with the 
Infinium II assay as well.

Although we used linear regression to define the N-value here, 
any sort of regression relationship could be used, since the normalized 
signals were defined as residuals from the regression of the mean signal 
on signal standard deviation. The assumption about linear relationship 
between mean signal and signal standard deviation is one that can easily 
be examined with each data set, and the regression function adjusted 
appropriately. We have examined this relationship in preliminary data 
obtained from the 450K chip, and the relationship between mean signal 
and signal standard deviation was linear. Such results do suggest that 
the N-value is a potentially important summary statistic to be used 
in testing for differential methylation in methylome-wide association 
studies. Ultimately, the efficacy of different methods will need to be 
evaluated based on confirmatory biological findings based on analyses 
using the different summary measures.
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