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Abstract

Previously we have reported a microarray image processing and data analysis package Matarray, where quality
scores are defined for every spot that reflect the reliability and variability of the data acquired from each spot. In
this article we present a new development in Matarray, where the quality scores are incorporated as weights in
the statistical evaluation and data mining of microarray data.  With this approach filtering of poor quality data is
automatically achieved through the reduction in their weights, thereby eliminating the need to manually flag or
remove bad data points, as well as the problem of missing values.  More significantly, utilizing a set of control
clones spiked in at known input ratios ranging from 1:30 to 30:1, we find that the quality-weighted statistics
leads to more accurate gene expression measurements and more sensitive detection of their changes with
significantly lower type II error rates. Further, we have applied the quality-weighted clustering to a time-course
microarray data set, and find that the new algorithm improves grouping accuracy. In summary, incorporating
quantitative quality measure of microarray data as weight in complex data analysis leads to improved reliability
and convenience. In addition it provides a practical way to deal with the missing value issue in establishing
automatic statistical tests.

Keywords: Microarray; Quality score; Weighted algorithms; Accurate expression measurement

Availability: Matarray is freely available from xujingw@uab.edu; or sjia@mcw.edu

Introduction

Microarray technology, which allows genome-level pro-
filing of gene expression changes, has become a widely used
genetic tool. However, the technology is prone to noise,

necessitating data filtering (Wang  et al., 2001). Often 
data from poor-quality spots, such as spots with insuffi-
cient resolution from noise, or insufficient immobilized probe
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material (Hessner et al., 2003) are removed from
further analysis, since it is impossible to derive reliable mea-
surements from them. Data filtering creates the problem of
missing values (Troyanskaya et al., 2001), which
makes combining data from replicates, and the down stream
statistical evaluation and data mining cumbersome.

    It has been argued that measurement reliability-
weighted methods can improve performance of the signifi-
cant analysis of microarrays (Hughes et al., 2000;
Fan et al., 2004). Fan, et al used a LOWESS method
to obtain a weight which indicated the reliability of the mea-
sured log ratio in an array, then applied both weighted and
ordinary t-test to examine the effect of MIF treatment on
genes (Fan et al., 2004). Compared with ordinary ttest,
the weighted t-test had a better ability to assess the
effect of genes, and could identify more significant genes
with smaller p-values. However, the weight defined in their
paper may not fully capture the inherent variability in
microarray measurements, since they only considered the
variability brought by low intensity and print-tip effects, and
their method was dependent on the number and character-
istics of available replicated clones on array.  A limited ef-
fort has also been made to improve clustering performance
by incorporating the error variance information calculated
from replicates. Intuitively, gene expression levels that show
larger variations over repeated measurements should be
assigned lower measurement reliability. For example, Yeung
et al systematically evaluated several clustering algorithms
that incorporated variability calculated from repeated mea-
surements as weights, and showed that algorithms yield more
accurate and more stable clusters (Yeung et al., 2003). 
However, these methods are all based on a variance 
calculation from replicates, which requires that an ad-
equate number of replicate hybridizations be made in order
to derive a reliable estimation of the variance. This would
not always be practical because of the high cost of microarray
experiments. In addition, such approaches are not sensitive
to quality issues that affect all replicates equally.

Previously we have reported a microarray data acquisi-
tion and analysis software package Matarray (Wang et al.,
2001; Wang et al., 2003). It processes microarray 
images and acquires gene expression measurements 
from every spot.  A composite quality score qcom is
defined for every spot according to the signal to noise ratio,
spot size and variation, global and local noise distribution,
and saturation for detection. If a pre-hybridization third dye
(TD) image is also available, as is the case with our three
color microarray platform (Hessner et al., 2003;
Hessner et al., 2003) then a composite quality score
qTD will also be defined similarly according to the informa-

tion from the TD image.  In either case, a final quality score
qf will be determined by qf = qcom, or qf = qcom  qTD  if TD
image is available (Wang and Hessner 2005).  Through nu-
merous studies we have demonstrated that our quality
metrics capture well the reliability of the data acquired, in
the sense that gene expression measurements derived from
spots with higher scores are much more accurate and less
variable than those derived from spots with lower scores
(Wang et al.,  2001; Hessner et al., 2003; Wang et al.,
2003; Wang and Hessner, 2005). We have also 
demonstrated the significance of having a quantitative
measure of data quality for every spot, through the efficient
data filtering and normalization procedures that they led to
(Wang et al., 2001; Wang et al., 2003). In this paper,
we present a new application to the statistical evalua-
tion  of microarray measurements, where the quality
scores are utilized to define weights WQ.  Using a set of
control clones that were spiked in at known input ratios, we
show that WQ -weighted mean and WQ -weighted t-test lead
to more accurate gene expression measurements and more
sensitive detection of gene expression changes. In addition,
we introduce a quality-weighted clustering algorithm through
the definition of WQ -weighted distance metric. We apply it
to a large-scale time series microarray experiments and show
that it allows more accurate discrimination of groupings of
experimental conditions. In these algorithms filtering of poor-
quality data is automatically achieved through their dimin-
ishing weights. There is no need to manually flag or remove
them explicitly from the data matrix. Therefore the cum-
bersome data missing value problem is avoided.

Materials and Methods

Microarray Dataset and Processing

Data from 3 different microarray experiments were uti-
lized to validate our quality-weighted algorithm: (1) Profil-
ing of BioBreeding (BB) rat thymus.  Gene expressions
were compared between the thymus of diabetes prone
DRlyp/lyp (referred to as DP) and diabetic resistant DR+/
+ (referred to as DR) BB rats (Hessner et al., 2004) at
day 40. This analysis utilized 4 animals from each strain,
and 4 replicate hybridizations were performed for each ani-
mal pair, with 2 hybridizations reverse labeled to control for
dye bias.  During each hybridization, the labeling reactions
of total thymus RNA were spiked with 4 Arabidopsis in
vitro transcripts (cellulose synthase, chlorophyll a/b binding
protein, ribulose-1,5-bisphosphate and triosphosphate
isomerase) at known input ratios (30:1, 10:1, 5:1, and 1:1,
respectively). Each of our rat arrays possessed 18, 20, 18
and 20 replicate spots corresponding to the 4 Arabidopsis
clones respectively, giving rise to a total of 1216 data points.
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These clones enabled an evaluation of our methods through
the comparison of measured output ratios to the known in-
put ratios. (2) Profiling of BB rat liver. Gene expressions in
liver were compared between day 65 BB-DR rats and
Wistar-Furth (WF) rats. In this experiment, 4 animals from
each strain were sacrificed and equal amounts of purified
total RNA from the animals of the same strain were pooled.
The two pools were then compared in 6 replicate hybridiza-
tions, with 3 of them reverse labeled. The transcript abun-
dance of 24 genes that exhibited differential expression (DE)
were also measured using quantitative real time RT-PCR,
which is generally considered a more quantitative platform
than microarrays (Chuaqui et al., 2002).  (3) Time
course profiling of apoptosis progression in pancreatic islet

 cells. Cells from a rat  cell line RIN-m5F were treated
with a protein kinase C inhibitor staurosporine (Sanchez-
Margalet et al., 1993) at a high dose of 1 M, and a
low dose of 1nM for 2, 4, and 6 hours, and were compared
for differential gene expressions. At each time point, 6 rep-
licate hybridizations were performed, with 3 of them re-
verse labeled, totaling 18 hybridizations. Cell apoptosis sta-
tus were confirmed using Annexin V/PI double staining
method as described in (Wang et al., 2002), and
apoptosis progression under high dose treatment along time
was evident. At 2hr for example, the Annexin positive cells
was about 20%. At 6 hr after drug treatment, the apoptosis
progression has been established with at least 40% cells. In
the low dose treatment, the apoptosis rate at any time point
is not significantly different from the control sample at t=0.

All experiments were carried out using in-house rat cDNA
microarrays that were fabricated using our three-color
microarray platform (Hessner, 2003; Hessner et al., 2003).
All hybridized arrays were processed using Matarray,
and an overall quality score Qf were defined for data from
each microarray spot which reflect its quality (Wang
et al., 2001; Wang et al., 2003; Wang et al., 2003).
Briefly, from cyanine images, non-redundant factors 
affecting data quality were identified, individual quality
scores as well as a composite score qcom was determined
(Wang et al., 2001). From the prehybridization third
dye image, a quality score qTD was calculated similarly to
measure the impact of imperfections in array fabrication on
hybridization data quality (Hessner, 2003; Hessner et al.,
2003; Wang et al., 2006). Together, a final overall
assessment of data quality was given by Qf = qcom  qTD
(Wang et al., 2006).  Data quality and characteristics 
were evaluated utilizing the ratio- Qf plot. In this analysis
only spots with Qf > 0 were retained for further analysis,
and this comprised of more than 95% of the data.

Quality Weighted Mean and T-test

In statistics, it is known that utilizing the inverse error vari-
ance as weight in significance test can improve perfor-
mance. Unfortunately, true error variance of microarray data
is unknown in practice. It can be estimated from adequate
number of replicates; however this would increase experi-
mental cost (Tjaden, 2006).  We have optimized our quality
score definitions such that error variance monotonically
decreases as quality score increases (Wang et al., 2001;
Wang and Hessner, 2006). So improvement in statis-
tical tests can be expected when the quality scores are in-
corporated as weights.  Assuming that gij  is the expression
measurement for gene i in target sample j, Qij is the corre-
sponding quality score, and there are N samples, we define
the weighted mean and weighted standard error (SE) by:

Where weight is defined as WQij= Qij. Replacing the mean

and SE in  by their weighted counterparts, we

define the quality-weighted t-test by:

(2)

where gi0 is the expected value of gij, The two-sample
weighted t-test can be defined accordingly. The row-mean

of  are used to indicate the overall quality for

each gene. If Wij=0 (ie Qij = 0) for all j, or all j but one, then
the arithmetic mean will be calculated for gij and the p-
value will be set to 1. In Matarray normally all data points
with are filtered (Wang et al., 2003; Wang and
Hessner, 2005). Here in this new approach, data filtering is
built-in and the contribution from bad data points is auto-
matically minimized through reduction in their weights, elimi-
nating the need of physical removal of substandard data.
Furthermore, it automatically gives the best data the highest
weights; and therefore has the potential of generating more
sensitive and accurate measurements.

As our sample size is not big (Allison et al., 2006), we
have also implemented penalized weighted t-test (Comander,
et al., 2004) to reduce false positives resulted from coincidental 
small SE:
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  (3)

where s0 is a small constant. In this work, we choose s0 to
be the 75th percentile of SE in expression measurements
for all genes. When sample size is small, penalized t-test
usually performs better than normal t-test (Comander,
et al., 2004).

Quality-weighted Clustering

We define quality-weighted similarity measures that
weight expression values with quality scores such that con-
tributions from low quality data points are reduced. Using
average-linkage hierarchical clustering of samples as an ex-
ample, for each pair of sample a and sample b, we define
the weighted distance metric by:

          (4)

Where n is the number of genes used for cluster analysis.
The distance metric for gene pairs, or other types of simi-
larity measurements can be defined similarly. In this study
after calculating distance matrix of all pairs of samples, av-
erage-linkage hierarchical clustering algorithm was applied
to cluster samples in data set 3.

Implementation

All algorithms are implemented in our in-house software
Matarray (Wang et  al . ,  2001; Wang et  al . ,  2003).
It is freely available, with documentation, examples
and a tutorial.

Results

Spiked-in Control Clones and RT-PCR Demonstrate
that Weighted Mean is More Accurate

We have found that the weighted mean generates more
accurate gene expression measurements than do the arith-
metic means. In figure 1A, comparison between the mea-
sured and the actual input ratios are given for the Arabidopsis
control clones, where a highly linear relationship (R2>0.99;
p<0.0001) is observed, with the exception of the last data
point (spiked-in ratio 30:1, Cy5:Cy3). Overall, the weighted
means exhibited less compression in measurements than
the arithmetic means (slope=0.888 versus 0.824, p < 0.01).
The random sampling method also proved that weighted
means possess significantly higher slope (data not shown).
A closer examination of the spots contributing to the last
data point revealed significant intensity saturation in one dye
channel (Cy5), which led to under-estimation of the fold
difference between the two dye channels.

Figure 1: WQ-weighted statistics leads to improved accuracy and sensitivity over the non-weighted approach.  In both (A)
and (B) symbols represent the measure data, and lines are the linear regressions. (A) The measured ratios (M) are compared
with the actual input ratios (I) for the spiked-in Arabidopsis clones.  Both weighted mean (w) and non-weighted mean (nw)
ratio measurements exhibit good agreement with the input ratios, with R2>0.99; p<0.0001. There is less compression in the
weighted mean ratios, as the slope of the linear regression is closer to 1. The last data point (circled) corresponding to a 30:1
input ratio is excluded in the linear regression.  (B) Measurements by microarrays (M) are compared with those by RT-PCR
(R) for 24 genes in the rat liver experiment.  Highly linear relationships are observed between the two platforms (R2 > 0.96;
p< 0.0001). One data point (circled) where WQ = 0 for all replicates is excluded in the linear regression.
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  In figure 1B the microarray measurements were com-
pared to the RT-PCR results for the 24 genes in the rat liver
experiments, and again an overall good agreement was ob-
served. After removal of one gene (circled) where Qf = 0 in
all replicates, a highly linear relationship (R2 > 0.96; p<
0.0001) was observed for the remaining 23 genes. Again
the weighted means exhibited an improved agreement with
RT-PCR over the non-weighted means (slope=0.880 ver-
sus 0.848 for the arithmetic means, ).

    The weighted mean ratios agreed better than ordinary
arithmetic means with the true input ratios, as well as with
the ratio values measured by RT-PCR.  In addition, reduc-
tion of ratio compression should help to improve sensitivity
in identifying significant genes, since severe ratio compres-
sion can push some truly significant genes into background
noise. The following subsection shows that this is indeed
the case.

Weighted T-test is more Sensitive in Detecting Dif-
ferential Expressions

To evaluate the performance of the weighted t-test, we
compared the p-values derived using both weighted and non-
weighted tests. We found that in general the weighted t-test
allowed more genes to be detected with significant p -val-
ues.  Using the rat thymus data set as an example, we have

plotted in figure 2A the p -values defined by WQ -weighted
t-test against those by normal t-test for all genes. Spots cor-
responding to the Arabidopsis clones were not included.  The
weighted t-test predicted more genes to be differentially
expressed between the DP and DR rats. For example, the
genes in the lower right quadrants are significant at p = 0.1
according to the weighted t-test, but not according to the
non-weighted t-test. On the contrary, only a few genes were
identified by non-weighted test, but have been missed by
weighted t-test, see upper left part of figure 2A.

To further verify that this is due to more sensitive detec-
tion rather than to a higher false positive rate, we again
turned to the Arabidopsis control clones. Each of our rat
arrays possessed 76 spots corresponding to the 4
Arabidopsis clones. Therefore, this experiment generated
a total of 152 Arabidopsis data points in each sample com-
parison from the two directions of labeling.  40 of them
corresponding to the clone spiked in at 1:1 ratio served as
(non-DE) negative controls. The remaining 112 correspond-
ing to an input ratio that was significantly different from 1
served as (DE) positive controls. The results were summa-
rized in table 1. We found that the type II error (false posi-
tive rates) were comparable between the weighted and non-
weighted t-tests. Specifically, at p = 0.01, 5 out of the 40
negative controls were significant according to non-weighted
t-test and 7 according to the weighted test. On the other

Figure 2:  The weighted t-test leads to identification of more genes with significant changes.  (A) The p-values determined
using weighted and non-weighted t-tests are compared for all genes in the rat thymus data set.  More genes have significant
p-values according to the weighted t-test (lower right quadrant). (B) The p-values are compared for all spiked-in Arabidopsis
spots corresponding to the input ratios of 30:1, 10:1 and 5:1 (excluding those corresponding to 1:1). The measured ratios of
these spots should all be significantly different from 1.  The weighted t-test is able to detect more of them as evidenced by the
more significant p -values.
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hand, the type I error rate was significantly reduced in the
weighted approach (Figure 2B). 81 of 112 positive controls
had , and the weighted t-test was able to detect all
but one (Type I error rate: 1.2%). In contrast, non-weighted
t-test missed 18, leading to a type I error rate of 22.2%,
significantly higher than that of the weighted test (p <
0.0001). This result indicates indirectly that those data points
in the lower right quadrant of figure 2A are likely to be true
positives. Since the microarray technology is often utilized
as an explorative tool to be followed by conformational
measures, more sensitive detection is highly desirable.

To further reduce the false positive rate we have intro-
duced penalized weighted t-test given by equation 3.  In
figure 3A, the Gaussian fitting to the p-value distribution
calculated according to the weighted penalized and non-
weighted t-tests were plotted, for the positive and negative
control clones of the rat thymus analysis. The vertical line

corresponds to the user-specified p -value cutoff which is
used to balance the tradeoff between type I and type II
error probabilities. This figure clearly demonstrates that both
type I and type II error rate were significantly reduced within
commonly used threshold p -values for significance [0.05-
0.001]. Therefore, in comparison to the non-weighted t-test,
the power of weighted method to detect gene expression
changes was also significant enhanced. On the other hand,
penalized t-test was expected to lower the type II error
rate, indeed, at  p = 0.01, the type II error according to the
40 negative controls has reduced from 7 to 4. The type I
error rate in the penalized approach was 2.5% (2 out of 81),
not significantly different from that of the non-penalized
weighted t-test (p > 0.5, χ2-test). Therefore introducing pe-
nalized test further reduced type II error rate as expected
without compromising sensitivity of detection.

We have then used receiver operating characteristic

t-test weighted t-test weighted penalized t-test 

Type I error  18 1 2 

Type II error  5 7 4 

Table 1:  Comparison of type I errors and type II errors produced by different algorithms at p = 0.01. The number of
available positive and negative controls is 81 and 40 respectively.

Figure 3: Comparison between the weighted penalized t-test and normal t-test demonstrates the advantage of the former.
In an experiment that profiled rat thymus, we have 40 data points corresponding to a control clone spiked in at known
Cy3:Cy5 input ratios of 1:1, which serve as negative controls, and 112 data points corresponding to spike-in ratios of 5:1, 10:1
and 30:1, which serve as positive controls. (A) The relative frequencies are plotted against the p-values derived using the
penalized weighted (W) and non-weighted (NW) t-tests. The areas under positive controls curves on the left of vertical line
correspond to false negatives, and the areas under negative controls curves on the right of vertical line correspond to false
positives. (B) ROC plot showing true positive rate against false positive rate.
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(ROC) curves to quantitatively compare the results between
penalized weighted and non-weighted t-test. In figure 3B,
true positive rate was plotted against false positive rate for
the Arabidopsis control clone data set. This underlines the
obvious fact that weighted method can lead to higher true
positive rate at the same false positive level. AUC (Area
Under Curve) of ROC is a standard performance measure
of algorithm, the AUC for non-weighted curve was 0.94
and AUC for WQ-weighted curve was 0.97, so our weighted
algorithm can more sensitively identify significant genes
without increasing false positive rates.

    For comparison we also added non-weighted results
calculated by normal t-test for the data in which bad points
were manually flagged and removed. Interestingly, manu-
ally flagging method did not significantly improve over non-
weighted no filtering method. Specifically at stringent type I
error rates, manually filtering significantly lowered the sen-
sitivity to detect differentially expressed genes. After care-
fully checking the data, we found that this was primarily
due to the decrease of available replicates, almost all data
points on the left end of the curve (FP rate<0.1) were cal-
culated from only 2-4 replicates retained after manual fil-
tering. The number of replicates for these data points was
below 5, the number found to be the minimally required in
order to achieve reliable statistical inference (Allison
et al., 2006). In summary, we have found that the WQ-
weighted statistics allows more accurate and sensitive de-
tection of gene expression changes. It allows efficient fil-
tering of poor quality data, and is more convenient than the

manual flagging method.

Weighted Clustering Yields More Accurate Group-
ing

We have found that the weighted clustering generally leads
to more sensitive detection of groupings among samples.
Figure 4A-4B show the result of the average-linkage hier-
archical clustering of samples from data set 3, which pro-
filed gene expression changes in pancreatic islet β cells dur-
ing apoptosis progression (single- and complete-linkage hi-
erarchical clustering algorithm give very similar results).

Samples collected at the same time should be close to
each other in the dendograms. It is also reasonable to ex-
pect that experiments using the same labeling method to
cluster together if all other conditions are identical. There-
fore we expect that at the top level of the hierarchy, there
are three clusters, each correspond to one of the three time
points; at the next level, samples form 6 subgroups named
by collection time and labeling methods: 2H-f (2H-forward
labeling), 2H-r (2H-revserse labeling), 4H-f, 4H-r, 6H-f and
6H-r. Clearly, the weighted algorithm can discriminate the
groupings among the samples much better than the non-
weighted algorithm.  Specifically, (1) weighted method could
distinguish samples at 2h perfectly, and three forward label-
ing and reverse labeling experiments have been strictly di-
vided into two subgroups; (2) for the samples at 4h, weighted
algorithm put two experiments with forward labeling into
one group with very high similarity, whilst the non-weighted

Figure 4: Weighted clustering can better recover sample relationships. Presented are the dendrograms of hierarchical
clustering of the 18 arrays in data set 3 using non-weighted (A) and weighted (B) algorithms. On top are the hybridizations
named by sample collection time and labeling methods (forward or reverse), the last number represents replicate index.
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algorithm failed to group them correctly. On the other hand,
all the sensible findings obtained by non-weighted algorithm
have also been found by weighted approach, such as 6H-r
group and 4H-r group.

Discussion

In this work we have extended our quality score defini-
tions to the statistical evaluation of microarray data by in-
troducing the WQ-weighted mean and WQ-weighted t-test.
We have shown that the new approach leads to improved
accuracy in gene expression measurements, and more sen-
sitive detection of expression changes. Recently, we have
further investigated the impact of such improvement on the
biological interpretation of the data.  We examined the re-
sults from ontological analysis of DE genes defined by the
weighted or non-weighted tests, using OntoExpress
(Draghici et al., 2003) and EASE (Hosack et al., 2003).
We have found that the weighted t-test led to annota-
tions with more focused, logical biological themes
(data not shown).  Our quality score weighted approach
can be further extended to other statistical models, such as
mixture models (Kauermann and Eilers, 2004; Newton
et al., 2004).  We have shown that weighted clustering 
algorithms incorporating quality scores performed
better to group samples. Similarly, it can be applied to clus-
ter genes of similar variation patterns, and will also likely
lead to improved performance in identifying meaningful re-
lationships between gene groups, so that more biological
information can be extracted from microarray data.

Data from microarray experiments are usually in the form
of large matrices of gene expression measurements or log
ratios between the target samples and controls. Normally,
each row corresponds to a gene and each column corre-
sponds to a condition. Data filtering to remove low-quality
elements, which is necessary in microarrays, results in miss-
ing values in the matrices.  It is difficult to set up automatic
statistical tests where the gene expression matrix is incom-
plete, and the sample size varies from gene to gene due to
missing values. Many pattern finding methods, including
principal component analysis and singular value decompo-
sition need complete data sets. Clustering methods such as
hierarchical clustering (Eisen et al., 1998) can handle 
missing values by ignoring them when calculating
cluster distance, however, doing so can lead to spurious re-
sults (Oba et al., 2003). To deal with the missing values
in a dataset, the most straightforward approach is to
simply remove the whole row or column that contains miss-
ing values. This will not be practical for large data sets that
profile multiple conditions, as there often too many genes
possess missing values (Ouyang et al., 2004). Other

methods include replacing the missing values with zeros or
row means. But they can often lead to high deviations from
true values (Troyanskaya et al., 2001; Oba et al., 2003).
More sophisticated imputation approaches that utilize 
the information from the whole data set to estimate
the missing values have also been proposed, examples in-
clude methods that utilize measurements from other genes
that have similar or correlated expression patterns
(Troyanskaya et al., 2001; Bo et al., 2004); utilizing the
principle components of the gene expression matrix 
(Troyanskaya  e t  a l . ,  2001;  Oba  e t  a l . ,  2003) ;
and model based approaches such as Gaussian mix-
ture (Ouyang et al., 2004) and Bayesian (Oba et al., 2003;
Zhou et  a l . ,  2003)  models .   These approaches
often require high number of replicates.  In addition, the
performance of different algorithms varies, and the
accuracy and robustness of the estimation often depend on
data characteristics, including data size, data quality, corre-
lation between data from different conditions, and experi-
mental designs. There is no single algorithm that has been
deemed the best under all conditions. These issues have
added to the complexity of the already challenging microarray
data analysis.  In addition of improved data quality, our ap-
proach eliminates the need to manually flag or remove bad
data points, and hence the missing value problem is avoided.
The convenience will be more significant for large data sets
where a great number of genes can be affected.

Acknowledgement

This work is supported in part by National Institute of
Biomedical Imaging and Bioengineering under grant No.
1R01EB001421, the National Institute of Diabetes and Di-
gestive and Kidney Diseases under grant No.
R01DK080100, and the National Institute of Allergy and
Infectious Diseases under grant No. 9R56AI078713-
05A1.We thank Lisa Meyer for performing the experiments.

References
1. Allison DB, Cui X, Page GP, Sabripour M (2006)

Microarray data analysis: from disarray to consolidation

and consensus. Nat Rev Genet 7: 55-65. » CrossRef » Pubmed

» Google Scholar

2. Bo TH, Dysvik B, Jonassen I (2004) LSimpute: accurate

estimation of missing values in microarray data with least

squares methods. Nucleic Acids Res 32: e34.  » CrossRef

» Pubmed » Google Scholar

3. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig

MJ, et al. (2002) Post-analysis follow-up and validation

of microarray experiments. Nat Genet 32: 509-14.

» CrossRef » Pubmed » Google Scholar

4. Comander J, Natarajan S, Gimbrone MA, Jr, García-

http://www.nature.com/nrg/journal/v7/n1/full/nrg1749.html?message=remove
http://www.ncbi.nlm.nih.gov/pubmed/16369572?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Microarray+data+analysis%3A+from+disarray+to+consolidation+and+consensus&btnG=Search
http://nar.oxfordjournals.org/cgi/content/abstract/32/3/e34
http://www.ncbi.nlm.nih.gov/pubmed/14978222?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=LSimpute%3A+accurate+estimation+of+missing+values+in+microarray+data+with+least+squares+methods&btnG=Search
http://www.nature.com/ng/journal/v32/n4s/full/ng1034.html
http://www.ncbi.nlm.nih.gov/pubmed/12454646?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Post-analysis+follow-+up+and+validation+of+microarray+experiments&btnG=Search


Journal of Computer Science & Systems Biology - Open Access
              Research  Article       JCSB/Vol.1  2008

J Comput Sci Syst Biol Volume 1: 041-049 (2008) - 049
 ISSN:0974-7230   JCSB, an open access journal

Cardeña G (2004)  Improving the statistical detection of

regulated genes from microarray data using intensity-

based variance estimation. BMC Genomics 5: 17.

» CrossRef » Pubmed » Google Scholar

5. Draghici S, Khatri P, Shah A, Tainsky MA (2003)

Assessing the functional bias of commercial microarrays

using the onto-compare database. Biotechniques 55-61.

» CrossRef » Pubmed » Google Scholar

6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998)

Cluster analysis and display of genome-wide expression

patterns. Proc Natl Acad Sci USA 95: 14863-8. » Pubmed

» Google Scholar

7. Fan J, Tam P, Woude GV, Ren Y (2004) Normalization

and analysis of cDNA microarrays using within-array

replications applied to neuroblastoma cell response to a

cytokine. Proc Natl Acad Sci USA 101: 1135-40. » CrossRef

» Pubmed » Google Scholar

8. Hessner M, Wang X, Hulse K, Meyer L,Wu Y, et al.

(2003) Three color cDNA microarrays: quantitative

assessment through the use of Fluorescein-Labeled

Probes. Nucl Acids Res 31: e14. » CrossRef » Pubmed » Google

Scholar

9. Hessner MJ, Wang X, Khan S, Meyer L, Schlicht M, et

al. (2003) Use of a three-color cDNA microarray

platform to measure and control support-bound probe

for improved data quality and reproducibility. Nucl Acids

Res 31: e60. » CrossRef » Pubmed » Google Scholar

10. Hessner MJ, Wang X, Meyer L, Geoffrey R, Jia S, et al.

(2004) Involvement of eotaxin, eosinophils, and pancreatic

predisposition in development of type 1 diabetes mellitus

in the BioBreeding rat. J Immunol 173: 6993-7002.

» CrossRef » Pubmed » Google Scholar

11.Hosack DA, Dennis G, Jr, Sherman BT, Lane HC,

Lempicki RA, et al. (2003) Identifying biological themes

within lists of genes with EASE. Genome Biology 4: p4.

» CrossRef » Pubmed » Google Scholar

12. Hughes TR, Marton MJ, Jones AR, Roberts CJ,

Stoughton R, et al. (2000) Functional discovery via a

compendium of expression profiles. Cell 102: 109-26.

» CrossRef » Pubmed » Google Scholar

13. Kauermann G, Eilers P (2004). Modeling microarray data

using a threshold mixture model. Biometrics 60: 376-87.

» CrossRef » Pubmed » Google Scholar

14. Newton MA, Noueiry A, Sarkar D, Ahlquist P (2004)

Detecting differential gene expression with a

semiparametric hierarchical mixture method. Biostatistics

5: 155-76. » CrossRef » Pubmed » Google Scholar

15. Oba S, Sato MA, Takemasa I, Monden M, Matsubara

K, et al. (2003) A Bayesian missing value estimation

method for gene expression profile data. Bioinformatics

19: 2088-96. » CrossRef » Pubmed » Google Scholar

16. Ouyang M, Welsh WJ, Georgopoulos P (2004) Gaussian

mixture clustering and imputation of microarray data.

Bioinformatics 20: 917-23. » CrossRef » Pubmed » Google Scholar

17. Sanchez MV, Lucas M, Solano F, Goberna R (1993)

Sensitivity of insulin-secreting RIN m5F cells to

undergoing apoptosis by the protein kinase C inhibitor

staurosporine. Exp Cell Res 209: 160-3. » CrossRef » Pubmed

» Google Scholar

18. Tjaden B (2006) An approach for clustering gene

expression data with error information. BMC

Bioinformatics 7: 17. » CrossRef » Pubmed » Google Scholar

19. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie

T, et al. (2001) Missing value estimation methods for

DNA microarrays. Bioinformatics 17: 520-5. » CrossRef

» Pubmed » Google Scholar

20. Wang X, Becker FF, Gascoyne PR (2002) Membrane

dielectric changes indicate induced apoptosis in HL-60

cells more sensitively than surface phosphatidylserine

expression or DNA fragmentation. Biochim Biophys Acta

1564: 412-20. » CrossRef » Pubmed » Google Scholar

21. Wang X, Ghosh S, Guo SW (2001) Quantitative quality

control in microarray image processing and data

acquisition. Nucleic Acids Research 29: E75-82. » CrossRef

» Pubmed » Google Scholar

22. Wang X, Hessner MJ  (2006). Quantitative quality control

of microarray experiments: toward accurate gene

expression measurements. Gene expression profiling by

microarrays – clinical implications. H. W. K., Cambridge.

23. Wang X, Hessner MJ, Wu Y, Pati N, Ghosh S (2003)

Quantitative quality control in microarray experiments

and the application in data filtering, normalization and

false positive rate prediction. Bioinformatics 19: 1341-

1347. » CrossRef » Pubmed » Google Scholar

24. Wang X, Jia S, Meyer L, Xiang B, Chen LY, et al. (2006)

Accurate gene expression measurements by cDNA

microarrays utilizing TDAV. BMC Bioinformatics

7:378. » Google Scholar

25. Wang X, Jiang N, Feng X, Xie Y, Tonellato PJ, et al.

(2003) A Novel Approach For High Quality Microarray

Processing Using Third-Dye Array Visualization

Technology. IEEE Trans. NanoBioscience 2: 193-201.

» CrossRef » Pubmed » Google Scholar

26. Yeung KY, Medvedovic M, Bumgarner RE (2003)

Clustering gene-expression data with repeated

measurements. Genome Biol 4: R34. » CrossRef » Pubmed

» Google Scholar

27. Zhou X, Wang X, Dougherty ER (2003) Missing-value

estimation using linear and non-linear regression with

Bayesian gene selection. Bioinformatics 19: 2302-7.

» CrossRef » Pubmed » Google Scholar

http://www.biomedcentral.com/1471-2164/5/17
http://www.ncbi.nlm.nih.gov/pubmed/15113402?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Improving+the+statistical+detection+of+regulated+genes+from+microarray+data+using+intensity-based+variance+estimation&btnG=Search
http://vortex.cs.wayne.edu/papers/DraghiciMar03Revised.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12664686?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Assessing+the+functional+bias+of+commercial+microarrays+using+the+ontocompare+database&btnG=Search
http://www.ncbi.nlm.nih.gov/pubmed/9843981?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://scholar.google.co.in/scholar?hl=en&lr=&q=Cluster+analysis+and+display+of+genome-wide+expression+patterns&btnG=Search
http://www.pnas.org/content/101/5/1135.abstract
http://www.ncbi.nlm.nih.gov/pubmed/14739336?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Normalization+and+analysis+of+cDNA+microarrays+using+within-array+replications+applied+to+neuroblastoma+cell+response+to+a+cytokine&btnG=Search
http://nar.oxfordjournals.org/cgi/content/abstract/31/4/e14
http://www.ncbi.nlm.nih.gov/pubmed/12582259?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Three+color+cDNA+microarrays%3A+quantitative+assessment+through+the+use+of+Fluorescein-Labeled+Probes&btnG=Search
http://nar.oxfordjournals.org/cgi/content/abstract/31/11/e60
http://www.ncbi.nlm.nih.gov/pubmed/12771224?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Use+of+a+three-color+cDNA+microarray+platform+to+measure+and+control+support-+bound+probe+for+improved+data+quality+and+reproducibility&btnG=Search
http://www.jimmunol.org/cgi/content/abstract/173/11/6993
http://www.ncbi.nlm.nih.gov/pubmed/15557196?log$=activity
http://scholar.google.co.in/scholar?q=Involvement+of+eotaxin%2C+eosinophils%2C+and+pancreatic+predisposition+in+development+of+type+1+diabetes+mellitus+in+the+BioBreeding+rat&hl=en&lr=&btnG=Search
http://www.biomedcentral.com/content/pdf/gb-2003-4-10-r70.pdf
http://www.ncbi.nlm.nih.gov/pubmed/14519205?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Identifying+biological+themes+within+lists+of+genes+with+EASE&btnG=Search
http://linkinghub.elsevier.com/retrieve/pii/S0092867400000155
http://www.ncbi.nlm.nih.gov/pubmed/10929718?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Functional+discovery+via+a+compendium+of+expression+profiles&btnG=Search
http://www3.interscience.wiley.com/journal/118746798/abstract?CRETRY=1&SRETRY=0
http://www.ncbi.nlm.nih.gov/pubmed/15180663?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Modeling+microarray+data+using+a+threshold+mixture+model&btnG=Search
http://biostatistics.oxfordjournals.org/cgi/content/abstract/5/2/155
http://www.ncbi.nlm.nih.gov/pubmed/15054023?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Detecting+differential+gene+expression+with+a+semiparametric+hierarchical+mixture+method&btnG=Search
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/16/2088
http://www.ncbi.nlm.nih.gov/pubmed/14594714?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://scholar.google.co.in/scholar?hl=en&lr=&q=Bayesian+missing+value+estimation+method+for+gene+expression+profile+data&btnG=Search
http://bioinformatics.oxfordjournals.org/cgi/reprint/bth007v1.pdf
http://www.ncbi.nlm.nih.gov/pubmed/14751970?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Gaussian+mixture+clustering+and+imputation+of+microarray+data&btnG=Search
http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=24675
http://www.ncbi.nlm.nih.gov/pubmed/7693500?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Sensitivity+of+insulin-+secreting+RIN+m5F+cells+to+undergoing+apoptosis+by+the+protein+kinase+C+inhibitor+staurosporine&btnG=Search
http://www.biomedcentral.com/1471-2105/7/17
http://www.ncbi.nlm.nih.gov/pubmed/16409635?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://scholar.google.co.in/scholar?hl=en&lr=&q=Tjaden+B+2006&btnG=Search
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/17/6/520
http://www.ncbi.nlm.nih.gov/pubmed/11395428?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Missing+value+estimation+methods+for+DNA+microarrays&btnG=Search
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T1T-468CCDH-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6f360fd5475438618fe5f984c65a7a91
http://www.ncbi.nlm.nih.gov/pubmed/12175924?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Membrane+dielectric+changes+indicate+induced+apoptosis+in+HL-60+cells+more+sensitively+than+surface+phosphatidylserine+expression+or+DNA+fragmentation&btnG=Search
http://nar.oxfordjournals.org/cgi/content/abstract/29/15/e75
http://www.ncbi.nlm.nih.gov/pubmed/11470890?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://scholar.google.co.in/scholar?hl=en&lr=&q=Quantitative+quality+control+in+microarray+image+processing+and+data+acquisition&btnG=Search
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/11/1341
http://www.ncbi.nlm.nih.gov/pubmed/12874045?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Hessner+MJ+2003&btnG=Search
http://scholar.google.co.in/scholar?hl=en&lr=&q=Accurate+gene+expression+measurements+by+cDNA+microarrays+utilizing+TDAV&btnG=Search
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1254522
http://www.ncbi.nlm.nih.gov/pubmed/15376909?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=A+Novel+Approach+For+High+Quality+Microarray+Processing+Using+Third-Dye+Array+Visualization+Technology&btnG=Search
http://www.biomedcentral.com/content/pdf/gb-2003-4-5-r34.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12734014?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://scholar.google.co.in/scholar?hl=en&lr=&q=Clustering+geneexpression+data+with+repeated+measurements&btnG=Search
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/17/2302
http://www.ncbi.nlm.nih.gov/pubmed/14630659?log$=activity
http://scholar.google.co.in/scholar?hl=en&lr=&q=Missing-value+estimation+using+linear+and+non-linear+regression+with+Bayesian+gene+selection&btnG=Search

	Title

	Authors

	Affiliations

	Corresponding author
	Dates

	Citation
	Copyright

	Abstract
	Keywords
	Availability
	Introduction
	Materials and Methods
	Microarray Dataset and Processing
	Quality Weighted Mean and T-test
	Quality-weighted Clustering
	Implementation

	Results
	Spiked-in Control Clones and RT-PCR Demonstratethat Weighted Mean is More Accurate
	Weighted T-test is more Sensitive in Detecting DifferentialExpressions
	Weighted Clustering Yields More Accurate Grouping

	Discussion
	Acknowledgement
	Figures

	Figure 1

	Figure 2

	Figure 3

	Figure 4


	Tables

	Table 1


	References

