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Abstract
The advances of Quantitative Structure-Activity Relationship (QSAR) studies has made the design and development 

of novel drugs simplified and more cost effective. QSAR in combination with molecular docking is useful in rational drug 
design. QSAR and Molecular docking methods were performed on 2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones as 
inhibitors of lck. Docking studies were employed with the aid of PyRx to position the inhibitors into the lck active site 
to determine the optimum binding conformation and to elucidate the interactions with amino acid residues within the 
active site of the receptor. Based on AutoDuck vina scoring function, Compound 18 show a better binding affinity 
compared to the co-crystallized ligand (PBD ID: PM3). Twenty-one (21) compounds (Training dataset=14 compounds, 
Test dataset=7 compounds) were selected for this study. The statistical regression expressions were obtained using 
Multiple Linear Regression (MLR) and Partial Least Squares (PLS) with the MLR method showing more promising result 
than the PLS method. A QSAR model is generated by the training dataset with correlation coefficient R2 of 0.79207, 
cross validation coefficient  Q2 (LOO) of 0.66644,  r2(correlation coefficient) for the external dataset is 0.89699 while r2 
of predicted dataset is 0.68432 by the Multiple Linear Regression Method.
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Introduction
Lck is a member of the Src family non-receptor protein tyrosine 

kinase which is found to be mostly expressed in T cells and a few B 
cells. Recent study has shown that lck is also expressed in breast cancer 
tissues and cell lines [1,2]. Under-expression, Over-expression and 
inactive form of lck present with disrupted thymocyte development 
[3,4]. Therefore, lck is required for T cell receptor signaling in human 
jurkat T cells and for antigen receptor-dependent cytolytic effector 
function in the CTLL-2 T cells [5,6]. The activity of lck is regulated 
by phosphorylation of a highly conserved tyrosine residue, Tyr-505, 
which is located near the carboxyl terminus [7,8]. Previous study 
has shown that inducing the phosphorylation of p56lck stimulate lck-
mediated NFkB activation which leads to the induction of urokinase 
type plasminogen activator (uPA) secretion that ultimately control 
cell motility, invasiveness and metastatic spread of breast cancer [9]. 
uPA, a member of serine protease plays a major role in malignant 
progression and tumor metastasis [9] which when up-regulated 
have been described in many human tumors [10]. Progress has been 
made recently on the development of highly potent and specific 
inhibitors of lck inhibitors which offers promise in finding effective 
drug candidates that may serve as a novel class of anticancer agents. 
Lck inhibitors are low molecular weight organic compounds which 
have been proposed to be prospective anti-proliferating agents. 
Based on the observation that clinical attrition rates are significantly 
reduced because the molecular weight falls below 500 Daltons, the 
recommended molecular weight is 500 Daltons [11]. Tyrosine kinase 
inhibitors (TKIs) are classified into three main groups; viz, type I, II 
and III. Type I TKIs are the most current TKIs which are referred to as 

ATP-competitive inhibitors. Type II and III are non-ATP competitors 
and act through induction of structural changes in the RTKs [12]. Of 
all the TKIs the most successful are Gleevec, Iressa and Tarceva [13]. 
The role of lck in breast cancer can be determined only when potent 
inhibitors of lck are developed and evaluated by clinicians. In view of 
this we performed a QSAR analysis to study the human p56lck tyrosine 
kinase inhibitory activity of a series of 2 phenylaminoimidazo[4,5-h]
isoquinolin-9-ones. The aim of the present study is at rationalizing the 
substituent variations of these inhibitors to provide insight for future 
study. In QSAR study, some measures of physicochemical properties 
(descriptors) are correlated with biological activity in order to derive 
a mathematical model that illustrate the underlying Structural Activity 
Relationship (SAR). QSAR studies is greatly influential and important 
in modern chemistry and biochemistry. To understand SAR we need 
molecular descriptors that can effectively characterize molecular size, 
molecular shape and can influence the structure and its activities. 
Docking the  2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones to 
lck followed by scoring to determine the affinity of binding and to 
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predict the strength of binding interaction was carried out since this is 
increasingly important in the drug discovery process. In this study, an 
attempt has been made to develop QSAR models adopting the multiple 
linear regression (MLR) and partial least squares (PLS) methodology. 
The concept of the training and test sets has been introduced for 
the prediction of lck inhibitory activity of structurally varied sets of 
compounds [14].

Materials and Methods
Experimental data

For the present molecular modeling study, a set of twenty-one (21) 

2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones was retrieved from 
the CHEMBL database (http://www.ebi.ac.uk/chembl) with accession 
ID of CHEMBL 1136753 [15]. This dataset represent an in vitro 
autoimmune activity in terms of IC50 (µM) against lck. The biological 
activity data (IC50) were then converted to PIC50 values using the 
formula PIC50 = (-Log (IC50 X) (was used as the depended variable). 
The structures of 2 phenylaminoimidazo [4,5-h]isoquinolin-9-ones are 
listed in (Table 1) with their observed activities.

Accession of chemical structures

The canonical smiles of the compounds retrieved from the CHEMBL 

S/N COMPOUND ID STRUCTURES IC50 (µM) PIC50 (µM) NORMALIZED DATA (µM) 

1 CHEMBL281957 0.0004 9.4 1

2 CHEMBL284677 0.36 6.44 0.2

3 CHEMBL29488 0.44 6.36 0.178

4 CHEMBL26864 0.46 6.34 0.173

5 CHEMBL27085 0.11 6.96 0.341

6 CHEMBL284446 0.17 6.77 0.289

7 CHEMBL27199 0.12 6.92 0.33

http://www.ebi.ac.uk/chembl
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8 CHEMBL26147 0.087 7.06 0.811

9 CHEMBL26409 0.002 8.7 0.111

10 CHEMBL27350 0.77 6.11 0.368

11 CHEMBL26955 0.7 6.16 0.124

12 CHEMBL27004
0.009

8.05 0.635

13 CHEMBL281271 0.12 6.92 0.622

14 CHEMBL27302 0.01 8 0.111

15 CHEMBL27485 0.05 7.3 0.432

16 CHEMBL281675 0.027 7.57 0.33

17 CHEMBL26214 0.002 8.7 0.505

18 CHEMBL26625 0.023 7.64 0.524

19 CHEMBL27079 0.002 8.7 0.762
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20 CHEMBL432089 0.004 8.4 0.116

21 CHEMBL287175 0.03 7.52 0.341

Table 1: Structures and biological activity of compounds.

database were converted to SDF files with 2D coordinates using 
dataWarrior software version 4.7.2. The 2D QSAR model generated in 
this study was derived from the training dataset of 14 molecules while 
the predictive potential of this model was evaluated by the testset of 
7 molecules with uniformly distributed biological activities. (Table 2) 
shows the observed and predicted biological activities of the training 
and test datasets.

Geometry optimization 
After obtaining the SDF files of the compounds, their geometries 

were then optimized in order to make the conformations have least 
potential energy. Energy minimization were performed using Universal 
Force Field (UFF) with the optimization algorithm set at conjugate 
gradient. The total energy of a conformation can be calculated using 
the uff by the relation below:

E = E + E + E + E + E + E + EB T VDW ELEA AB OOPtotal
Where

EB=Energy of bond stretching

EA=Energy of angle bending

EOOP=Out-of-plane bending energy

EVDW=Van der waals energy

EELE=Electrostatic energy

ET=Torsion energy term

EAB=Energy of bond stretching and angle bending

Descriptors generation
In order to develop a QSAR model, the activity of compounds must 

be quantitatively represented by molecular descriptors (9). The CDK 
descriptor version 1.0 was employed for the calculation of different 
descriptors under the following categories: Hybrid descriptors, 
Constitutional descriptors, Topological descriptors, Electronic 
descriptors and Geometric descriptors. The calculated descriptors 
were gathered in a data matrix. The preprocessing or pretreatment 
of the independent variables (i.e., descriptors) was done by removing 
invariable (constant column) and other descriptors based on a variance 
cut-off of 0.0001 and correlation coefficient cut-off of 0.99 using 
JFrameVWSP version 1.0. List of the physicochemical descriptors used 
in this study are summarized in (Table 3).

Data normalization
Due to the existence of much variability in the range and 

distribution of each variable in the data set, the calculated values of 
the descriptors of each compound with their corresponding biological 
activity were subjected to a statistical technique known as min-max 
normalization using NormalizeTheData software version 1.0. In 

min-max normalization, the minimum and maximum value of each 
variable is adjusted to a uniform range between 0 and 1 according to 
the following equation:

 

i min
normalized

max min

x - xx =
x - x

Where xnormalized represents the min-max normalized value, xi 
represents the value of interest, xmin represents the minimum value, and 
xmax represents the maximum value. 

Selection of training and test set 

The dataset of 21 molecules was divided into training and test 
set based on Kennard-Stone method [16] using the JFrameDivision 
software version 1.0. In this method, dissimilarity value gives an idea 
to handle training and test set size. This method is used for both MLR 
and PLS model with pIC50 activity values as dependent variable and 
the various 2D descriptors calculated for the molecules as independent 
variables. 

Model validation

Model validation is essential in QSAR modeling, it confirms the 
reliability of the developed QSAR model along with the acceptability 
of each step during model development [17]. This is done to test 
the internal stability and predictive ability of the QSAR models. The 
developed QSAR models in this study were validated by the following 
procedure:

Internal validation: Internal validation was carried out using 
leave-one-out (LOO) method. In the leave-one-out (LOO) method 
of cross validation, the process of removing a molecule, and creating 
and validating the model against the individual molecules is performed 
for all the Q2 (rCV2) values and reported. The rCV2

 (cross-validation 
regression coeffi cient) was calculated using equation (1), which 
describes the internal stability of a model. 

( )
( )

2

obs pred2
2

obs

y -y
=1-

y -y
rCV

∑

∑
                                                                (1)

In the above equation, Y– means the average activity value of the 
training dataset, while Yobs and Ypred represent the observed and 
predicted activity values respectively. A high rCV (>0.5) suggests a 
reasonably robust model [18].

Estimation of the predictive ability of a QSAR model: After the 
internal validation process, the high predictive power of a QSAR model 
should be estimated from an external test set of compounds that are 
not used in building of the QSAR model. The external vali dation or 
predictive capacity of the obtained model was judged by predictive R2 
(Rpred2) as shown in equation (2)
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Training Set Selected  Descriptors Observed and Predicted values

Compounds khs.dsCH MDEO-11 SC-5 Observed Predicted (MLR) Predicted 
(PLS)

2 0 0.714 0.296 0.2 0.21386781 0.215
4 0 0.714 0.228 0.173 0.207645118 0.21693
5 0 0 0 0.341 0.279259196 0.37513
6 0.5 1 0.296 0.289 0.384894561 0.33419
7 0 0.625 0.578 0.33 0.251201099 0.22589
8 0 0.833 0.378 0.811 0.722486046 0.72665
9 1 0 0.296 0.111 0.306346208 0.36672
11 0 0.714 0.228 0.124 0.207645118 0.21693
12 0 1 0.296 0.635 0.614594581 0.54965
13 1 0.833 0.296 0.622 0.722486046 0.72665
15 1 0 0.296 0.432 0.370769373 0.34669
17 0 0.714 0.228 0.505 0.207645118 0.21693
19 0 0 0.415 0.762 0.722486046 0.72665
20 0 0.714 0.578 0.116 0.23967368 0.20698

Testset Selected  Descriptors Observed and Predicted values
Compounds khs.dsCH MDEO-11 SC-5 Observed Predicted (MLR) Predicted (PLS)

1 1 0 0.296 1 0.722486046 0.72665
3 0 0.714 0.578 0.178 0.23967368 0.20698
10 0 0 0.296 0.368 0.205958578 0.18738
14 0 0.714 0.578 0.111 0.176824642 0.15422
16 0 0 1 0.33 0.23967368 0.20698
18 1 0 0.296 0.524 0.317235919 0.36333
21 0 0 0.228 0.341 0.300123516 0.36865

Table 2: Normalized values of selected descriptors and the observed/predicted Y values (Normalized values).

( )
( )pred

2

(test) (t est)2
2

(test) (taining)

y -y
=1-

y -y
r pred∑

∑
                                         (2)

Where Ypred(test) and Y(test) indicate the predicted and observed 

activity values, respectively, for test set compounds and Y(training) 
indicates the average bioactivity of compound in the training set. An 

acceptable predictive power of a QSAR model (Rpred
2) should be >0.6 

for the test set molecules [19-21].

QSAR model development

In this study, QSAR models were developed from the dataset using 
the methods MLR and PLS to screen potential leads against LCK within 
a training dataset set (14 compounds). The total molecular descriptors 
(108) was calculated for each compound using CDK algorithm. 

Table 3: 2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones with their respective binding energies. Compound 18 has the highest docking score as compared with others.

S/N CHEMBL ID BINDING AFFINITY (Kcal/mol) RMSD/UB RMSD/LB
1 CHEMBL281957 -5.3 0 0
2 CHEMBL284677 -5.3 0 0
3 CHEMBL29488 -5.8 0 0
4 CHEMBL26864 -5.5 0 0
5 CHEMBL27085 -5.9 0 0
6 CHEMBL284446 -6.1 0 0
7 CHEMBL27199 -5.6 0 0
8 CHEMBL26147 -6.3 0 0
9 CHEMBL26409 -5.2 0 0
10 CHEMBL27350 -5.5 0 0
11 CHEMBL26955 -6.2 0 0
12 CHEMBL27004 -6.1 0 0
13 CHEMBL281271 -5.5 0 0
14 CHEMBL27302 -5.6 0 0
15 CHEMBL27485 -5.7 0 0
16 CHEMBL281675 -6.1 0 0
17 CHEMBL26214 -5.9 0 0
18 CHEMBL26625 -6.9 0 0
19 CHEMBL27079 -5.4 0 0
20 CHEMBL432089 -5.7 0 0
21 CHEMBL287175 -5.6 0 0
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Finally, a robust QSAR model equation was derived by MLR; irrelevant 
descrip tors were removed through a forward stepwise method leading 
to a selection of three (3) 2D descriptors in the final QSAR regression 
equation (Table 2). The model creates a relationship in the form of a 
straight line (linear) equation that best approximates all the individual 
data points. Regression equation takes the form. 

Y = b1x1 + b2x2 + b3x3 --------                        (3) 

where Y is dependent variable, ‘b’s are regression coefficients for 
corresponding ‘x’s (independent variable), ‘c’ is a regression constant 
or intercept

The PLS model finds new variables or latent variables which are 
linear combinations of the original variables. The usefulness of PLS 
is obvious in cases where the data set contains highly inter-correlated 
descriptors (Multicollinearity) and in cases where the number of 
descriptors exceeds the number of observations [22]. The optimum 
number of PLS components (latent variables) for the study was 
determined based on leave one out cross validation approach. The same 
108 descriptors, calculated using the CDK calculator, were selected 
for the PLS studies. Irrelevant descriptors were removed based on the 
Inter Correlation cut-off of 0.99 and Variance cut-off of 0.001 using the 
Genetic Algorithm v4.1 sofware.

Ligands preparation for molecular docking

The MOL SDF format of these ligands were converted to PDBQT 
file using PyRx tool to generate atomic coordinates and energy was 
minimized by optimization using the optimization algorithm at force 
field set at uff (required) on PyRx. 

Accession and preparation of the target protein 

The receptor LCK was prepared by retrieving the three-dimension 
crystal structure of lck  in complex with a co-crystallized ligand 
(PDB:1CWD) from RCSB PDB (http://www.rcsb.org/pdb/home/
home.do) [23]. The protein was subsequently cleaned by removing 
the bound complex molecule, the non-essential water molecules and 
all the heteroatoms using Pymol tool and Discovery studio visualizer. 
The co-crystallized ligand, 2-amino-3-(4 phosphonomethyl-phenyl)-
propionic acid (PDB ID: PM3), was extracted (not removed) from the 
active site so as to reveal the grid coordinate around the binding pocket 
when viewed on pymol.

Molecular docking using PyRx

After the preparation of the receptor (lck) and ligands, molecular 
docking analysis was performed by PyRx, AutoDockVina option based 
on scoring functions. For our analysis we used the PyRx, AutoDockVina 
exhaustive search docking function. After the minimisation process, 
the grid box resolution was centered at 7.1922 × 14.2175 × -12.6496 
along the x, y and z axes respectively at grid dimension of 25 x 25 
x 25 Å to define the binding site [24]. The co-crystallized ligand 
which serves as the standard was first docked within the binding 
site of lck and the resulting interaction was compared with that of 2 
phenylaminoimidazo[4,5-h]isoquinolin-9-ones into the similar active 
sites using the same grid box dimension.

Results and discussion
QSAR study

Multiple linear regression: Based on the inter-correlation 
coefficients of the descriptors, highly correlated descriptors were 
removed from the study by a stepwise MLR method setting a correlation 

regression cut-off of 0.99. According to the rule of thumb in MLR (ratio 
of sample size to the number of descriptors should be greater than or 
equal to 5), a tetra-parametric model can be expected with the current 
training set of 14 compounds. This can be shown below.

pIC50=0.27926( +/- 0.09801)+0.41614( +/- 0.0876)khs.dsCH-
0.12952( +/- 0.10151)MDEO-11+0.09151( +/-  0.16851) SC-5

n=14, R2=0.74836, R2
a=0.75537, F=40.8511, p=0.00001, q2=0.6240, 

r2
pred=0.89699 , t=6.39149, PRESS :0.19314

The above equation indicates that the model obtained with MLR 
showed good squared correlation coefficient (R2) value and good 
internal predictive power (rCV2) with an excellent external predictive 
power (r2

pred).The scatter plot which is plotted between observed and 
predicted pIC50 values for training set and test set are shown in the 
(Figure1 a and Figure 1b) respectively.

Partial least square regression: The same training set, as used 
in MLR, was used to build the PLS model. The PLS regression was 
initially started with 108 descriptors. The descriptors with negligible 
regression coefficients were removed from the study until there was 
no improvement in rCV2. The number of optimum components and 
descriptors for PLS model was found to be 3.The following model 
equation was obtained by PLS regression analysis:

pIC50=0.37513+0.35994(khs.dsCH)-0.21249 (MDEO-11)-0.02844 
(SC-5) n=14, R2=0.7194, q2=0.54225, r2

pred=0.70786

The scatter plot which is plotted between observed and predicted 
values for training set and test set are shown in the (Figure 2a and Figure 
2b), respectively. The (Table 2) represents the observed and predicted 
values for both MLR and PLS models. The derived QSAR equation 
fitted with MLR  presents a significant relationship between pIC50 
values (dependent variable) and the selected descriptors (independent 

Figure 1: MLR analysis showing the correlation between observed and 
predicted pIC50 values for the (a) Training set and (b) Test set.

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
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Figure 2: PLS analysis showing the correlation between observed and 
predicted pIC50 values for the (a) Training set and (b) Test set.

variables). The value of the regression coefficient (R2=0.74836) 
indicates the existence of ~75% correlation between the activity and 
the selected descriptors in the training dataset, while the value of the 
cross-validation regression coefficient (q2=0.6240) suggests ~62% 
prediction accuracy of this QSAR model. This QSAR model fitted with 
MLR can be use to predict future observations. Rpred

2=0.89699, shows 
the predictive power of the model.

Molecular docking

In the present study, twenty-one (21) 2 phenylaminoimidazo[4,5-h]
isoquinolin-9-ones were docked into the binding pocket of lck for 
their lck inhibitory (antagonistic) properties. All the compounds of 
2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones showed a better 
binding affinity when compared with the co-crystallized ligand (PDB 
ID: PM3) and compound 18 was discovered as the lead compound 
with the highest binding energy of -6.9 kcal/mol (Table 4). The drug-
likeness of compound 18 was assessed by subjecting it to the Lipinski’s 
rule of five, afterwards the lead compound violated none of the rules, 
this describes its bioavailability and binding potential (Table 5).

Compound 18, the lead compound has a binding energy of -6.9 
kcal/mol, while the standard compound has binding energy of -3.7 kcal/
mol (Table 4). The highest binding energy (-6.9kcal/mol) attributed to 
compound 18  in this regard is believed to be as a result of its chemical 
interactions at the receptor’s active site (Figure 3) which includes: 

Four (4) Hydrogen bonds involving VAL8 and GLU6 residues;  
(Figure 3a)

Two (2) Hydrophobic interactions involving VAL8 residue; 
(Figure 4a)

Two (2) Electrostatic bonding involving GLU2 and GLU6 residues

Four (2) Halogen bonds involving GLU2 residue

While that of the co-crystallized ligand (PDB Ligand ID: PM3) 

S/N Ligand Binding energy
(kcal/mol) RMSD/UBa RMSD/LBb

1 CHEMBL26625 -6.9 0 0
2 PM3 -3.7 0 0

RMSD/UB: Root mean square deviation/upper bond; RMSD/LB: Root mean 
square deviation/lower bond

Table 4: Docking scores and RMSD values of compound 18 and the co-crystalized 
ligand.

Molecular Properties Lipinski’s rule of Five Compound 18 drug-like 
properties

Molecular Mass <500 483.000000
Hydrogen bond Acceptor <10 6

Hydrogen bond Donor <5 1
LogP <5 -0.473900

Molar Refractivity Between 40-130 90.308289

Table 5: Lipinski's drug-like properties of compound 18: The rule describes 
drug candidate’s pharmacokinetics in the human body which also including their 
absorption, distribution, metabolism, and excretion (“ADME”) using an online 
server (http://www.scfbio-iitd.res.in/).

a 

b 
Figure 3: 3D interactions of ligands (Red sticks) within the binding pocket (a) 
compound 18 (b) PM3 (obtained by Discovery Studio visualizer software v 4.1).

which serves as the standard presents with the following chemical 
interactions at the binding pocket (Figure 4)

Four (4) Hydrogen bonds involving GLU6 residue; (Figure 3b)

Two (2) Electrostatic interaction involving GLU2 and GLU6 
residues; (Figure 4b)

The highest binding energy (-6.9 kcal/mol) attributed to compound 
18 in this regard is believed to be as a result of the high number of 
chemical interactions (13) of compound 18 as against that of the co-
crystallized ligand (6) (Figure 5). 
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Figure 4: 2D interactions of ligands within the binding pocket (a) Compound 
18 (b) PM3 (obtained by Discovery Studio visualizer software v 4.1).

Conclusion
In this paper, we have employed the QSAR and docking 

methodology to examine the structure-activity relationship of a 
series of 2 phenylaminoimidazo[4,5-h]isoquinolin-9-ones in order 
to evaluate lck inhibitors. The MLR and PLS were used to develop 
statistically significant models which is further validated by a cross 
validation method utilizing the LOO procedures. The models show 
good predictive potentials for lck inhibitors which can be use to predict 
new lck inhibitors. These QSAR models could provide a reliable tool for 
the design of lck inhibitors. Molecular docking studies of compound 
18 with lck elucidate the relevance of hydrophobic interactions and 
hydrogen bonding to binding affinity. Furthermore, the Lipinski rule 
of five test show that compound 18 have the potential to serve as drugs 
against this target.
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