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Introduction
Swine influenza is one of the viral family members of 

Orthomyxoviridae. It contains ribonucleic acid (RNA) as genetic 
component and has three serological types including A, B and C 
respectively of which A subtype is a very virulent and infectious which 
can attack to human [1]. This RNA virus contains hemagglutinin 
(HA) and neuraminidase (NA) in the cell surface glycoproteins which 
produces virulent effect. A number of 16 HA (H1 to H16) and 9 NA 
(N1 to N9) are known in viral glycoproteins. Therefore, a total number 
of 16 × 9=144 distinct progenies could be produced by combinatorial 
combination of different types of HA and NA. These progenies may be 
exemplified by H1N1, H1N2…. , H2N1, H2N2…H3N2….H3N3.. and 
so on. Currently, H1, H2 and H3 in combination with N1 and N2 are 
most frequently dormant strains in human. Remaining subtypes are to 
be zoonotic, causing disease mainly in fowl and nonhuman primates [2-
4]. Swine influenza is originated in swine and easily picked up by wild 
aquatic birds and other animal species like birds, pigs, ferret, horses, 
seals, whales, mink, giant anteaters, cats and dogs in which infection is 
largely intestinal, waterborne and asymptomatic. Then the viral strains 
emit to the roaming environment of these animals via nasal secretions, 
saliva, cough, tears and intestinal diarrheal materials. The reasserted 
strains may infect to the humans adjacent proximity of these animals 
and cross-infection occurs by transmitting of viral genetic mutant drift 
[5] between humans and these animals. This may produce genetic re-
assortment of the viral strains which become very dangerous. This 
genetically mutated drift can be speeded around the world and killed 
almost 100 million people in 1918 in Spain due to H1N1 whereas H2N2 
engulfed a number of 4 million people in 1957 in Asia. H3N3 caused 
death of about one million people in Hong Kong in 1968, and in 2007 
pathogenicity of H5N1 Avian influenza strain caused global Health 
threat. Currently in 2009, swine influenza (H1N1) outbreak in Mexico 
and other parts of the world has led to issuances of pandemic alertness 
by the WHO [6,7]. According to WHO approximately 526,060 cases of 
pandemic H1N1/09 infection and at least 6770 deaths were reported 

all over the world by 15 November 2009. This has suddenly arisen in 
North America and spread rapidly in Europe, Asia and South Africa 
via human to human transmission within a very short span [8]. As 
the devastating impact of swine influenza is enormous, a renewed 
drug discovery effort worldwide is essential to counteract the disease 
more efficiently. From the literature search it was shown that there is 
no specific chemotherapeutic agent against swine influenza caused by 
H1N1 viable strain. Therefore researchers have been trying to develop 
anti swine influenza chemotherapeutics which are able to combat 
against swine influenza pandemic.

A series of 1H-1,2,3-triazole-4-carboxamide compounds were 
synthesized by Cheng et al. [9]. These compounds showed potent 
biological activity against various strain of H3N2 and H1N1 
influenza virus as well as H5N1 (RG14) viral strain by inhibiting 
the nuclear polymerization. Lepri et al. synthesized a number of 
2-aminothiophene-3-carboxamide derivatives and evaluated their 
biological activities against PA-PB1 interaction complex using Enzyme 
Linked Immuno Sorbent Assay (ELISA) technique. It was found that 
the viral polymerase consists of hetero trimetric complex consisting 
of PB1, PB2 and PA sub units which are essential for transcription 
and replication of viral m-RNA [10]. High throughput screening 
confirmed that the angular furocoumarins which is also called as 
angelicin can produce potent anti-viral activities. Further, Yeh and 
co-workers synthesized a number of angelicin derivatives and tested 
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Abstract
There has been a great challenge of research and discovery of novel medicinal leads against swine influenza since 2009. 

Rational drug design utilizing pharmacoinformatics tools has been augmented now-a-days for in-silico screening of lead compounds 
prior to experimental synthesis, structural elucidation, biological evaluation and finally clinical trials to make the cost efficient drug 
design and discovery research. There is hardly any specific chemotherapeutics for the treatment against deadly swine influenza 
viral infection. Therefore, it is an urgent need to design and develop new anti-viral lead compounds active against swine influenza. 
Quantitative structure activity relationship (QSAR) has been used to develop models that correlate biological activity of angelicin 
compounds derived from published literature and their computed structural properties. The approach started by generation of a series 
of descriptors including topological, three dimensional, constitutional, functional groups and atom fragment indices respectively solely 
calculated from the compounds in the data set. In this study, data set consists of 53 angelicin compounds along with their inhibitory 
concentration 50% (IC50, μM) against H1N1 swine influenza virus. Genetic algorithm-multiple linear regression (GA-MLR) analysis 
technique has been to generate a number of QSAR models. The models were validated statistically incorporating training and test 
set approaches. Finally, structure-based molecular docking study has been performed for interpretation of the mode of binding of the 
angelicin compounds toward H1N1 target. QSAR and molecular docking analysis of these congeners have not yet been reported. 
Therefore, this study has significant impact for designing of the highly active compounds in this series that are useful for the treatment 
of swine influenza. In-silico structure based docking model could be helpful for design and screening of congeneric compounds 
having mode of binding similarity. 
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their biological activities against influenza A (H1N1) virus induced 
cytopathic effect in Madin-Darby canine kidney cell culture in low 
micro molar range. Some of these compounds were also found to be 
highly active against influenza A (H3N2) and influenza B viral strains. 
These compounds can produce its biological activities by inhibiting 
neuraminidase containing viral ribonucleoprotein (vRNP) complex 
[11]. Structure activity relationship studies were performed for these 
compounds against influenza A/WSN/33 (H1N1) strain. To explore 
biochemical mechanism of angelicin compounds at a molecular level 
it has to carry out quantitative structure activity relationship (QSAR) 
utilizing structural properties but such type of QSAR modeling for 
these derivatives are not yet done. Quantitative structure activity 
relationship is an interdisciplinary emerging research area with many 
interesting and practical applications to environmental protection, new 
drug discovery, and understanding the molecular basis of property/ 
bioactivity/ toxicity of chemicals. In particular, various classes of 
graph invariants and molecular descriptors are being increasingly 
used in these methods [12-13]. Although studies in structure-activity 
relationships go back to antiquity since the times of Crum-Brown 
and Fraser [14], it is only in the recent times that one witnesses a 
vigorous study of it as an interdisciplinary area. Of all recent studies 
in quantitative structure activity relationship modeling which are 
interwoven with those of medicinal chemistry, of pharmacokinetics, 
drug design etc., the seminal account of progress in the subject for the 
application of chemoinformatics and prediction of biological activities 
may be found in the book written by Leach and Gillet [15] entitled “An 
Introduction to Chemoinformatics”. One has to mention precursors 
to this book Waterbeemd [16], Gasteiger [17] and Roy et al. [18] 
which really grew out for chemometric methods in molecular design 
and strategy for QSAR development for many QSAR applications 
requiring the predictions of the property of the molecules and use of 
these predictions to evaluate, screen and help priorities of the synthesis 
of these candidates [15-18].

Therefore, it is our aim in the present study to formulate QSAR 
models under the frame work of various sets of descriptor including 
topological, three dimensional (3D), constitutional, functional group 
and atom center fragment indices, which are computed solely from the 
structure of angilicin compounds utilizing genetic algorithm-multiple 
linear regression (GA-MLR) methods which can predict essential 
structural invention responsible for producing biological activity. 
Finally, mode of actions of these derivatives was explored by molecular 
docking of the active ligand towards neuraminidase target and that 
docking model could be applied for the design, screening and synthesis 
of coumarin compounds supposed to have potent antiviral activities. 

Materials and Methods
Biological activity data

Linear furobenzopyrones are called as psoralen having reported 
to induce bifunctional photodamage to the DNA of the cutaneous 
cells in a selective way, thus inhibiting DNA functions and result in 
inter-strand cross linkage and produce anti-viral activities. Angular 
furobenzopyrone or fused furocoumarinin in which the furan ring is 
attached to the 6,7 positions of the coumarin ring is called as angelicin. 
In the present study, a series of 53 angelicin derivatives (Table 1) 
have been considered from the published literature. Various group 
substitutions including R=methyl, ethyl; R1=phenyl, methoxy phenyl; 
R2=Benzoyl have been incorporated in the given angelicin nucleus 
to generate a number of congeners [11]. Angelicin derivatives are 
capable to inhibit the virus-induced cytopathic effect (CPE) on MDCK 

(Madin-Darby canine kidney) cells and the results expressed as IC50 
(concentration required to reduce CPE by 50% relative to the virus 
control). Activities in terms of IC50 were converted into pIC50 which 
was considered as dependent variables for further QSAR modeling.

Structure optimization and descriptor calculation
2D angelicin structures were drawn using Chemdraw [19]. 

The drawn structures were then converted into three-dimensional 
(3D) modules, and the 3D geometries of all compounds were fully 
optimized using MM2 force field using a value of 0.01 as dielectric 
constant considering Chem3D ultra. These energetically minimized 
stable confirmations were then taken into consideration for the 
computation of theoretical structural descriptor for further QSAR 
modeling. Theoretical molecular descriptors are the numerical 
representation of molecule, achieved by applying the principles of 
graph theory to molecular structure. It encodes molecular architecture 
and quantifies such aspects of molecular structure as size, shape, 
symmetry, complexity, branching, cyclist, stereo electronic character, 
etc. Structural descriptors can be categorized as topological, 3D, atom 
centered fragments, constitutional and functional groups respectively. 
In the present work, DRAGON software [20,21] is used for the 
computation of theoretical molecular descriptors. A number of 436 
topological descriptors were calculated and after elimination, a number 
of 344 are remaining. A total number of 596 three dimensional (3D) 
descriptors, useful for our purpose, were calculated via DRAGON 
software, and before model development, these were reduced to 487. 
A total number of 131 Constitutional, Functional group and atom-
centered fragments descriptors, useful for our purpose, were calculated 
and before model development, these were reduced to 108, and The 
reduction in the descriptors was due to keeping a constant value for, 
or nearly all, of the compounds, and for those that perfectly correlated 
(r=1.0) with other descriptors. The reduced sets of descriptors were 
then treated by genetic algorithm- multiple linear regressions (GA-
MLR) algorithm for developing QSAR models. Table S1 represents 
different classes of molecular descriptors along with their symbols. 

Statistical analysis by GA-MLR 

The reduced descriptor data of angelicin still contain a huge number 
of predictors which were then treated by genetic algorithm (GA) for 
selection of features [22] having significant impact on the anti H1N1 
activity. Genetic algorithm is a random optimization tool useful for 
searching large probability space based on the principle of generation 
of new chromosome by mutation and crossover of parent gene. In 
this method gene is encoded by descriptor and each chromosome 
consists of combination of gene representing population consisting of 
combination of molecular descriptor. The fitness of each chromosome, 
which reflects the quality of the solution, is evaluated. The next step 
is the reproduction, which indicates creation of new chromosome 
(offspring) by selecting existing chromosomes through cross-over and 
mutation. The fitness of new chromosome is now evaluated and the 
cycle is repeated until optimal solutions or optimal fitness is attained 
[23]. Multivariate regression analysis (MRA), one of the oldest data 
reduction methodologies, continues to be widely used in QSAR, as it 
does not impose any restriction on the type and number of graphical 
invariants used in structure–property–activity studies. The ultimate goal 
of QSAR-based drug design is to find out which structural properties 
confer the drug highest potency or lowest toxicity. The drug’s potency 
is here a dependent variable, and the structural properties, also called 
molecular descriptors, are the independent variables. The experimental 
signal that measures the potency could be, for example, the binding 
affinity of a drug candidate to its target protein. 
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Compound No. R R1 R2 IC50 (µM) p IC50 (µM)
1* 4-CH3 CH3 Benzoyl 4.51 -0.654
2 4-CH3 H Benzoyl 2.43 -0.385
3 4-CH3 n-C3H7 Benzoyl 0.29 0.537
4* 4-CH3 n-C6H13 Benzoyl 0.65 0.187
5 4-CH3 1-naphthyl Benzoyl 0.88 0.055
6 4-CH3 2-naphthyl Benzoyl 1.91 -0.281
7* 4-CH3 2-thienyl Benzoyl 0.15 0.823
8 4-CH3 2-furanyl Benzoyl 0.65 0.187
9 4-CH3 4-CH3-Ph Benzoyl 0.82 0.086
10 4-CH3 4-CH3O-Ph Benzoyl 10.08 -1.003
11 4-CH3 4-NO2-Ph Benzoyl 0.76 0.119
12 4-CH3 4-Cl-Ph Benzoyl 3.92 -0.593
13 4-CH3 4-Br-Ph Benzoyl 0.46 0.337
14 4-CH3 3-Br-Ph Benzoyl 0.08 1.096
15 4-CH3 2-Br-Ph Benzoyl 0.73 0.136
16 4-CH3 3,5-diBr-Ph Benzoyl 0.10 1.000
17 4-CH3 3-CH3-Ph Benzoyl 0.10 1.000
18 4-CH3 3-NO2-Ph Benzoyl 0.25 0.602
19 4-CH3 3-Cl-Ph Benzoyl 1.41 -0.149
20 4-CH3 3-CN-Ph Benzoyl 0.53 0.275
21 OC(O)CH=CHCH3 Ph Benzoyl 20.82 -1.318
22 H Ph Benzoyl 17.6 -1.245
23 3-CH3 Ph Benzoyl 2.79 -0.445
24* 5-CH3 Ph Benzoyl 7.76 -0.889
25* 4-C2H5 Ph Benzoyl 0.24 0.619
26* 4-C3H7 Ph Benzoyl 0.47 0.327
27 3-CH3,4-CH3 Ph Benzoyl 0.29 0.537

28* O OS

O

0.72 0.142

29 4-CH3 Ph CH
OH

0.32 0.494

30 4-CH3 Ph C
H2

0.63 0.200

31 4-CH3 Ph

O

O
0.41 0.387

32* 4-CH3 Ph
S

O
0.07 1.154
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33 4-CH3 Ph
S

O
0.15 0.823

34* 4-CH3 Ph

N

O

0.61 0.214

35 4-CH3 Ph

O

H3C
0.87 0.060

36 4-CH3 Ph

O

H3CO
1.87 -0.271

37* 4-CH3 Ph

O

Cl
22.34 -1.349

38 4-CH3 Ph

O

H3C

0.26 0.585

39* 4-CH3 Ph

O

H3CO

0.11 0.958

40 4-OCH3 Ph

O

OCH3

0.64 0.193

41 4-OCH3 Ph

O

O2N

1.71 -0.233

42 4-CH3 Ph

O

Cl

0.26 0.585

43* 4-CH3 Ph

O

F

0.29 0.537
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44 4-CH3 Ph

O

H3C(H2C)O

0.12 0.920

45* 4-CH3 Ph

O

H3C(H2C)2O

0.15 0.823

46* 4-CH3 Ph

O

H3C(H2C)3O

0.08 1.096

47* 4-CH3 Ph

O

H3C(H2C)4O

0.14 0.853

48 4-CH3 Ph

O

H3C(H2C)7O

7.79 -0.891

49* 4-CH3 Ph

O

(H3C)2N(H2C)O

5.28 -0.722

50* 4-CH3 Ph

O

HO(H2C)2O

6.09 -0.784

51* 4-CH3 Ph

O

HO(H2C)3O

2.65 -0.423

52 4-CH3 3-Br-Ph

O

H3CO

0.09 1.045

53 4-CH3 3-Br-Ph

S

O
0.06 1.221

*Test molecules
Table 1: Biological activity data of angelicin compounds.
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GA-MLR has been incorporated in Nanobridges software [24] 
which is used in the present study to formulate QSAR models of 
angelicin against H1N1 swine influenza. For the QSAR modeling, 
training and test set approaches has been incorporated. Training set 
was used to build the QSAR model whereas test set molecules activity 
is predicted by the developed training model. In the present study 70% 
of the 53 molecule were considered as training set while rest 30% was 
taken as test set compounds as indicated by asterisk in Table 1. The 
division of training and test data has been carried out by Kennard 
stone method [25] for model validation. All representative points of 
the test set has been resembled to those in the training set in the multi-
dimensional vector space as well as the representative points of the 
training set must be well distributed within the whole area occupied 
by the entire dataset

Model validation

 The quality of each model is denoted by R2 (R is the square root of 
multiple R-square for regression), Q2

Loo (cross-validated r2) values for 
the training set, an external validation was performed by calculating 
predictive R2 (R2

pred) and the standard error of estimation, SEE, 
represents standard deviation which is measured by the error mean 
square, which expresses the variation of the residuals or the variation 
about the regression line. Thus standard deviation is an absolute 
measure of quality of fit and should have a low value for the regression 
to be significant [26]. 

R2 and Q2
Loo of a model are calculated by

R2=1-[∑ (Yobs - Ycalc)
2/∑(Yobs – Ῡ)2] and Q2

Loo=1- [∑ (Yobs – 
Ypred)

2/∑(Yobs – Ῡ)2]

Where Yobs, Ycalc and Ypred denote observed, calculated and predicted 
activity values, respectively, and Ῡ indicates mean activity value of 
training molecules. Q2Loo denotes predictive statistics which should be 
greater than 0.5. The validated QSAR’s can identify the most significant 
contribution of the descriptor data modeled.

External validation of the model is carried out by calculating 
Predicted R2.

R2
pred=1-[∑ (Ypred test – Ytest)

2/∑(Ytest – Ῡtraining)
2]

where, Ypred test and Ytest indicate predicted and observed activity 

values respectively of the test set compounds and Ῡtraining indicates mean 
of observed activity values of the training set. For a predictive QSAR 
model, the value of R2

pred should be more than 0.5 [27].

Structure based docking study of angelicin 

In silico molecular docking is one of the sophisticated 
computational structure based drug design methods to study the 
ligand-receptor interaction which may produce energetically stable 
geometry of ligand-receptor complex having minimal interaction 
energy represented by different scoring functions such as dock score, 
piecewise linear potential score, potential of mean force score, and 
steric and electrostatic score. This score is used to predict the bind ing 
affinity of a ligand toward receptor. This utility allows screening a set of 
compounds for lead optimization [28,29]. Present molecular docking 
study has performed by using ArgusLab 4.0.1 dock engine [30]. It is 
free software which considers ascore as scoring function. The docking 
engine is allowed full flexibility of the ligand in side ridge active of the 
target receptor [31]. In the present study, all the 53 compounds have 
been docked inside the target cavity of neuraminidase. Compound 32 
entitled as 4-Methyl-9-phenyl-8-(thiophene-2-carbonyl)-furo[2,3-h]

chromen-2-one represent highest active lead compounds in angelicin 
series and considered as an active ligand to predict the mode of binding 
towards the target cavity. As per the experimental evidence described 
by Yeh et al., the optimized lead 4-methyl-9-phenyl-8-(thiophene-
2-carbonyl)-furo[2,3-h]chromen-2-one (compound number 32, 
IC50=70 nM (Table 1)) showed many-fold enhanced activity 
compared to the high throughput screening (HTS) compound 1. 
Also, compound 32 was found effective in case of influenza A (H3N2) 
and influenza B virus strains similar to approved anti-influenza drug 
zanamivir. This compound can produce its biochemical mechanism by 
inhibition of vRNP (viral-Ribonucleo protein). Neuraminidase H1N1 
viral enzyme is responsible for releasing dangerous progeny particle 
after attachment to the host cell. Therefore, the crystal structure of 
neuraminidase was considered as a receptor in the presence study. It 
is worth to mention that structure of neuraminidase-ligand complex is 
known and one of the PDB Codes of Neuraminidase (PDB ID:3B7E) 
[32] was downloaded from the Brookhaven Protein Databank (http://
www.rcsb.org). Then ligand receptor study was carried out by the 
“Dock ligand tool” of ArgusLab software. All water molecules and HET 
bound molecules except 1000 GOL which has been co-crystallized 
were deleted to prepare the target. The target contains a number of 
binding sites. Binding site of co-crystalized ligand 1000 GOL carries 
largest surface area and were treated as a reference to make the binding 
site for the ligand X-ray group. The generated binding cavity consists 
of all active residues having at least one atom within 3.5 Å from any 
atom in the co-crystallized ligand X-ray group. Comparative docking 
analyses of highly active ligands such 32, 53 and 52, intermediate active 
ligands including 1, 2 and 3 and lower active compounds such 10 and 
37 towards target have been well discussed in next section.

Results and Discussion
QSAR modeling

A number of QSAR models have been generated for angilicin 
compounds utilizing different sets of computed descriptor including 
topological, 3D, constitutional, functional group, atom centered 
fragments. Out of these models, results of four QSARs based on 
topological, 3D, topological coupled with 3D and combination of 
topological, constitutional, functional groups, and atom centered 
fragments have been discussed in terms of R2, Q2

Loo, and predictive R2. 
The QSAR results have been summarized in Table 2.

R2 represent explained variance and Q2
Loo represent internal 

validation predictive statistic whereas R2
pred indicates external validation 

parameter of the develop QSAR models. 3D descriptor alone does not 
produce satisfactory inhibition of H1N1. Topological descriptor based 
model can produce 73.20% and 56.10% explained and predictive statistic 
variances of the H1N1 inhibitory activity of the training compounds 
while topological along with 3D descriptor based model can produce 
improved inhibition in terms of 79.80% and 72.70% explained and 
predictive statistic variances of the H1N1 inhibitory activity of the 
training compounds. Combination of topological, constitutional, 
functional groups, and atom centered fragments based model can 
produce 78.20% and 72.70% explained and predictive statistic variances 
of the H1N1 inhibitory activity of the training compounds. It was found 
that out of four QSAR models topological coupled with 3D descriptor 
based model can produce maximum external predictability in terms of 
38.70% of the activity prediction. Topological as well as combination of 
topological, atom centered, constitutional, and functional group based 
model may produce all most equal test set predictability given as 30.00%. 
From comparative statistical validation parameters of four QSAR 
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Molecular descriptor

 class
QSAR model

3D
pIC50=-1.6385(+/-0.5902) +0.0817(+/-0.0232) RDF055u +0.8663(+/-0.484) E3m -0.0132(+/-0.003) Vs -0.7342(+/-0.3048) 

Mor17e +4.2099(+/-0.935) R7m+                                                        (1)        

N=35, R2=0.617, Q2
Loo=0.535, R2

pred=-0.453, PRESS=6.871, SE=0.441

Topological
pIC50=-4.58664(+/-1.29814) +3.45291(+/-1.27468) MATS5v +2.18531(+/-0.69791) EEig11r +0.04186(+/-0.00743) TIC1 

-0.03778(+/-0.00493) Eig1v -0.37628(+/-0.35574) EEig13r                                     (2)

N=35, R2=0.732, Q2
Loo=0.561, R2

pred=0.305, PRESS=6.491, SE=0.369

Topological+3D
pIC50=-5.6026(+/-2.06) -0.7843(+/-0.5068) GATS5p +3.5426(+/-1.1811) IVDE +0.0297(+/-0.0047) TIC3 -0.0436(+/-0.0051) 

Eig1v +4.7074(+/-1.2038) H7v                                                          (3)                                                             

N=35, R2=0.798, Q2
Loo =0.723, R2

pred =0.387, PRESS=4.092, SE=0.320

Topological + constitutional +functional 
groups + Atom centered fragments

pIC50=-28.2307(+/-4.7059) +2.8961(+/-1.0646) BEHp3 -3.0933(+/-0.9962) MATS7m +11.1004(+/-1.5598) Yindex 
+0.9471(+/-0.1956) nR=Ct +1.9944(+/-0.3094) IC3                                                   (4)   

N=35, R2=0.782, Q2
Loo =0.727, R2

pred =0.299, PRESS=4.028, SE=0.332

Table 2: Different QSAR models along with the statistical quality parameters.

models, it was observed that topological coupled with 3D descriptor 
based model gives highest impact and acceptable internal validation 
whereas external predictability in terms of predicted R2 is found as 
beyond 0.5. Quality of the models can be improved by applying MAE 
(mean absolute error)-based criteria [33] and determining applicability 
domain of a (Q)SAR [34]. Therefore, further attempt has been made 
to improve the quality of this topological coupled with 3D descriptor 
based model by detecting outlier compound which is out of fit in the 
applicability domain (AD) of the response data. “The applicability 
domain of a QSAR is the physico-chemical, structural, or biological 
space, knowledge or information on which the training set of the model 
has been developed, and for which it is applicable to make predictions 
for new compounds. The applicability domain of a (Q)SAR should be 
described in terms of the most relevant parameters, i.e., usually those 
that are descriptors of the model. Ideally the (Q)SAR should only be 
used to make predictions within that domain by interpolation not 
extrapolation” [34]. NanoBridges software incorporated “AD using 
Standardization approach” tool which was used in the present training 
and test data to identify outlier compounds are located outside the 
applicability domain of the built QSAR model  [35,36]. It was shown 
that training molecule numbers 2 and 48 as well as test molecule 
numbers including 25 and 51 were predicted as outliers which do 
not belong to the zone of applicability domain. In a next attempt, 
compound numbers 2, 48, 25, and 51 have been omitted from the 
topological coupled with 3D descriptor data set and again QSAR was 
modeled which follows as

pIC50=-6.00526(+/-2.04247) -0.71306(+/-0.50401) 
GATS5p+3.18407(+/-1.2205) IVDE +0.03381(+/-0.00529) TIC3 
-0.04585(+/-0.00552) Eig1v +5.69041(+/-1.33561) H7v

N=33, R2=0.798 Q2
Loo=0.719, R2

pred=0.518, PRESS=3.734, 
SE=0.336                                                                                              (5)

Validation parameters of this model are quite acceptable and 
external predictability in terms of predictive R2 has increased to 0.518. 
Therefore, this model could be further used to predict biological 
activity of the newly designed congeneric compounds. Significant 
parameters included in models (4) and (5) were interpreted in Table 
3. Mechanistic interpretation of the modeled descriptors including 
EEig11r, EEig13r, GATS5p and BEHp3 having positive contribution 
towards H1N1 inhibition is due to of resonance effect and atomic 
polarizabilities. Descriptor including TIC1, TIC3, IVDE, Yindex, and 
IC3 are 3D information indices encoding size, shape, and symmetry 

and atom distribution of the inhibitors. Functional groups having 
higher van der Waal volumes are favorable for the activity which has 
been captured as 2D autocorrelation indices including MATS5v and 
H7v as well as functional group index like nR=Ct. Much more increase 
in the molecular volume, size and mass may produce detrimental effect 
on the biological activity which is given by Moran autocorrelation of 
lag 7 weighted by mass (MATS7m) with negative coefficient. These 
significant predictors could be considered for further generation 
of highly active angelicin congeners. So the study in this direction 
can increase the searching of hit rates and decrease in cost of drug 
design and development prior to experiment by producing potent 
chemotherapeutics against swine influenza.

Angelicin ligand-neuraminidase vRNP target docking

Docking analyses of angelicin- neuraminidase vRNP target 
revealed that angelicin core can produce Aromatic π-stacking, groups 
substituted in 8th, 9th and R are responsible for producing hydrophobic 
interactions whereas O-atom of angular furan can produce hydrogen 
bonding. The opti mized ligands were docked into active binding cavity of 
neuraminidase target considering grid resolution (angle) of 0.4 degrees 
as default value. ArgusLab allows free rotation of the ligand inside the 
cavity so as to generate a number of 150 poses. The best complex pose 
with minimal interaction energy of has been taken into consideration 
for better explanation of mode of interaction between the ligand and 
active amino acid residues of the receptor protein. Comparative best 
docking complex pose of some highly active, intermediate active and 
lower active ligands were analyzed in Table 4. It was found that O-atom 
of angular furan of intermediate active and lower active compounds do 
not produce any hydrogen bonding whereas highly active ligand can 
produce same with TRP 760 which is responsible for the inhibition of 
Swine influenza viral ribonucleoprotein.

To predict the mode of binding of highly active ligand, interaction 
patterns of compound 32 has been explained in Figure 1. From the 
docking study (Figure 1) it was shown 4-methyl group can produce 
hydrophobic interaction with TYR 738. The fused benzene ring is 
surrounded by hydrophobic and aromatic residues including TRP 760. 
This moiety may contribute aromatic pi (π) stacking interaction. At 
which electron delocalization may be produce and may enhance the 
H1N1 ribonucleo protein inhibitory activity. The study in this way 
may direct to design active congeneric compounds for the treatment of 
against swine influenza. 
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Sr.
No.

Name of the
descriptors Coefficient Interpretation

1 MATS5v +3.45291 MATS5v(2D autocorrelations): Moran autocorrelation of lag 5 weighted by van der Waals volume

2 EEig11r +2.18531 EEig11r :Eigenvalue 11 from edge .matrix weighted by resonance integrals

3 TIC1 +0.04186 TIC1(Information indices): Total Information Content index (neighborhood symmetry of 1-order

4 Eig1v -0.03778 Eig1v-Leading eigenvalue from vander waals weighted distance matrix

5 EEig13r -0.37628 EEig13r :Eigenvalue 13 from edge .matrix weighted by resonance integrals

6 TIC3
+0.0297 Information index: Total information content index (neighborhood symmetry of 3 order)

7 GATS5p -0.7843 GATS5p(2D autocorrelations): Geary autocorrelation of lag 5 weighted by polarizability

8 IVDE +3.5426 IVDE(Information indices): mean information content on the vertex degree equality

9 H7v +4.7074 H7v(GETAWAY descriptors): H autocorrelation of lag 7 / weighted by van der Waals volume

10 BEHp3 +2.8961 Burden index: Highest Eigenvalue n.3 of burden matrix/weighted by atomic polarizability.

11 Yindex +11.1004 Information indices):Balaban Y index

12 nR=Ct +0.9471 Functional group counts):number of aliphatic tertiary C(sp2)

13 IC3 +1.9944 Information indices):Information Content index (neighborhood symmetry of 3-order

14 MATS7m -3.0933 2D autocorrelations):Moran autocorrelation of lag 7 weighted by mass

Table 3: QSAR modeled parameters.

Highly active ligand docked inside the target cavity

Comp. No.
Dock
score

Kcal/Mol

Detailed observations of ligand-receptor interaction 

Angelicin core
(Aromatic 
π-stacking)

8th substituents
(R2)

(Hydrophobic)

9th substituents
(R1)

(Hydrophobic)

R
(Hydrophobic)

O-atom of angular furan 
(Hydrogen
Bonding)

32
(Highly active) -7.360 TRP 760 PRO 762 - TYR 738 TRP 760

53 (Highly active) -7.540 TRP 760 ASP 739 TYR 738; PRO 479 - TRP 760

52 (Highly active) -9.167 TRP 760 VAL 774 PRO 762 PRO 479; TRP 743 -

1(Intermediate 
active) -9.820 TYR 738 TRP 743 (π-stacking); VAL 

774(hydrophobic) TRP 760 TYR 738; PRO 479 -

2(Intermediate 
active) -8.790 TYR 738; TRP 760 LEU 477 - TRP 760; PRO 762 -

3(Intermediate 
active) -9.677

TRP 760; TRP 
743; VAL 774 
(hydrophobic)

PRO 479 PRO 479 TRP 760; TRP 743; VAL 
774

-

10
(lower active) -6.101 TYR 738; PRO 479

(alkyl hydrophobic) - TRP 760 TYR 738 -

37
(lower active) -6.997 TYR 738

(alkyl hydrophobic) VAL 774; TRP 760 - TYR 738; PRO 479 -

Table 4: Comparative study of angelicin ligand-receptor interactions.
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Conclusion
From Table 3, it was predicted that the modeled descriptors 

including EEig11r, EEig13r, GATS5p and BEHp3 contribute resonance 
effect and atomic polarizabilities. Therefore it was concluded that 
substitution of electron donating functional groups containing hetero 
atoms in the angelicin may increase the resonance integrals and 
polarizability to increase the inhibition of H1N1 neuraminidase. This 
is in good agreement with the docking findings where fused benzene 
ring is surrounded by hydrophobic and aromatic residues including 
TRP 760 that may contribute aromatic pi (π) stacking interaction. The 
modeled descriptors including MATS5v and H7v represented three 
dimensional van der Waals volumes. Therefore, the functional groups 
with higher van der Waals volume are responsible for interacting 
H1N1 viral protein amino acid in the active binding cavity which may 
produce the biological activity. The capture of 3D information indices 
indicating size, shape, and symmetry and atom distribution has been 
proved by the significant descriptor including TIC1, TIC3, IVDE, 
Yindex, and IC3 respectively. Increase in the value of these descriptors 
may increase the H1N1 viral protein inhibition. Presence of nR=Ct 
functional group may increase size of the molecule and increase in 
number of aliphatic tertiary C may contribute hydrophobic interaction 
in cleft of H1N1 neuraminidase. This model may provide clues for 
future drug design to combat against swine influenza. 

Future scope: Docking based screening model

Angelicin can be fragmented by utilizing synthon approach [37] 
proposed by  E. J. Corey  who introduced the concept of a synthon 
in retrosynthetic analysis. By fragmentation of angelicin core (Figure 
2), 7-hydroxy-4-methyl-coumarin template has been produced which 
was docked inside the same neuraminidase target cavity and energy of 
ligand receptor interaction was found as -6.242 kcal/mol. 

The study of interaction pattern of 7-hydroxy-4-methyl-coumarin 
along with 3B7E is given in Figure 3. From this model it is clear that 
4-methyl has interacted with TYR 738 and ILE 480 as well as TRP 743. 
Fused benzene ring has interacted with TRP 760, TRP 743 by aromatic 
pi-stacking interaction. So there is a similarity between mode of binding 
of these two docked models which showed TYR 738 and TRP 760 as 
common interactive residues. Therefore, these docking models could 
be used for the screening and designing of potent 7-hydroxy-4-methyl-
coumarin congeneric compounds supposed to have antiviral activity. 
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