
Volume 3 • Issue 2 • 1000156
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Open AccessShort Commentary

Malaga, J Appl Computat Math 2014, 3:2 

DOI: 10.4172/2168-9679.1000156

The powers of Pi 
The Squaring Pi (proposed here as the right Pi number) consists of 

two parallel functions (exponentials) of the inscribed and circumscribed 
squares to the circumference (Figure 1). The pyramids of squaring Pi are 
numeric tables developed in pyramid or triangle form, which show us 
as successive powers of Pi go approaching to successive decimal powers 
of the inscribed and circumscribed squares to the circumference, to 
end up coinciding at certain level. With the values of these levels of 
coincidence we can obtain the squaring Pi by means of root of these 
values. 

Below is showed two pyramids that relate the squaring Pi with 
the perimeters of the inscribed and circumscribed squares to the 
circumference.Firstly the relative to the inscribed square, where we 
observe that the Pi powers go approaching to the decimal product of 
the inscribed semi-square to the circumference, till get to (Pi^17) and 
(2×Sqrt2×10^8) where is produced the coincidence of values. Being 
this way in this level-point Pi^17=2×Sqrt2×10^8 (Figure 2).

Circumscribed Square to the Circumference 
In this second pyramid, it is shown the power Pi^34 in relation with 

the perimeter of the circumscribed square to the circumference (8) by 
the decimal powers 10^16. As we see in Figure 3, the odd powers of 
squaring Pi drive us to the inscribed square to the circumference, and 
the even powers drive us to the circumscribed square. Here we observe 
as the Pi powers are approximately the double that the decimal powers 
(×10^n) applied to the perimeters of the squares, and it is due to get 
any decimal value applied to the sides perimeter is necessary the square 
of the number Pi (Pi^2 = 9.8696....). We also observe that the powers 
of Pi in relation with the squares perimeters are the order of 2n+1 
and 2n+2 due to for starting the pyramids of powers we need of +1 or 
+2 the powers of Pi to get the first term in the powers of the squares'
perimeters.

Reasoning the Number N of Powers
The number of decimal powers n (10^n) that multiply the sides 

of the inscribed and circumscribe squares to the circumference is the 
number of powers applied to the triangles legs that form these sides 
when they are obtained by the Pythagoras theorem. It seems to be that 
the coincidence numbers in powers (n=8 and n=16) for the perimeters 
of the inscribed and circumscribe square to the circumference are 
produced to this level due to these n-numbers are the numbers of times 
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Squaring Pi= 3,141591444141992652182488412553..... 
Figure 1: Total interrelation: Geometric and mathematical.

Figure 2: Inscribed square of the Circumference.

Figure 3: Circumscribed Square to the Circumference.
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that we must to multiply the sides (legs) of the triangles to build the 
perimeters of the squares, as for the Pythagoras theorem. Say, to form 
a side of the inscribed square (hypotenuse) it is necessary to elevate 
any leg to the square, what gives us as result 4 powers of legs for any 
square-side and 8 powers to the both square-side inscribed to the semi-
circumference (Pi) (Figure 4). For the pyramid of the circumscribed 
square the result will be double because of here it is not a semi-square, 
but a complete square (Figure 5).

Vision of Alignment on the Units' Column
Other vision or geometric perspective is the alignment of the 

powers of Pi on the column of units. This is gotten dividing the powers 
of Pi (Pi^2n+2) by 10^n, and with this we go observing clearer as 
these Pi powers go drive us to 8, the value of the perimeter of the 
circumscribed square to the circumference. Getting this value (8) 
for n=16. (Remember, the number of powers that we must subject to 
the legs of the triangles component of the circumscribe square to the 
circumference) (Figure 6).

Antecedents: The Birthday of an Idea
The first idea for searching the Squaring Pi was born from the 

observation of the curve functions in the Cartesian coordinates. If 
we look at the function y=x^2, this function gives us a curve, which 
in values between 0 and 1 is similar to a quarter of circumference. 

So, if the perimeters of the inscribed and circumscribed squares to 
the circumference are straight lines, and the inscribed circumference 
is a curve, (having both the same basic parameters of construction: 
circumference diameter and squares sides), then it should be possible 
(and mathematically required) that adequate powers and roots of these 
perimeters give us any function that unites both parameters. Later on, 
alone I must to practice and operate extensively till find the "Circle's 
squaring": The Squaring Pi.

Observation on the Current Pi Number
With the current algorithm method for obtaining Pi what we make 

is the addition of the semi-circumference points to build with them a 
straight line*, but Pi is an arc of circumference and not a straight line. 
*Because here we are uniting and adding in a continue way the n-gon 
sides of the polygon in that we divide the circumference. In this case, 
we forget a property or geometric principle that could say us: "Any 
straight line that goes being curved endless, also goes losing dimension 
or longitude till disappear in a central point when this is curved 
indefinitely (endless) in symmetric or circumferential shape." And this 
is due to when we curve a straight line, the points that form the same 
go closing progressively among them by the interior side of the curve, 
till join together in a central point if the curvature is symmetric and 
endless. Inversely, in the case of the algorithmic Pi, to the component 
points of the circumference we go adding them in straight line, and 
with that, we go extending them till form a straight line with more 
longitude (although in minimum value) than Pi in curved line (Figure 
7). And to finish, let me put the mathematical maxim of Squaring Pi.

Mathematical Maxim of Squaring Pi
 "If the circumference is built, contained, limited and changed 

depending on the value of its inscribed squares (inner and outer), and 
vice versa. Then, a direct function of the perimeters of these squares 
that gives us the exact value of Pi ought to exist, and vice versa. A direct 

Figure 4: Square-Side inscribed to the semi-circumference.

Figure 5: A Complete Square.

Figure 6: Powers of squaring π with units alignment.

Figure 7: Curving straight lines.
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function of Pi that gives us the value of the perimeters of the inscribed 
(inner and outer) squares to the circumference also ought to exist 
(Figure 8)."

Proofs and Properties
Summarizing a lot, we can note the following properties and proofs 

of the quality of the Squaring Pi.

• Logically, the most important one could be the consideration 
of the Squaring Pi as de true value of Pi; although this question 
doesn't correspond to me its solution, but to the future mathematical 
development.

• The second characteristic is the easy way to obtain the squaring Pi 
by mean of two very simple functions of the inscribed and circumscribed 
squares to the circumference, say:

Pi=Raiz-34 de 8×10^16 ------------------- [8×10^16]^(1/34) 

Pi=Raiz-17 de 2-raiz de 2×10^8 -------- [2×2^(1/2)×10^8]^(1/17)

17 8

34 16

2 2 10

8 10

π

π

= ×

= ×

Ferman

 • The third characteristic is the a lot of interrelations of all possible 
inscribed and circumscribed circumferences and squares among them 
that we can encounter expressed in different levels of the numeric tables 
of the Pyramids of Squaring Pi exposed in this work (Figure 9).

For example

Inscribed square to the circumference=Circumference β× 
(Pi^16/10^8)

Circumscribed square to the circumference=(Circumference× 
Pi^33)/2×10^16

Inscribed circumference to a square=[2Pc×10^16] / Pi^33 

Circumscribe circumference to a square=(Pc×10^8)/Pi^16 Etc. 
Where Pc is the perimeter of the square; and Pi is the Squaring Pi 
(Figures 10 and 11) [1-8].

Author's Considerations
Taking in mind the anterior properties, coincidences and squaring 

of the powers of Squaring Pi in the building and structuring of the 
n-squares and n-circumferences inscribed and circumscribed among 
them in exponential way, properties that doesn't have the current Pi, I 
think the Squaring Pi has many possibilities of being the correct value 
of the geometric Pi.
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Figure 8: Algebraic formula for squaring π
Curiosity: The Squaring Pi in function of 2.

 

Figure 9: Proof & Properties of the squaring π.

Figure 10: The circle squaring by the squaring π.

Figure 11: Squaring of π.
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