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Abstract

Over 15,000 women die from ovarian cancer and there are approximately 23,000 new cases diagnosed each
year. Platinum-based chemotherapy is still the primary treatment for ovarian cancer. Most patients with the disease
are initially responsive to chemotherapeutic treatment. However, a majority of ovarian cancer patients eventually
relapse and become refractory to additional treatment. This drug-resistance is a major impediment to the successful
treatment of ovarian cancer. To date the mechanisms of drug-resistance remain poorly understood. Previous studies
have suggested that many proteins, such as BRCA1, BRCA2, MDR1, MRP1, MDM2, hMLH1, HSP27, and HSP70,
are differentially expressed in drug-resistant ovarian tumor cells by mRNA differential display analysis. However,
biomarkers that can be used to differentiate chemotherapy responders from non-responders have not yet been
developed. With recent developments in proteomic technologies, differential protein expression in complex biological
samples can be analyzed. In this cell model based study, we applied a label-free protein quantification technology to
discover potential protein biomarker candidates that can differentiate chemo-drug responders from non-responders.
This experimental approach could also serve as a model tool for further clinical validation and biomarker
development for other diseases.
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Introduction
Ovarian cancer (OC) ranks second among gynecological cancers in

the number of new cases and first among gynecological cancers in the
number of deaths each year [1]. Epithelial ovarian carcinomas (EOCs)
account for 85 to 90 percent of all cancers of the ovaries. About 65% of
women with epithelial OC will die within five years of their diagnosis
[1,2]. Despite improvements in aggressive debulking surgery and the
initial good response of patients to platinum-based chemotherapies
(primarily paclitaxel & carboplatin), there has been little improvement
in the overall survival rates for advanced epithelial OC patients in over
three decades [2]. Two major factors are thought to contribute to the
drawback of OC patient care: 1) disease stage. Most patients are
diagnosed with advanced disease; and 2) chemodrug resistance. The
majority of patients (70~80%) initially respond well to platinum-based
chemotherapy but later become refractory to additional treatment over
time [3,4]. Furthermore, there remains intense debate about the
cellular origins, precursor lesions, and histological classification of the
disease. With so many unknowns, it is not surprising that progress in
reducing mortality in women diagnosed with OC has been so limited.

However, the most recent scientific advances and discoveries have
given continued hope and potential that can improve OC patient care
[5]. For some OC types, the molecular characterization of tumors has
led to better strategies not only for predicting patient-care outcomes,
so that treatment can be targeted more effectively, but also for the
development of new therapies [5]. While some molecular mechanisms
of platinum resistance are beginning to be deciphered, effective
predictive biomarkers or molecular signatures of resistance remain
largely unknown. Identification of such predictive biomarkers would
significantly improve our current understanding of the disease, allow
risk stratification of patients prior to treatment and potential
allocation of patients likely to be resistant to platinum to more
aggressive treatment regime (i.e., drugs now in development or in
clinical trials. Good examples are ABT-888 and Topotecan
Hydrochloride treatment regime for chemo-resistant tumors,
Farletuzumab, Doxorubicin, and Bevacizumab for combined
chemotherapies).

So far, many proteins have been suggested as defining factors
associated with drug resistance [3-7], including BRCA1, DNA-PK,
ERCC1, MDR1, HSP27, HSP70, ATP7A, ATP7B, and CTR1 [8-17].
Unfortunately, variations in protein expression in clinical samples
have complicated the development of readily applicable platinum
resistance biomarkers mainly due to sample heterogeneity. We
contend that the use of a panel of predictive biomarkers would yield
higher predictive power than the use of a single or small number of
biomarkers. Successful identification of such a specific panel for
platinum resistance could directly impact clinical applications, as
patients who are predicted to not derive sustained benefit from
platinum-based chemotherapy could be directed towards more
aggressive therapies incorporating novel agents targeting
mechanism(s) of drug resistance.
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Proteomic technologies offer the promise of a comprehensive
understanding of cancer and its therapeutic responsiveness [18-20].
During the last decade, these technologies have played a key role in
characterizing proteins from the discovery of predictive biomarkers
and drug targets to the validation of biomarker candidates [21-23].
Despite many advances in technology and bioinformatics, today
almost all the disease indicative biomarkers only consist of a single or
small number of biomarkers, and they are often not sensitive, with
high false discovery rate and poor accuracy. Thus there is an urgent
need to develop more sensitive, more specific, and clinically useful
biomarkers to precisely characterize the disease not only at the
diagnostic and prognostic levels, but to monitor disease progression
[24]. In addition, with the sensitivity and accuracy of today’s state-of-
the-art technologies, the challenges remain huge in identifying plasma/
serum protein biomarker candidates due to its heterogeneity and wide
dynamic range [25]. However, compared to identifying meaningful
disease related protein biomarker candidates in plasma or serum, the
challenges of identifying them in cells and tissues are significantly
reduced due to the significantly lower protein dynamic range [26,27].
A key benefit of cell or tissue model samples is the fact that the
differential protein expression can be directly investigated at the origin
of the disease. Therefore, disease indicating protein expression
differences are expected to be more pronounced in suitable cell or
tissue samples compared to the blood stream where the relevant tissue
derived proteins are expected to be detected after significant dilution
[25]. Both prostate specific antigen (PSA) and human epidermal
growth factor receptor 2 (HER2) are good examples for cell-derived
biomarkers that are subsequently validated for clinical use [28-31]. In
this study, we apply a mass spectrometry-based unbiased proteomic
approach and cell-based models to identify potential biomarkers that
are capable of predicting the drug response of the OC patient to
chemotherapeutic treatment and therefore have a potential to guide
clinicians in choosing the best treatment option in OC patient care.

Materials and methods

Chemicals and reagents
The ammonium bicarbonate, dithiothreitol (DTT) and iodoethanol

were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Acetonitrile and mass spec grade water were purchased from
Honeywell Burdick & Jackson (Morristown, NJ, USA). Modified
trypsin was purchased from Promega (Madison, WI, USA). Fetal
Bovine Serum was purchased from Atlanta Biologicals (Lawrenceville,
GA, USA). RPMI-1640 media was purchased from Cambrex Bio
Science (Walkersville, MD, USA).

Cell lines
Two pairs of well-characterized human ovarian cancer cell lines

were used for this study: A2780 (cisplatin-sensitive) & A2780-CP
(cisplatin-resistant) and 2008 (cisplatin-sensitive) & 2008-C13*5.25
(cisplatin-resistant) [32,33]. The cell lines were obtained from Dr.
Stephen B. Howell of University of California at San Diego (La Jolla,
California, USA). All cell lines were handled under identical
conditions and maintained at 37°C in a humidified incubator
containing 5% CO2 in RPMI-1640 supplemented with 15% fetal
bovine serum. In this particular study, the sensitive cell lines were
grown in the absence of cisplatin, whereas the resistant cell lines were
grown in the absence and presence of cisplatin, respectively.

Cell line characterization
The Cell Proliferation ELISA, BrdU (colorimetric) assay (Roche

Diagnostics, Indianapolis, IN, USA) was used to determine cisplatin
cytotoxicity. Cells were seeded at ~2,000 cells per well in a 96-well
plate with 100 μL of cell suspension solution and placed in an
incubator at 37°C, 5% CO2, and allowed to attach overnight. They
were then treated with various concentrations of cisplatin (0, 0.1, 0.2,
1, 2, 5, 10, 20, and 30 μM, respectively) and the plates were incubated
for an additional 48 hrs. Cell proliferation was quantified based on
BrdU incorporation during DNA synthesis in proliferating cells,
according to the manufacturer’s instructions. IC50 values were
determined from dose-response graphs.

Cell culture preparation for proteomic analysis
The two pairs of cell lines described above were grown in forty-

eight 100-mm tissue culture plates with RPMI-1640 media containing
15% fetal bovine serum at 37°C in a 5% CO2 incubator. Six plates for
each condition (see Table 1 for details). Two resistant cell lines were
treated with 10 and 20 μM of cisplatin, respectively, for 24 hrs before
the fresh media were used to replace the media containing cisplatin.
The rationale for choosing these two concentrations was based on the
observation that the majority of the cisplatin-sensitive cells would not
survive at 20 μM cisplatin concentration, while at least 50% of the
cisplatin-resistant cells would survive (Figure 1). Upon 95%
confluency, cells were detached from the plates by trypsin, washed
three times with 5 mL of ice-cold phosphate-buffered saline (PBS) and
stored at -80°C until use.

Protein sample preparation
Cells were homogenized in the hypotonic lysis buffer (100 μL of

freshly made 8 M Urea, 10 mM DTT solution). Resulting cell lysates
were reduced and alkylated by triethylphosphine and iodoethanol, and
then digested by trypsin according to a previously published
procedure [34]. This procedure allows all steps to be carried out in one
tube without washing or filtering steps. Tryptic peptide concentration
was determined by the Bradford Protein Assay [35]. The same lysis
buffer was used as the background reference for protein assay and the
buffer for protein standards (BSA).

Mass spectrometric analysis
Peptides were prepared and subjected to LC/MS analysis as

previously described [36]. There were eight groups in this study: two
pairs of cell lines each including a sensitive cell line and a resistant cell
line with no drug treatment (Table 1, Groups 1&2 and 5&6), the
resistant cell lines (A2780-CP and 2008-C13*5.25) with 10 μM and 20
μM of cisplatin treatment, respectively (Table 1, Group 3&4 and 7&8).
There were 6 samples per group, yielding a total of 96 randomized
HPLC injections. Samples were run on a Surveyor HPLC system
(Thermo-Fisher) with a C18 microbore column (Zorbax 300SB-C18,
1mm x 5cm). All tryptic peptides (20 μg) were injected onto the
column in random order. Peptides were eluted with a linear gradient
from 5 to 45% acetonitrile developed over 120 min at a flow rate of 50
μL/min, and effulent was electro-sprayed into the LTQ mass
spectrometer (Thermo-Fisher). The data was collected in the “Triple-
Play” (MS scan, Zoom scan, and MS/MS scan) mode. The acquired
data were processed by a proprietary algorithm developed by Higgs, et
al. [36]. Database searches against the IPI (International Protein
Index) human database and the NCBI Non-Redundant-homo sapiens
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database were carried out using both the X!Tandem and SEQUEST
algorithms. Protein quantification was carried out using the same
proprietary protein quantification algorithm [36]. All extracted ion
chromatograms (XIC) were aligned by retention time within a one-
minute window. Each aligned peak must match parent ion, charge
state, daughter ions (MS/MS data) and retention time (within a one-
minute window) to pass through the “filter”. After alignment, the area-
under-the-curve (AUC) for each individually aligned peak from each
sample was measured, normalized, and these were compared for
relative abundance. All peak intensities were transformed to a log2
scale before quantile normalization [37].

Linear discriminant analysis
Linear discriminant analysis (LDA) was carried out in SAS (version

9.2 for Windows, SAS Institute Inc., Cary, NC, USA). The relative
abundances of the selected product ions of proteins were tested for
significance using a one-factorial multivariate analysis of variance
(ANOVA). Then, to determine which peaks can discriminate between
groups, a step-wise discriminant analysis was carried out to calculate
the canonical discriminant functions. The first two canonical
discrimination functions normally can represent over 98% of the
separation of different proteins. The classification functions were then
obtained to predict the group to which the unknown samples belong.

Results and discussion

Characterization of cisplatin-resistance
Cisplatin resistance in these cells was determined using the Cell

Proliferation ELISA, BrdU Assay. The results from these cell
proliferation assays are shown in Figure 1. There was an 11.8-fold
resistance to cisplatin in the A2780/CP as compared to its sensitive
counterpart, A2780, based on IC50 values. Likewise, the 2008/
C13*5.25 subline showed a 34.8-fold greater resistance to cisplatin
than the 2008 cell line. Phenotype of the resistant cell lines was stable
even in the absence of cisplatin [15].

Figure 1: Dose-dependent cell proliferation assay of A2780/A2780-
CP (cisplatin-sensitive/cisplatin-resistant) and 2008/2008-C13*5.25
(cisplatin-sensitive/cisplatin-resistant) ovarian cancer cells. Three
replicates were performed. P<0.05. X-axis is in logarithmic scale

Group

Number

Group

Name

Group

Abbreviation

Cell Type Cisplatin Treatment
(µM)

Number of
Samples

Per Group

Total Number

of Replicate Injections

Per Group

1 A2780 C1S Sensitive 0 6 12

2 A2780CP C1R00 Resistant 0 6 12

3 A2780CP-10 C1R10 Resistant 10 6 12

4 A2780CP-20 C1R20 Resistant 20 6 12

5 2008 C2S Sensitive 0 6 12

6 2008C13 C2R00 Resistant 0 6 12

7 2008C13-10 C2R10 Resistant 10 6 12

8 2008C13-20 C2R20 Resistant 20 6 12

Table 1: Experimental Design
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Protein Identification
In this study, a total of 2,117 proteins were identified and

quantitatively compared. A summary of the data is shown in Table 2.
Proteins were categorized into priority groups based on the quality of
the peptide identification. The Peptide ID Confidence assigns a
protein to a ‘HIGH’ or ‘INTERMEDIATE’ classification based on the
peptide with the highest peptide ID Confidence (the best peptide)
among all the peptides identified for a particular protein.

Proteins which have at least one identified peptide with a
confidence level ≥90% are assigned to the ‘HIGH’ category regardless
of whether there are other peptides having low confidence or not.

Proteins which have no peptide with a confidence level ≥90% but at
least one peptide with a confidence between 75-89% are assigned to
the ‘INTERMEDIATE’ category. All peptides with confidence less
than 75% were filtered out for further analysis. SEQUEST and X!
Tandem database search algorithms were used for peptide sequence
identification. Each algorithm compares the observed peptide MS/MS
spectrum and a theoretically derived spectra from the database to
assign quality scores (XCorr in SEQUEST and E-Score in X!Tandem).
These quality scores and other important predictors are combined in a
proprietary algorithm that assigns an overall score, %ID Confidence,
to each peptide. The assignment is based on a random forest recursive
partition supervised learning algorithm [36,38].

Protein

Priority

Peptide ID

Confidence

Multiple

Peptide

Sequences

Number

of Proteins

Identified

Number of

Significant

Changes

Median 

Overall %CV

1 HIGH (≥90%) YES 855 760 12.87

2 HIGH (≥90%) NO 583 390 23.65

3 INTERMEDIATE

(75~89%)

YES 27 15 24.77

4 INTERMEDIATE

(75~89%)

NO 652 404 31.95

Overall 2,117 1,569 19.55

Table 2: Summary of the Study Using a LC/MS-based Label-free Protein Quantification Method

The confidence in protein identification increases with the number
of unique amino acid sequences identified. Therefore we also
categorized proteins depending on whether they have only one or
multiple sequences of the required confidence. A protein is classified
as ‘YES’ in the ‘Multiple Sequences’ column if it has at least two
distinct amino acid sequences with the required ID confidence;
otherwise it is classified as ‘NO’. Priority assignments reflect our level
of confidence in the protein identification. Priority 1 proteins would
have the highest likelihood of correct identification and Priority 4
proteins the lowest. This priority system is based on the quality of the
amino acid sequence identification (Peptide ID Confidence) and
whether one or more sequences were identified (Multiple Sequences).
Many would view any protein identification outside of priority 1 as
questionable [39]. All data processing was carried out on a Linux
cluster using highly parallel processing and data qualification and
filtering software.

Table 2 shows a summary of the results from this study. A total of
5,282 distinct amino acid sequences corresponding to 2,117 different
proteins were identified in these samples. Among them, 855 proteins
were in the Priority 1 group and 760 of them showed significant
changes. The significance threshold is set to control the False
Discovery Rate (FDR) at less than 5%. A False Discovery is a protein
declared to have a significant change when it does not. The replicate
median % Coefficient of Variation (%CV) (technical variation) for the
Priority 1 proteins was 11.71% and the combined replicate plus sample
median %CV was 12.87% (technical plus biological variations). The
%CV is the Standard Deviation divided by the Mean on a % scale.
There were also 809 proteins that had significant changes among the
1,262 proteins that were less confidently identified (Priorities 2-4).

Protein quantification
For protein quantification, every peptide quantified has an intensity

measurement for every sample. The intensity measurement is a
relative quantity, given by the area-under-the-curve (AUC) from the
extracted ion chromatogram (XIC) after background noise removal.
The AUC is measured at the same retention time for each sample after
the sample chromatograms have been aligned [36]. The intensities are
then transformed to the log scale where base 2 has become customary.
The log transformation serves two purposes. First, relative changes in
protein expression are best described by ratios. However, ratios are
difficult to statistically model and the log transformation converts a
ratio to a difference which is easier to model. Second, as is frequently
the case in biology, the data better approximate the normal
distribution on a log scale [40]. This is important because normality is
an assumption of the ANOVA models used to analyze this data. The
base of the log transform is arbitrary with base 2 the most common
with genomic data. Base 2 is popular because a two-fold change (or
doubling, or 100% increase) yielding an expression ratio of 2 is
transformed to 1 on a log base 2 scale (i.e., a two-fold change is a unit
change on the log base 2 scale). After log transformation, the data are
then quantile normalized [37]. Quantile normalization is a method of
normalization that essentially ensures that every sample has a peptide
intensity histogram of the same scale, location and shape. This
normalization removes trends introduced by sample handling, sample
preparation, total protein differences as well as changes in instrument
sensitivity while running multiple samples.

If multiple peptides have the same protein identification then their
quantile normalized log base 2 intensities are averaged to obtain log
base 2 protein intensities. The average of the normalized log peptide
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intensities is a weighted average. A peptide is weighted proportionally
to the peptide ID Confidence for its protein category and receives a
weight of zero if it is outside that category. For example, a ‘HIGH’
category protein gives zero weight to peptides with < 90% Confidence.
The log base 2 protein intensity is the final quantity that is fit by a
separate ANOVA statistical model for each protein. The ANOVA is a
statistical model that separates the variation due to groups, samples
and replicates and constructs the appropriate statistical model for
discovering group differences.

Quality assurance and quality control
In this study, all injections were performed using the same C18

microbore column. To assess the stability of the column and
instrument, chicken lysozyme was spiked into every sample at a
constant amount before tryptic digestion. After tryptic digestion, 9
chicken lysozyme peptides were quantified (all peptides with ID
confidence > 75%). The overall mean for each group is displayed by
the line across the plot. This plot presents a visual quality control
assessment of the ability of the instrument to measure a constant
amount of protein over sequential injections. Since a constant amount
of chicken lysozyme was spiked into all the samples, it should show no
significant change between groups. If there is a significant group effect
(i.e. if q-value < 0.05), then one should interpret significant changes in
other proteins with smaller fold changes as possibly due to spurious
effects. In this experiment, the largest absolute fold change for chicken
lysozyme was 1.16 with a q-value of 0.0667. Even though this is not a
significant change based on the q-value threshold of <0.05, any
significant fold changes of absolute magnitude less than 1.16 in this
study should be interpreted with caution.

Statistical analysis
The number of significant changes between groups, the maximum

absolute fold changes and the exhibited variability (Coefficient of
Variation) for each Priority level are displayed in Table 2. It gives the
number of proteins with significant changes for each Priority level.
The threshold for significance is set to control the False Discovery Rate
(FDR) for each two group comparison at 5% [41].

Dealing with high-dimensional data has always been a major
problem in pattern recognition, group classification, and machine
learning. Linear discriminant analysis (LDA) is one of the most
popular methods for dimension reduction. It projects high-

dimensional data onto a lower dimensional space by maximizing the
separation of data points from different classes and minimizing the
dispersion of data from the same class simultaneously, thus achieving
maximum class discrimination in the dimensionality-reduced space.
In this study, LDA was performed to evaluate the beneficial effects of
multiplexing. As shown in Figure 2, when any combination of 5
markers from Table 3 was chosen, classification accuracy for sensitive
vs. resistant reached optimal level, demonstrating that a combination
of surrogate biomarkers could separate chemoresponders from non-
responders fairly well. Again, it should be mentioned that this small
proof-of-principle profiling experiment has some shortcomings
concerning the limited number of cell lines and sample size. These
initial results must be validated thoroughly and independently to
substantiate the relation between over-expression of these biomarkers
and chemodrug resistance.

Figure 2: Linear Discriminant Analysis. Red: A2780 (sensitive);
Blue: 2008 (sensitive); Green: A2780-CP (resistant); Gold: 2008-
C13*5.25 (resistant)

Protein Accession Number Protein Annotation % ID Confidence Fold-Change

IPI00455527.1 Heat-shock 70kD protein binding protein >99 4.4

IPI00306960.2 Asparaginyl-tRNA synthetase >99 4

IPI00025512.2 Heat-shock protein beta-1 >99 3

IPI00455315.2 Annexin A2 >99 2.6

IPI00026052.1 Heat-shock factor binding protein 1 >99 2.4

IPI00024057.1 Transgelin-2 >99 2.4

IPI00017448.1 40S ribosomal protein S21 >99 2.4

IPI00218914.1 Aldehyde dehydrogenase 1A1 >99 2.3

IPI00419134.1 Epiplakin >99 2.3
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IPI00106642.4 Dihydropyrimidinase-like 2 >99 2

IPI00105407.1 Aldo-keto reductase family 1 member B10 >99 2

IPI00414320.1 Annexin A11 >99 2

Table 3: Cisplatin Resistance Biomarker Candidates

Putative surrogate biomarkers
In this study to discover platinum-based chemotherapy response

predictive biomarkers, we applied a label-free LC/MS-based protein
quantification proteomic method to examine the global protein
expression of two pairs of epithelial OC cell lines: A2780/A2780-CP
(cisplatin-sensitive/cisplatin-resistant) and 2008/2008-C13*5.25
(cisplatin-sensitive/cisplatin-resistant). The rationale for choosing
these cell lines was based on the fact that these resistant sub-cell lines
were derived by continuous treatment of the parent sensitive cell lines
with increasing concentrations of cisplatin in the media [32,33,42,43],
eliminating other potential factors, such as cell type and buffer
conditions, that can complicate data interpretation when sensitive vs.
resistant phenotypes are compared. Thus, a proteomic comparison of
these well-defined cell lines under identical conditions may provide an
opportunity to discover a specific panel of biomarkers for cisplatin
resistance.

Table 3 lists a panel of candidate biomarkers for chemotherapy
response prediction. These candidates were selected based on three
criteria: 1) they were identified with high confidence - multiple
peptides with peptide identification confidence level >99% and greater
than two-fold expression changes; 2) LDA results show that these
chosen proteins are capable of discriminating sensitive (A2780 &
2008) and resistant (A2780-CP & 2008-C13*5.25) phenotypes at
~100% specificity (Figure 2) they all have relatively high abundance in
the human proteome, and more importantly, they all have been
previously detected and quantified by mass spectrometry-based
proteomic studies in abundant protein depleted human plasma
samples (internal confidential data generated from a study supported
by the NCI’s Clinical Proteomic Technologies for Cancer program).
Since plasma and serum are easily accessible biospecimens, future
validation in these samples will no doubt provide more valuable data
for future clinical applications. Furthermore, most of the candidates
we identified in this study such as annexin A11, transgelin-2,
asparaginyl-tRNA synthetase, heat-shock protein beta-1, aldehyde
dehydrogenase 1A1, epiplakin, have been previously identified by
others to be involved in cancer chemodrug resistance at either gene or
protein level [44-49].

In this biomarker discovery study, we quantitatively identified over
2,000 proteins, and more than 700 of them showed significant changes
in protein expression level across all comparison groups. When only
the sensitive and resistant groups were compared, however, only 95
proteins showed significant changes in protein expression levels,
suggesting that the other 605 detected proteins might be cell line
specific. After data sorting and bioinformatics analysis for these 95
proteins-of-interest, a panel of proteins which could be used as
biomarkers capable of distinguishing platinum-based chemotherapy
responders from non-responders is determined. However, because
only a couple pairs of cell lines are used for this study, we must not
over-interpret the data. When other epithelial ovarian cancer cell lines
such as TOV-81D, TOV-112D, and OVCAR-3 are used, we expect to

see an even smaller number of overlap among differentially expressed
proteins. Thus future validation study needs to be carried out before
they can be used for clinical validation and clinical applications.

There is compelling evidence that high and medium abundance
proteins in a given tissue or plasma sample have value as clinical
biomarkers; therefore, there may be applications for specific assays
even without antibody enrichment such as mass spectrometry-based
multiple reaction-monitoring (MRM) multiplexed assays [50-52]. If
the MS-based measurement strategy proves to be robust, it could
enable routine and relatively inexpensive measurements of clinically
specific biomarkers. A combination of biomarker discovery and
candidate-based biomarker validation in large sample sets would
provide an effective staged pipeline for generation of valid protein
biomarkers of disease, risk, and therapeutic response [53].

Biomarkers are measurable and quantifiable biological parameters
that can be used as a basis for health and physiology related
assessments, such as disease risk and drug efficacy [54,55]. Alterations
in the expression levels of proteins used as biomarkers have been
proven to be indicative of causes of illnesses [56]. The limitations of
non-proteomic classical approaches prevent large-scale analysis of
proteins. Using a newly developed robust high-throughput LC/MS-
based protein quantification technology [36], global protein
expression profiles of cisplatin-sensitive and cisplatin-resistant OC
cells can be obtained. Since this study was performed with established
cell lines, small variation would be expected among the samples we
compared. Conversely, it is expected that a large variance will be
observed when plasma or serum samples from patients are analyzed.
Hence, there is a critical need to use clinically relevant samples and a
large sample set to obtain statistically valid data for future clinical
biomarker assay development. In addition, since individual proteins
discovered could be too variable to give confident results from patient
plasma or serum samples, the potential protein biomarker candidates
must be chosen carefully to ensure that they are truly independent of
one another and must be validated by other method(s) before moving
forward to the next step of the biomarker development pipeline
(clinical applications). It is important to note that many of our
putative surrogate biomarker candidates have been previously
reported to be involved in the development of chemoresistance
[44-49], suggesting that the differential protein expression we
observed from the chemosensitive and chemoresistant cells are most
likely specific to chemotherapeutic treatment and therefore possible to
serve as surrogate biomarkers for prediction of treatment response.
Mass spectrometry-based methods allow more efficient ruling-in and
ruling-out of candidate biomarkers than comparable reagent-based
approaches, and it can save up to 70% on development time [57].
Current study not only provides critical data for biomarker
development for OC patient-care, but could also have a potential
societal impact. For example, patients who will not benefit from
platinum-based chemotherapy will not have to go through this
‘standard’ patient-care procedure, preventing them suffering from
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adverse side effects. In addition, it could also save millions of dollars in
Medicare/Medicaid for ineffective treatments.

Conclusion
Cancer remains one of the leading causes of death worldwide.

Advances in proteomic technologies have significantly improved
biomarker discovery and validation. However, the use of biomarker(s)
for personalized medicine is still in its infant stage. Even though there
is a crucial need for information about biomarkers for drug resistance
in OC, currently no sensitive and specific biomarkers to predict a
patient’s response to chemotherapy are available. Thus, identification
and validation of potential biomarker candidates of cisplatin resistance
become clinically valuable for diagnostics, prognostics, patient
stratification, and treatment evaluation/guidance. Mass spectrometry-
based technologies have advantages in accuracy, specificity,
throughput, assay development time (normally 3-6 months), and cost.
The innovative approach of ruling-in and ruling-out candidate
biomarkers using this method is more efficient than reagent-based
methods. Utilizing and monitoring a panel of biomarkers (instead of
single markers) can also make diagnostics more accurate. In addition,
the work described in this paper can be used as a model system for the
development of other disease biomarkers and for understanding
biological pathways.

Despite the great advances in the application of mass spectrometry
in biomarker discovery and validation, several challenges remain. Low
abundant proteins, small expression changes, and post-translational
modifications are still difficult to be detected. In addition, accurate
selection of samples for study, standardization of sample collection
and storage conditions, utilization of other methodologies to reduce
sample complexity, and refined bioinformatic and statistical analysis
to process data are necessary elements to improve the biomarker
development process. Our future plan for this particular research is to
develop an MRM based assay to validate these biomarkers in plasma
samples using both a “training set” and a “test set”. Our ultimate goal
is to develop a clinically useful assay (either MRM-based or ELISA) for
the assessment of cisplatin resistance in OC patients. In addition,
longitudinal studies involving plasma samples from OC patients
before and after chemotherapeutic treatment to differentiate acquired
drug resistance biomarkers from intrinsic resistance biomarkers may
also be very helpful in OC clinical biomarker development.
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