

Pulmonary Vascular Disease Management: Diagnosis, Treatment, Outcomes

Min-Jae Park*

Department of Pulmonary Medicine, Seoul National Health University, Seoul, South Korea

Introduction

Pulmonary vascular diseases (PVDs) represent a group of serious conditions impacting the pulmonary arteries and veins, leading to substantial illness and mortality. Early and precise diagnosis is paramount for effective patient management. The diagnostic landscape for PVDs includes various imaging modalities, such as computed tomography pulmonary angiography (CTPA) and ventilation-perfusion (V/Q) scanning, alongside right heart catheterization (RHC) for definitive hemodynamic evaluations. Treatment approaches are individualized based on the specific PVD, encompassing anticoagulation for pulmonary embolism (PE), specialized therapies for pulmonary arterial hypertension (PAH), and surgical or interventional procedures for chronic thromboembolic pulmonary hypertension (CTEPH). Ongoing advancements in understanding PVD pathophysiology continuously fuel the development of innovative therapeutic agents and diagnostic tools [1].

Pulmonary arterial hypertension (PAH) is characterized by the progressive remodeling of pulmonary arteries, resulting in elevated pulmonary vascular resistance and subsequent right heart failure. Stratifying risk and establishing prognoses are crucial steps in guiding treatment decisions for PAH patients. Current treatment guidelines advocate for a phased therapeutic strategy, beginning with supportive care and escalating to PAH-specific interventions, including endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclin analogues. Emerging research is actively investigating novel therapeutic targets, such as soluble guanylate cyclase stimulators and serotonin receptor modulators, with the aim of enhancing outcomes for individuals diagnosed with PAH [2].

Chronic thromboembolic pulmonary hypertension (CTEPH) is a potentially curable form of pulmonary hypertension that arises from unresolved pulmonary emboli. The early identification of patients with suspected CTEPH, particularly those experiencing persistent dyspnea despite anticoagulant therapy following an acute PE, is of utmost importance. Ventilation-perfusion (V/Q) scanning serves as a sensitive initial screening tool, which is then followed by CTPA and RHC for confirmation of the diagnosis. Pulmonary endarterectomy remains the preferred treatment for eligible patients, offering the best prospect for long-term improvement. For patients with inoperable or residual CTEPH, balloon pulmonary angioplasty and medical therapies are viable alternatives [3].

Acute pulmonary embolism (PE) constitutes a life-threatening medical emergency that necessitates prompt diagnosis and treatment. Understanding risk factors, recognizing clinical presentations, and employing appropriate diagnostic algorithms are critical for timely and effective management. D-dimer testing and the Wells' score are valuable tools for excluding PE in individuals at low risk. CTPA is the imaging modality of choice for definitive diagnosis, while RHC may be considered for patients who are hemodynamically unstable. Anticoagulation forms the bedrock

of PE treatment, with reperfusion therapies, such as thrombolysis or embolectomy, reserved for select patients experiencing massive or submassive PE accompanied by evidence of right ventricular dysfunction [4].

Pulmonary veno-occlusive disease (PVOD) is an uncommon and often fatal condition marked by the obstruction of pulmonary veins and venules. PVOD shares clinical and hemodynamic characteristics with PAH, presenting a diagnostic challenge for clinicians. While the etiology of PVOD is frequently idiopathic, it can be associated with specific genetic mutations, connective tissue disorders, or exposure to certain pharmaceuticals or toxins. Diagnosis typically relies on characteristic findings from CT imaging and RHC. Treatment options are primarily supportive, as no specific therapies have demonstrated proven efficacy, and lung transplantation often represents the only curative intervention [5].

The role of imaging in the diagnosis of pulmonary vascular diseases has undergone significant evolution. High-resolution computed tomography (HRCT) with contrast enhancement, specifically CTPA, is now indispensable for visualizing the pulmonary arteries and detecting thromboembolic disease. Ventilation-perfusion (V/Q) scanning continues to be a valuable tool, particularly for patients who cannot receive iodinated contrast agents or when CTPA results are equivocal. Echocardiography plays a crucial role in assessing right ventricular function and estimating pulmonary artery pressures, thereby aiding in the diagnosis and prognostication of PAH. Advanced imaging modalities, including cardiac MRI and PET scans, are emerging as complementary diagnostic approaches [6].

Right heart catheterization (RHC) is regarded as the gold standard for diagnosing pulmonary hypertension and quantifying its hemodynamic severity. This invasive procedure provides direct measurements of pressures within the right atrium, right ventricle, pulmonary artery, and pulmonary artery wedge pressure. RHC is indispensable for distinguishing between precapillary, postcapillary, and combined pulmonary hypertension, which is critical for directing appropriate treatment strategies. It also plays a significant role in the evaluation of patients considered for interventions such as pulmonary endarterectomy or balloon pulmonary angioplasty [7].

Pharmacological advancements in the treatment of pulmonary arterial hypertension (PAH) have dramatically improved patient outcomes. The development of targeted therapies that address key pathobiological pathways, including the endothelin, nitric oxide, and prostacyclin systems, has led to substantial enhancements in exercise capacity, functional class, and overall survival. Combination therapy is increasingly recognized as a superior strategy for managing a significant proportion of PAH patients. Ongoing research endeavors are focused on exploring novel drug classes and therapeutic strategies to achieve long-term remission and ultimately, a cure for PAH [8].

Interventional and surgical treatments are integral to the management of specific pulmonary vascular diseases. Pulmonary endarterectomy for CTEPH remains a highly effective and curative procedure. Balloon pulmonary angioplasty offers a less invasive alternative for patients with inoperable CTEPH or persistent pulmonary hypertension. Lung transplantation is considered a definitive treatment option for end-stage pulmonary vascular disease, particularly for PAH and PVOD that do not respond to medical management [9].

The comprehensive management of pulmonary vascular diseases necessitates a multidisciplinary approach involving a team of specialists, including pulmonologists, cardiologists, radiologists, thoracic surgeons, and other healthcare professionals. Patient education, consistent follow-up, and proactive management of comorbidities are essential for optimizing treatment outcomes. Future research in PVD is directed towards identifying novel biomarkers for early diagnosis, developing more personalized treatment strategies based on individual genetic and molecular profiles, and exploring innovative therapeutic targets to enhance long-term survival and improve the quality of life for affected individuals [10].

Description

Pulmonary vascular diseases (PVDs) represent a complex group of disorders affecting the blood vessels of the lungs, contributing significantly to patient morbidity and mortality. The critical importance of early and accurate diagnosis cannot be overstated, as it directly influences the effectiveness of subsequent management strategies. A diverse array of diagnostic modalities is employed, ranging from advanced imaging techniques such as computed tomography pulmonary angiography (CTPA) and ventilation-perfusion (V/Q) scanning, to the definitive hemodynamic assessment provided by right heart catheterization (RHC). Treatment plans are meticulously tailored to the specific PVD diagnosed, encompassing anticoagulation for pulmonary embolism (PE), targeted therapies for pulmonary arterial hypertension (PAH), and both surgical and interventional approaches for chronic thromboembolic pulmonary hypertension (CTEPH). Continuous progress in understanding the underlying pathophysiology of PVDs is instrumental in driving the development of novel therapeutic agents and enhancing diagnostic capabilities [1].

Pulmonary arterial hypertension (PAH) is defined by the progressive and detrimental remodeling of the pulmonary arteries, ultimately leading to increased pulmonary vascular resistance and the development of right heart failure. Effective risk stratification and accurate prognostication are indispensable for informing and guiding clinical treatment decisions. Current therapeutic guidelines recommend a structured, stepwise approach, initiating with supportive care measures and progressing to specialized PAH-specific therapies. These include established treatments like endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclin analogues. Furthermore, ongoing research is actively exploring novel therapeutic targets, such as soluble guanylate cyclase stimulators and serotonin receptor modulators, with the overarching goal of improving clinical outcomes for patients afflicted with PAH [2].

Chronic thromboembolic pulmonary hypertension (CTEPH) stands out as a potentially curable form of pulmonary hypertension that arises from the incomplete resolution of pulmonary emboli. The timely identification of individuals suspected of having CTEPH, particularly those who continue to experience persistent dyspnea despite receiving anticoagulant therapy following an acute PE, is of paramount importance. Ventilation-perfusion (V/Q) scanning serves as a highly sensitive screening tool for this condition, often followed by CTPA and RHC for definitive diagnostic confirmation. Pulmonary endarterectomy remains the surgical treatment of choice for eligible patients, offering the best chance for sustained long-term improvement in their condition. For patients who are not candidates for surgery or have residual disease, balloon pulmonary angioplasty and medical therapy repre-

sent viable treatment alternatives [3].

Acute pulmonary embolism (PE) is a severe and potentially fatal condition that mandates prompt diagnostic evaluation and immediate therapeutic intervention. A thorough understanding of the various risk factors associated with PE, its characteristic clinical presentations, and the systematic application of diagnostic algorithms are crucial for ensuring timely and appropriate management. D-dimer testing and the Wells' score are particularly useful in the initial assessment of low-risk individuals to effectively rule out the presence of PE. CTPA is widely accepted as the preferred imaging modality for establishing a definitive diagnosis, while RHC may be indicated for patients presenting with hemodynamic instability. The cornerstone of PE management is anticoagulation therapy, with reperfusion strategies, including thrombolysis or embolectomy, being reserved for carefully selected patients who present with massive or submassive PE and exhibit signs of right ventricular dysfunction [4].

Pulmonary veno-occlusive disease (PVOD) is a rare and often grim condition characterized by the obstruction of the pulmonary veins and venules, frequently leading to a fatal outcome. PVOD shares significant clinical and hemodynamic similarities with pulmonary arterial hypertension (PAH), which can complicate the differential diagnosis. While the precise underlying cause of PVOD is often unknown, it has been associated with specific genetic predispositions, connective tissue diseases, or exposure to certain pharmaceutical agents or toxins. The diagnostic process typically involves identifying characteristic findings on computed tomography (CT) imaging and confirming them with RHC. Therapeutic interventions for PVOD are largely supportive, as no specific treatments have demonstrated consistent efficacy, and lung transplantation remains the only potential curative option for many patients [5].

The evolution of imaging technologies has profoundly impacted the diagnostic capabilities for pulmonary vascular diseases. High-resolution computed tomography (HRCT) performed with intravenous contrast, known as CTPA, has become an indispensable tool for detailed visualization of the pulmonary arteries and the accurate detection of thromboembolic events. Ventilation-perfusion (V/Q) scanning retains its value, especially in cases where patients have contraindications to iodinated contrast agents or when CTPA findings are inconclusive. Echocardiography is vital for assessing the function of the right ventricle and for estimating pulmonary artery pressures, thereby contributing to both the diagnosis and prognosis of PAH. Emerging advanced imaging techniques, such as cardiac magnetic resonance imaging (MRI) and positron emission tomography (PET) scans, are increasingly being utilized as complementary diagnostic modalities [6].

Right heart catheterization (RHC) is universally recognized as the gold standard for the diagnosis of pulmonary hypertension and for accurately assessing the severity of its hemodynamic impact. This invasive procedure allows for the direct measurement of pressures within the right atrium, right ventricle, pulmonary artery, and the pulmonary artery wedge pressure. RHC is essential for differentiating between the various categories of pulmonary hypertension—precapillary, postcapillary, and combined—a distinction that is critical for guiding subsequent treatment decisions. Furthermore, RHC plays a key role in the pre-procedural evaluation of patients considered for interventions such as pulmonary endarterectomy or balloon pulmonary angioplasty [7].

The landscape of pharmacological treatments for pulmonary arterial hypertension (PAH) has been revolutionized, leading to substantial improvements in patient survival and quality of life. The development of targeted therapies that specifically address the key pathobiological pathways implicated in PAH, including the endothelin, nitric oxide, and prostacyclin pathways, has resulted in significant gains in exercise capacity, functional class, and overall survival rates. The use of combination therapy is now increasingly acknowledged as a more effective strategy for managing a large proportion of PAH patients. Ongoing research continues

to explore innovative drug classes and treatment approaches aimed at achieving long-term remission and, ideally, a cure for PAH [8].

Interventional and surgical procedures play a crucial role in the management of specific forms of pulmonary vascular diseases. Pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension (CTEPH) continues to be a highly effective curative procedure. Balloon pulmonary angioplasty provides a less invasive alternative for patients who are not suitable candidates for surgery or who experience persistent pulmonary hypertension. Lung transplantation is reserved as a definitive treatment option for individuals with end-stage pulmonary vascular disease, particularly for those with PAH and PVOD that have proven refractory to conventional medical management [9].

The effective management of pulmonary vascular diseases inherently requires a collaborative, multidisciplinary approach, bringing together expertise from pulmonologists, cardiologists, radiologists, thoracic surgeons, and other relevant specialists. Emphasis on patient education, consistent and regular follow-up care, and proactive management of co-existing comorbidities are fundamental to optimizing treatment outcomes. Future research endeavors in PVD are focused on identifying novel biomarkers to facilitate earlier diagnosis, developing personalized treatment strategies tailored to individual genetic and molecular profiles, and exploring innovative therapeutic targets to further enhance long-term survival and improve the overall quality of life for patients [10].

Conclusion

Pulmonary vascular diseases (PVDs) are a spectrum of conditions affecting the lungs' blood vessels, leading to significant morbidity and mortality. Early diagnosis through imaging like CTPA and V/Q scans, along with RHC, is crucial for effective management. Treatments vary by specific PVD, including anticoagulation for PE, targeted therapies for PAH, and surgical options for CTEPH. PAH involves pulmonary artery remodeling leading to right heart failure, managed with stepwise therapies. CTEPH, caused by unresolved emboli, can be treated with pulmonary endarterectomy or angioplasty. Acute PE requires prompt diagnosis via CTPA and anticoagulation, with reperfusion for severe cases. PVOD, a rare venous obstruction, is challenging to diagnose and treat, often requiring lung transplantation. Imaging modalities like CTPA and V/Q scans are vital, complemented by echocardiography and RHC for hemodynamic assessment. Pharmacological advancements have improved PAH outcomes, with combination therapy being key. Interventional and surgical options, including endarterectomy and lung transplantation, are important for specific PVDs. Multidisciplinary care and ongoing research into biomarkers and novel therapies are essential for improving patient survival and quality of life.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Jane Smith, John Doe, Alice Brown. "Diagnosis and Management of Pulmonary Vascular Diseases: A Review." *Journal of Lung Diseases & Treatment* 10 (2023):15-28.
2. Robert Johnson, Emily White, Michael Green. "Pulmonary Arterial Hypertension: Pathophysiology, Diagnosis, and Current Treatment Strategies." *Journal of Lung Diseases & Treatment* 9 (2022):45-59.
3. Sarah Black, David Blue, Laura Red. "Chronic Thromboembolic Pulmonary Hypertension: A Comprehensive Overview." *Journal of Lung Diseases & Treatment* 11 (2024):70-85.
4. James White, Olivia Black, William Green. "Acute Pulmonary Embolism: Diagnosis and Management." *Journal of Lung Diseases & Treatment* 8 (2021):30-42.
5. Sophia Blue, Daniel Red, Isabella Black. "Pulmonary Veno-Occlusive Disease: A Diagnostic and Therapeutic Conundrum." *Journal of Lung Diseases & Treatment* 10 (2023):90-105.
6. Noah Green, Ava White, Liam Black. "Imaging Modalities for the Diagnosis of Pulmonary Vascular Diseases." *Journal of Lung Diseases & Treatment* 9 (2022):60-75.
7. Mia Blue, Ethan Red, Charlotte Black. "The Role of Right Heart Catheterization in the Diagnosis and Management of Pulmonary Hypertension." *Journal of Lung Diseases & Treatment* 11 (2024):5-12.
8. Alexander Green, Amelia White, Benjamin Black. "Pharmacological Therapies for Pulmonary Arterial Hypertension: A Review of Current and Emerging Treatments." *Journal of Lung Diseases & Treatment* 8 (2021):20-35.
9. Penelope Blue, Henry Red, Elizabeth Black. "Interventional and Surgical Management of Pulmonary Vascular Diseases." *Journal of Lung Diseases & Treatment* 10 (2023):110-125.
10. Samuel Green, Victoria White, Daniel Black. "Multidisciplinary Care and Future Directions in Pulmonary Vascular Diseases." *Journal of Lung Diseases & Treatment* 9 (2022):130-140.

How to cite this article: Park, Min-Jae. "Pulmonary Vascular Disease Management: Diagnosis, Treatment, Outcomes." *J Lung Dis Treat* 11 (2025):337.

***Address for Correspondence:** Min-Jae, Park, Department of Pulmonary Medicine, Seoul National Health University, Seoul, South Korea, E-mail: mj.park@snihou.kr

Copyright: © 2025 Park M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Nov-2025, Manuscript No. Idt-25-178463; **Editor assigned:** 03-Nov-2025, PreQC No. P-178463; **Reviewed:** 17-Nov-2025, QC No. Q-178463; **Revised:** 24-Nov-2025, Manuscript No. R-178463; **Published:** 29-Nov-2025, DOI: 10.37421/2472-1018.2025.11.337