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Introduction
Aflatoxins (AFs) are naturally-occurring mycotoxins, produced as 

secondary metabolites by the fungus Aspergillus flavus, A.parasiticus, 
and A. nominus; and are direct contaminants of cereals, grains, nutsand 
fruits [1]. More than 5 billion people in developing countries worldwide 
are at risk of chronic exposure to naturally occurring aflatoxins [2]. 
Aflatoxins are potent mutagenic, carcinogenic, teratogenic, hepatotoxic 
and immunosuppressive toxins, and also inhibit several metabolic 
systems, causing liver, kidney and heart damage [2-5]. AFB1 is the most 
potent of the known AFs, and is a classified within class 1 of human 
carcinogens [6]. Although the liver is clearly the principal target organ 
for AFB1, kidney and testis can also be a target following dietary and 
inhalational exposure. Also, AFs have been detected in boar sperm and 
the human semen [7,8]. AFB1 is activated by cytochrome P450 enzyme 
system to produce a highly reactive intermediate, AFB1-8,9-epoxide, 
which subsequently binds to nucleophilic sites in DNA forming 
8,9-dihydro-8-(N7guanyl)-9-hydroxy-AFB1 adduct, which is regarded 
as a critical step in the initiation of AFB1-induced carcinogenesis 
[9,10]. In addition, the AFB1-associated mutagenesis was suggested 
to represent a plausible cause for the higher chromosome instability 
observed in Chinese Hepatocellular Carcinomas, when compared with 
European primary liver carcinomas [11].

Several reports suggested that toxicity might ensue through 
the generation of intracellular reactive oxygen species (ROS) like 
superoxide anion, hydroxyl radical and hydrogen peroxide (H2O2) 
during the metabolic processing of AFB1 in the liver. These ROS 
may attack soluble cell compounds as well as membranes, eventually 

leading to the impairment of cell functionality and cytotoxicity [12,13]. 
Recently, AFB1 also has been shown to induce lipid peroxidation-
associated liver and kidney damage in vitro and in vivo [14-16].

Concerns related to the negative health impacts of AFs have lead 
to the investigation of strategies to eliminate, inactivate or reduce the 
bioavailability of these toxins in contaminated products. Probiotics are 
defined as “live microorganisms which, when consumed in adequate 
amounts as part of food, confer a health benefit on the host” [17].

Lactic acid producing bacteria (LAB), particularly lactobacilli and 
bifidobacteria are considered as the most probable agents responsible 
for these effects. Probiotics have been proved to exert health-
promoting influences in human and animals [18,19]. Kruszewska et 
al. [20] measured total antioxidant activity of some lactobacilli with 
a colorimetric assay; P. pentosaceus and L. plantarum 2592 produced 
antioxidants after 18 h growth corresponding to 100 μg vitamin C. 
Also, LAB is of particular interest for reducing the bioavailability of 
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National Research Center, Giza, Egypt. The animals were maintained 
on standard casein diet and water ad libitum and housed individually 
in a temperature-controlled and artificially illuminated room free from 
any source of chemical contamination. 

Bacterial strain and culture preparation

Lactobacillus rhamnosus strain GG (ATCC 53013) was a kind 
gift provided by Food Toxicology and Contaminants Dept., National 
Research Center, Egypt, as lyophilized powder and stored at -80°C. 
LGG cultures were prepared according to the procedure of El-Nezami 
et al. [35]. In which, bacterial cultures of LGG were obtained by 
incubating 0.1 g of lyophilized bacteria in 10 ml of deMan-Rogosa-
Sharpe (MRS) broth under aerobic conditions at 37°C for 24 h. The 
number of lactic acid bacteria cells was enumerated by serial dilution in 
peptone water (0.1 % w/v) and plate counts on deMan-Rogosa-Sharpe 
agar (MRSA) medium.

Experimental design

Mice were randomly divided into four groups each consisting of 
30 mice, each group was divided into three subgroups (10 mice for 
each). Animals were treated orally for successive 7 days as follows: (1) 
untreated control given corn oil and MRS broth daily, (2) treated with 
AFs (0.7 mg/kg b.w.) in 0.4 ml corn oil, (3) treated with LGG (1 × 1010 
CFU) in MRS broth and (4) treated with the LGG (1 × 1010 CFU) 2 hours 
before AFs gavage (0.7 mg/kg b.w.). On the 8th day of the study, the 1st 
subgroup was killed and femoral bones were removed, stripped and 
cleaned from extraneous tissues. Also, liver and kidney samples were 
dissected out and washed immediately with ice-cold saline to remove 
as much blood as possible, and then stored immediately at -80ºC until 
analysis. On the 15th day of the study, the 2nd subgroup was killed and 
both testes removed and washed in warm citrate saline. At the end of 
the experiment (35th day), cauda epididymis, of the 3rd subgroup, were 
quickly isolated, blotted free of blood and utilized for the analysis of 
various reproductive parameters. 

Biochemical analyses

Measurement of lipid peroxidation: Liver and kidney tissues were 
homogenized individually in 20 mm Tris–HCl (pH 7.4). Homogenates 
were centrifuged at 6000 g for 30 min. MDA levels in the supernatants 
were determined using a spectrophotometric assay kit according to the 
manufacturer’s instructions. Briefly, thiobarbituric acid (TBA) reacts 
with MDA in acidic medium at temperature of 95°C for 30 min to form 
thiobarbituric acid reactive product. The absorbance of the resultant 
pink product can be measured at 534 nm [36]. The lipid peroxidation 
values are expressed as nm MDA/mg tissue.

Reduced glutathione (GSH) content: GSH levels were measured 
using a spectrophotometric assay kit according to the manufacturer’s 
instructions. 5,5`dithiobis-2-nitrobenzoic acid (DTNB) is reduced 
by glutathione (GSH) to produce a yellow compound. The reduced 
chromogen directly proportional to GSH concentration and its 
absorbance can be measured at 405 nm [37]. GSH values are expressed 
as mmol/g tissue.

Superoxide dismutase (SOD) activity: Liver and kidney 
homogenates were prepared in cold Tris–HCl (5 mmol/L, containing 2 
mmol/L EDTA, pH 7.4) using a homogenizer. The unbroken cells and 
cell debris were removed by centrifugation at 10,000 g for 10 min at 
4ºC. The supernatant was used immediately for the assays for SOD. 100 
µl of supernatants were added to 2.8 ml tris HCL buffer containing 25µl 
pyrogallol and 20 µl catalase [38]. The activities of all of these enzymes 

AFs, where a number of studies have screened these microorganisms 
for the ability to bind to AFs and have reported a wide range of genus, 
species and strain specific binding capacities [21-24]. Currently 
there is considerable interest in the potential antigenotoxic and 
anticarcinogenic effects of probiotics. Lactobacillus rhamnosus GG 
(LGG) is one of the best-studied probiotic bacteria in clinical trials 
for treating and/or preventing several intestinal disorders, including 
inflammatory bowel diseases and diarrhea [25,26]. Furthermore LGG 
efficiently binds, in vitro, several mycotoxins, including aflatoxin B1 and 
aflatoxin M1 [27,28]. In an in vivo study using the chicken duodenum 
loop technique, LGG removed as high as 54% (w/w) of the added AFB1 
and reduced intestinal adsorption by 73% (w/w) [29]. Moreover, Pool-
Zobel et al. [30] demonstrated the ability of L. casei Shirota to inhibit 
DNA damage in the colon of rats exposed to the mutagen N-methyl-N’-
nitro-N-nitrosoguanidine (MNNG). A subsequent study confirmed the 
antigenotoxic effects for different species of lactobacilli in rats against 
the colon carcinogen 1, 2-dimethyl hydrazine; this antigenotoxic 
activity was species specific. Gratz et al. [31] showed that pre-exposure 
of LGG to AFB1 reduced its binding ability with intestinal mucus, 
resulting in faster removal. It had been claimed that LAB which are 
contained in fermented foods and are part of the intestinal microflora 
may protect human against colon cancer [32,33]. 

So, minimizing the possible deleterious effects resulting from 
human and animals exposure to genotoxic and/or carcinogenic 
agents in our environment is of utmost need. The aim of the present 
study was to evaluate the in vivo antioxidant, antigenotoxic and anti-
spermatotoxic effects of lactic acid bacteria, Lactobacillus rhamnosus 
GG (ATCC 53013), against the well-known mycotoxin AFs in male 
Albino mice.	

Materials and Methods
Chemicals, reagents, and reagent kits, used in the present study 

were purchased from Riedel-de Haën, Germany and Biodiagnostic, 
Cairo, Egypt. Crude aflatoxins B1, B2, G1 and G2 were obtained as 
crude mycotoxins were determined by HPLC, Food Toxicology and 
Contaminants Dept., National Research Center, Egypt.

Determination of aflatoxin by HPLC

Apparatus: The HPLC system consisted of Waters Binary Pump 
Model 1525, a Model Waters 1500 Rheodyne manual injector, a 
Watres 2475 Multi- Wavelength Fluorescence Detector, and a data 
workstation with software Breeze 2. A phenomenex C18 (250 x 4.6 
mm i.d.), 5 μm from Waters corporation (USA). An isocratic system 
with water: methanol: acetonitrile 240:120:40 [34]. The separation was 
performed at ambient temperature at a flow rate of 1.0 mL/min. The 
injection volume was 20 μL for both standard solutions and sample 
extracts. The fluorescence detector was operated at wavelength of 360 
nm for excision and 440 nm for emission.

Derivatization

The derivatives of sample extract and standard were done as 
follow:100 µl of trifluoracetic acid (TFA) were added to samples and 
mixed well for 30 s and the mixture stand for 15 min. 900 µl of water: 
acetonitrile (9:1 v/v) were added and mixed well by vortex for 30 s and 
the mixture was used for HPLC analysis.

Experimental animals

Male Swiss Albino mice (Mus musculus) three months old 
weighing 25-30 grams were obtained from the animal house colony, 
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were determined. The SOD activities were expressed as units per mg 
of tissue.

Chromosomal aberrations examination: Metaphases for analysis 
of chromosome aberrations in bone marrow cells and spermatocytes 
were prepared according to the method of Perston et al. [39] and Evans 
et al. [40] and recommendations by Russo [41] were considered. Fifty 
metaphase spreads were analyzed per animal. For Mitotic activity of 
cells, the number of dividing cells were recorded and the mitotic index 
was calculated as the following formula: Mitotic index % (M.I.) = the 
number of dividing cells/total number of bone marrow cells counted/ 
per 1000 cells. For Meiotic activity of spermatocytes; meiotic index was 
calculated as the frequency of MII/MI, normal ratio should be equal 2. 

Sperm parameters

Sperm parameters were prepared and analyzed according to the 
protocols of Wyrobek and Bruce [42].

Epididymal sperm counts and sperm motility: Epididymal sperm 
counts and evaluation of the motility were performed visually using 
counting chamber. The count was repeated three times for each sample 
to minimize error, and calculated as 106 per sperm dilution. Sperm 
motility was determined by counting both motile and non-motile 
sperms in at least 16 separate and randomly selected fields. These 
results were expressed as percent motility. 

Epididymal sperm morphology: A drop of sperm suspension 
was smeared onto a slide, left to dry; then stained with Eosin A, the 
slides were washed in water and air dried again. The smears were 
microscopically analyzed at a magnification of ×1000 for observation 
of abnormalities.

Statistical analysis

Statistical analyses were performed by one-way ANOVA followed 
by Tuckey’s test or by Two-way ANOVA followed by Bonferroni’s test 
comparing all groups. Analysis was conducted with GraphPad Prism 
software V.5.0.3 (Inc., San Diego, CA; USA).

Results
In AFs-treated mice, the level of MDA in liver and kidney tissues 

were significantly increased compared to control and LGG groups at 
P<0.01 (Table 1). In contrast, mice receiving LGG alone, showed a 
significant reduction in MDA levels, when compared with control at 
P<0.01. Furthermore, the LGG gavage before AFs treatment caused a 
significant reduction in MDA levels in both liver and kidney tissues 
compared to AFs-treated group at P<0.01. In this group, the levels of 

MDA in liver and kidney tissues were significantly higher than that of 
control group (P<0.01).

On the other hand, mice given LGG alone exhibited increase in 
GSH content as compared to control, which was insignificant at P>0.05 
in case of liver and significant at P<0.05 in case kidney tissues. GSH 
was markedly depleted in liver and kidney tissues of mice administered 
AFs, by 64%, in comparison with control; this reduction was statistically 
significant at P<0.01. A significant increase in GSH level was shown in 
mice received LGG before AFs gavage when compared with AFs group 
at P<0.01. This enhancement was significantly below that of control 
and LGG groups. 

SOD activity in liver and kidney tissues was significantly decreased 
in AFs group, as compared to all groups at P<0.01. However, the activity 
of SOD in LGG plus AFs group was significantly increased as compared 
to the AFs group (Table 1). This increase was still significantly below 
that of control in kidney tissues at P<0.05. Again, mice received LGG 
alone showed an enhancement in SOD activity which was significant 
in liver tissue at P<0.01and in kidney tissue at P<0.05 when compared 
with the control group.

Effects of LGG on AFs genotoxicity in bone marrow cells

The present data showed that AFs induced both structural and 
numerical chromosomal abnormalities. Table 2 represents the mean 
values of different types of chromosomal aberrations induced by 
AFs in bone marrow cells of male mice. Structural chromosomal 
aberrations recorded were chromatid breaks, chromatid gaps and 
deletions. The results showed a high significant increase in frequencies 
in chromatid breaks, gaps, deletions and fragments; while chromatid 
breaks, deletions and gaps showed a high statistical significant increase 
at P<0.001, accentric fragments were only statistically significant at 
P<0.05 when compared with control. Total structural aberrations 
showed high significant increase at P<0.001. On the other hand, AFs 
induced very high incidence in numerical chromosome aberrations, 
which were statistically significant at P<0.001. Numerical aberrations 
were recorded as periploidy, premature centromere division (PCD) 
and polyploidy. Also, the total numerical aberrations was highly 
significant at P<0.001.

Treatment with LGG before AFs-intoxication significantly 
decreased the frequencies of structural chromosome aberrations (4 
folds); this recovery was significant in comparison to the AFs group 
at P<0.001for chromatid breaks and gaps, and significant at P<0.01 
for the chromatid deletions and fragments. Regarding numerical 
aberrations, the frequencies of PCD, polyploidy and total numerical 
aberrations showed significant recovery when compared to the AFs 

Experimental Groups

Parameters
MDA

(nmoles /gm protein)
GSH

(mmol/gm tissue)
SOD

(units/mg protein)
LIVER KIDNEY LIVER KIDNEY LIVER KIDNEY

Control
(Broth / corn oil) 339 ± 11.0A 258 ± 5.62A 12.9 ± 0.39A 17.0 ±0.34A 29.8 ± 0.85A 69.0 ± 1.35AB

AFs
(0.7 mg/kg b.w.) 787 ± 9.31D 702 ± 12.7D 4.16 ± 0.28C 9.22 ± 0.36C 16.0 ± 0.70 C 34.8 ± 1.98C

LGG
(1 × 1010) 284 ± 7.73 B 214 ± 5.81B 13.8 ± 0.25A 18.9 ±0.54A* 37.0 ± 1.49B 78.2 ± 2.69A*

LGG plus AFs 408 ± 11.5 C 322.0 ± 3.39C 9.44 ± 0.32B 13.9 ± 0.34B 25.7 ±1.41A 57.6 ± 2.66B*

- Means with different superscript letters (A, B, C & D) are significantly different (P < 0.01)
- Means with a star are significantly different (P <0.05)
- All data are expressed as means ± SEM

Table 1: Effect of LGG on AFs-induced lipid peroxidation and antioxidative defense parameters in liver and kidney of male mice.
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P<0.001. LGG only treated group showed no significant differences in 
numerical aberrations in respect to the control at P>0.05. 

 The meiotic index (Table 3) revealed a significant meiotic delay 
in mice treated with AFs with respect to all other groups (P< 0.001). 
LGG gavage before AFs treatment recovered meiotic activity to the 
baseline of control; meanwhile it showed a significant difference when 
compared with the LGG group at P<0.05. In the LGG group, there were 
no significant differences observed compared with the control group 
at P>0.05.

Effects of LGG on AFs sperm toxicity

Table 4 presented the data of sperm concentration, motility and 
morphology due to different treatments. AFs-intoxication caused a 
highly significant decrease in sperm concentration as compared to 
control at P<0.001. On the other hand administration of LGG before 
AFs intoxication caused a significant increase in sperm count respect 
to the AFs-treated group (19.6× 106); this enhancement showed no 
significant differences when compared to control group at P>0.05, 
whereas this increase was significantly below that of LGG groups at P< 
0.001. In mice given LGG alone, insignificant increase in sperm count 
was observed compared to the control at P>0.05.

Sperm motility of mice intoxicated with AFs was affected 
dramatically, which was reduced to 34.0 %; this reduction was 
statistically highly significant at P<0.001compared to all groups. In 
LGG plus AFs group, there was a significant enhancement in sperm 
motility (69.0%) when compared to the AFs-treated group. Again, this 
increase was still significantly below the basal count of the control at 
P<0.001. LGG group showed no significant increase in sperm count in 
respect to that of the control at P>0.05.

AFs treatment induced a high significant increase in sperm 
abnormalities (81.0%) in comparing with control at P<0.001 (Table 4). 
The various head abnormalities were existed, specially head without 
hook, unusual head shapes, big head and decapitation. The mid-piece 
abnormalities consisted of hair-pin, folded, bent heads and disrupted 
neck. The tail abnormalities essentially consisted of angular and bi- or 
coiled tail. In AFs-treated mice, 19.6 % of sperm head was detached 
from the flagellum, which was significant higher compared to control 
at P<0.001. In addition, AFs caused a fairly high percentage of sperm 
(18.4 %) that had sticky flagellum (agglutination), where several sperms 
remained fused in various numbers over short to long distances, it was 
significant higher compared to at P<0.001.The retention of cytoplasmic 
droplet (CD) by the cauda epididymal sperm of control as well as 
AFs-treated mice was observed. The retention of CD by the cauda 
epididymal sperm was 10.0% in control mice whereas it was 40.8 % in 

group (P<0.001), but this recovery was still below the values of control 
and LGG groups. 

PCD and polyploidy showed significant differences compared 
with the LGG and control groups at P<0.05, while the total numerical 
aberrations showed significant difference at P<0.001. On the other 
hand, treatment with LGG alone showed insignificant differences in 
chromosome aberrations in bone marrow compared to the control 
group at P>0.05.

The mitotic index (Table 2) revealed a significant mitotic delay (51.6 
%) in mice treated with AFs with respect to control group (P< 0.01). 
In LGG group, mitotic activity showed a significant enhancements 
at P<0.01 when compared with other groups. On the other hand, 
LGG gavage before AFs intoxication recovered the mitotic activity to 
about 82 %, this recovery was statistically significant (P< 0.01) when 
compared to the AFs intoxicated group from one side and it was 
statistically below that of control at P<0.01 from the other side. 

Effects of LGG on AFs genotoxicity in germ cells 
(spermatocytes MI, MII)

Results of chromosomal abnormalities induced by AFs treatment 
in mice spermatocytes are presented in Table 3. X-Y and autosomal 
univalents were recorded as structural chromosome aberrations in 
metaphase I (MI), while numerical abnormalities were recorded in 
metaphase II (MII) as periploidy (n ± 1, 2) and polyploidy. Data clearly 
showed that AFs-intoxication induced very high significant increase in 
all types of structural and numerical abnormalities at P<0.001. 

In mice given LGG cultures before AFs-intoxication, structural 
aberrations were decreased significantly compared to the AFs-treated 
animals at P<0.001. On the other hand, structural aberrations recovery 
was still above the values of control and LGG groups; autosomal 
univalents were statistically significant higher at P<0.05 and the total 
structural aberrations increased significantly at P<0.001, whereas no 
significant differences were found between this group and the control 
group for X-Y univalents at P>0.05. The LGG only treated group 
showed no significant differences in structure aberrations in respect to 
the control at P>0.05.

AFs also, increased periploidy, polyploidy and the total numerical 
aberrations which were significant (P<0.001) compared to all other 
groups. Meanwhile, the LGG plus AFs group showed a significant 
reduction in numerical aberrations compared to the AFs-treated group 
(P<0.001). Aeuploidy and polyploidy showed significant increase 
when compared to other groups at P<0.05, whereas the total numerical 
aberrations were significant higher compared to other groups at 

- Means with different superscript letters (A, B, C & D) are significantly different (P <0.001)
- Means with two stars are significantly different (P < 0.01)
- Means with a star are significantly different (P < 0.05)
-All data are expressed as means ± SEM

Table 2: Effect of LGG on chromosomal aberrations and mitotic activity induced by AFs in bone marrow cells in male mice.

Experimental
Groups

Structural aberrations Numerical aberrations % of Mitotic 
activityBreaks Gaps Deletions Fragments Total structural PCD Peri-ploidy Poly-ploidy Total numerical

Control
(Broth / corn oil) 0.60 ± 0.25A 0.40± 

0.25A 0.40 ± 0.25A 0.40 ± 0.25A 1.80 ± 0.20A 1.60 ± 
0.25AB

0.80 ± 
0.20A

1.00 ± 
0.32AB 3.40 ± 0.51A 100 ± 0.00A

AFs
(0.7 mg/kg b.w.) 3.80 ± 0.37B 3.40 ± 

0.25B 2.60 ± 0.25B** 2.00 ± 0.32AB* 12.0 ± 0.45C 8.0 ± 0.45C 3.80 ± 
0.37C

5.60 ± 
0.25C 17.4 ± 0.68C 51.6 ± 1.96D

LGG
(1 × 1010) 0.40 ± 0.25A 0.60± 

0.25A 0.60 ± 0.25A 0.40 ± 0.25A 2.20 ± 0.20A 1.00 ± 
0.32A

0.60 ± 
0.25A

1.40 ± 
0.25A 3.00 ± 0.71A 111.0 ± 2.01B

LGG plus AFs 0.80 ± 0.20A 1.20± 
0.37A 0.80 ± 0.20AB 0.20 ± 0.20AB** 3.00 ± 0.45A 3.20 ± 

0.37B*
1.40 ± 
0.25A

2.60 ± 
0.40B* 7.20 ± 0.58B 82.2 ± 1.28C
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the AFs-treated mice, this difference was statistically highly significant 
at P<0.001.

In mice receiving LGG before AFs-intoxication, different sperm 
abnormalities significantly reduced (36.0 %) in comparing with 
AFs-treated group at P<0.001, this enhancement showed significant 
differences with respect with either control or LGG groups at P<0.001. 
Head abnormalities showed a significant reduction at P<0.05, with 
respect to AFs group. Also, mid-piece abnormalities, decapicitation and 
agglutination decreased significantly when compared with AFs group 
at P<0.001. Meanwhile, tail abnormalities decreased to the baseline of 
control and showed no significant change when compared with LGG 
or control groups at P>0.05. The retention of CD, in LGG plus AFs 
group, showed a significant reduction (18.0%) when compared with 
AFs-treated group (P<0.001), but it was still higher than that of control 
and LGG groups and statistical differences were shown at P<0.001. 
Mice received LGG culture alone showed no significant changes in all 
types of sperm morphology (10.0 %) with respect to control P>0.05. On 
the other hand, CD retention showed a significant reduction (5.6 %) 
when compared with the control group (P<0.001).

Discussion
The data obtained in this study show that AFs induce a significant 

increase in Lipid peroxidation (LPO) in liver and kidney tissues as 
increasing in malondialdehyde (MDA) production. MDA is an end 
product of lipid peroxidation, and is considered a late biomarker 
of oxidative stress and cellular damage, and LPO is one of the main 
manifestations of oxidative damage and it has been found to play an 
important role in the toxicity and carcinogenicity [43]. Oxidative 
stress arises when the generation of ROS, by-products of the oxidative 
metabolism primarily produced in the mitochondria, exceeds the 
cellular ability to eliminate them and to repair cellular damage, thus 
leading to oxidation of biomolecules including DNA, lipids and 

proteins [44]. These results confirm and extend previous data which 
have demonstrated that AFs induce a significant increase in MDA 
under in vitro and in vivo conditions [15, 45,46].

On the other hand, peroxidative damages are encountered 
by elaborate defense mechanisms, including enzymatic and non-
enzymatic antioxidants [47]. To assess the balance of reactive oxygen 
species (ROS) production in liver and kidney, levels of non-enzymatic 
antioxidants GSH and enzymatic antioxidant (SOD) activity were 
measured. The increase in MDA can be attributed to the significant 
decrease in both non-enzymatic antioxidant (GSH) and the activity of 
antioxidant enzyme (SOD) in liver and kidney homogenates of mice 
treated with AFs. Our findings of decrease in GSH contents and the 
activities of SOD corroborate with that of previous studies [48-51]. 
Thus significant decrease in GSH level will further aggravate the toxic 
effects of these mycotoxins. GSH plays a critical role in the protection 
of tissues from AFB1 exposure by directly interacting with ROS or as a 
cofactor for enzymatic detoxification and the liver necrosis begins when 
the glutathione stores are almost exhausted [47,52,53]. GSH depletion 
might be a consequence of mycotoxin conjugation with GSH or/and 
continuous attack of free radicals which known to generate reactive 
intermediates (such as α, β-unsaturated aldehydes) that covalently 
bind to GSH [54,55]. This supports the hypothesis that oxidative stress, 
which is always associated with lipid peroxidation, is a crucial step in 
aflatoxin B1-induced liver damage [56,57].

The pretreatment with LGG before intoxication with AFs 
ameliorated the oxidative status compared to control, where MDA 
level decreased and SOD activity increased, along with an increase 
in GSH contents. Many in vitro studies, reported that LAB strains 
possess antioxidant properties and inactivate ROS via enzymatic 
mechanisms, e.g. by a coupled NADH oxidase/ peroxidase system, 
superoxide dismutase and catalase [58-60]. The yoghurt bacteria 
Lactobacillus delbrueckii and Streptococcus thermophilus inhibited 

- Means with different superscript letters (A, B, C & D) are significantly different (P <0.001)
- Means with a star are significantly different (P < 0.05)
-All data are expressed as means ± SEM

Table 3: Effect of LGG on chromosomal aberrations and meiotic index induced by AFs in spermatocytes in male mice.

Experimental
Groups

Structural aberrations (MI) Numerical aberrations (MII) Meiotic
Index
(MII/MI)X-Y univalents Autosomal

univalents Total Periploidy Polyploidy Total

Control
(Broth / corn oil) 1.60 ± 0.25A 0.80 ± 0.20A 2.20 ± 0.20 A 0.80 ± 0.20 A 1.60 ± 0.25 A 2.40 ± 0.25A 1.98 ± 0.043AB

AFs
(0.7 mg/kg b.w.) 4.80 ± 0.37B 7.80 ± 0.37B 12.6 ± 0.51C 4.40 ± 0.51 B 8.00 ± 0.45 B 12.4 ± 0.75 C 1.33 ± 0.038 D

LGG
(1 × 1010) 1.20 ± 0.37A 0.80 ± 0.37A 2.00 ± 0.32 A 0.60 ± 0.25 A 1.60 ± 0.25 A 2.20± 0.37 A 2.17 ± 0.054 BC

LGG plus AFs 2.00 ± 0.32A 2.40 ± 0.25A* 4.40 ± 0.25B 2.20 ± 0.20 A* 3.0 ± 0.32 A* 5.20 ± 0.37B 1.92 ± 0.062 AC*

- Means with different superscript letters (A, B, C & D) are significantly different (P <0.001)
- Means with a star are significantly different (P < 0.05)
-All data are expressed as means ± SEM.

Table 4: Effect of LGG on AFs-induced changes in sperm parameters in male mice.

Experimental
Groups

Sperm 
Count
(× 06)

% Sperm 
Motility

% Sperm Morphology

Head Abnormality Mid-piece 
Abnormality Tail Abnormality Decapitation Agglutination Total

Abnormality C.D.

Control
(Broth / corn oil)

21.9 ± 
0.94AB 82.0 ± 2.55A 2.80 ± 0.37AB 2.80 ± 0.37A 2.40 ± 0.25A 3.20 ± 0.37A 0.20  ± 0.20A 11.0 ± 0.71A 10.0 ± 0.71A

AFs
(0.7 mg/kg b.w.) 14.5 ± 0.63C 34.0 ± 1.87C 13.8 ± 1.10C 20.4 ± 0.51C 8.80 ± 0.86C 19.6 ± 0.93C 18.4  ± 0.75C 81.0 ± 2.00C 40.8 ± 1.43D

LGG
(1 × 1010)

25.2 ± 
0.93AB 90.0 ± 1.58A 2.60 ± 0.25AC 2.40 ± 0.25A 2.40 ± 0.25A 2.60 ± 0.25A 0.20  ± 0.20A 10.0 ± 0.71A 5.60 ± 0.51B

LGG plus AFs 19.6 ± 0.91A 69.0 ± 1.87B 6.20 ± 0.58B* 9.20 ± 0.59B 4.00 ± 0.44A 9.40 ± 0.51B 7.20  ± 0.37B 36.0 ± 1.38B 18.0 ± 0.71C
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peroxidation of lipids through scavenging the reactive oxygen radicals, 
such as hydroxyl radical, or hydrogen peroxide [61]. Bifidobacterium 
longum ATCC 15708 and to a lesser extent L. acidophilus ATCC 4356 
inhibited linoleic acid peroxidation and scavenged free radicals [62]. 
Also, it was found in human and animal studies that some LAB strains, 
which inactivate ROS, decrease biochemical parameters of oxidative 
stress [63,64]. In a clinical study, Songisepp et al. [65] reported that 
the healthy volunteers consumed 150 g of goat milk fermented with a 
starter culture Lactobacillus fermentum ME-3 for 21 days had shown 
important improvement of the overall antioxidant activity of blood, as 
well as antioxidant status, prolonged resistance of lipoprotein fraction 
to oxidation, reduced level of peroxide lipoproteins and oxidized LDL 
cholesterol, reduced level of glutathione redox ratio, and increased 
overall antioxidant activity. Moreover, some lactobacilli were reported 
to produce antioxidant factors in the human gastrointestinal tract 
[66]. Kullisaar et al. [67] had identified two Lactobacillus fermentum 
strains (E-3 and E-18) with antioxidative properties that overcome 
exo- and endogenous oxidative stress. The majority of milk bacteria 
show antioxidant behavior; eliminating the excess oxygen free radicals 
and producing superoxide dismutase, or glutathione [68] Chen et al. 
[69] reported that the selenium-enriched lactobacillus could elevate 
antioxidant-enzyme activities and reducing lipid peroxidation reaction, 
as well as inhibited excessive release of TNF-α preventing the dramatic 
elevation of [Ca2+] in mice hepatocytes. In a recent study, Koller et al. 
[70] investigated the prevention of oxidative DNA damage in human 
derived colon (HT29) cells by 55 strains of lactic acid bacteria, they 
indicated that the reduction of oxidative damage was only seen with 
viable bacteria but not with heat inactivated cells and that it took 
place when the colon cells were separated from the LAB by permeable 
filter membranes indicating that the bacteria release ROS protective 
factors into the medium. Castex et al. [71] reported that shrimps with 
a diet enriched of Pediococcus acidilactici MA18/5M sustained higher 
antioxidant defences and lower oxidative stress level. 

Concerning genotoxicity, the present results showed clearly that 
AFs were genotoxic in bone marrow and spermatocyte cells and had 
cytotoxic effects in both cell types. Moreover, they affected the DNA 
synthesis and chromosome segregation and progression through 
mitosis. AFs genotoxicity revealed by induction of structural (total 
structure abnormalities ~12%) and numerical (total numerical 
abnormalities ~17.5%) chromosome aberrations in somatic cells and 
(12.6% for structure and 12.4% for numerical aberrations) in germ 
cells. In addition, AFs reduced the meiotic and mitotic activities. These 
findings coincide with previous reports; El-Arab et al. [72] reported that 
AFs (B1, B2, G1 and G2) induced structural and numerical chromosomal 
aberrations in bone marrow and germ cells of male mice. AFB1 has 
induced different chromosomal abnormalities in bone marrow cells and 
spermatocytes and shown to reduce the meiotic and mitotic activities 
of male Swiss albino mice [73,74]. In earlier study, the effect of oral 
consumption of 200 ppb of crude AFs showed testicular degeneration 
and a decrease in the meiotic index [75]. Aneuploidogenic ability of 
AFB1 was reported and it appeared to affect assembly of tubulin into 
microtubules and/or bring about tubulin deplymerization and would 
result in generation of meiotic micro nucleate giant spermatocytes 
in Swiss mice [76], which may explain the high percentage of 
premature centromere division and aneuploidy found in this work. 
AFB1 genotoxicity might be caused through the formation of AFB1-
DNA adducts, which is regarded as a critical step in the initiation of 
AFB1-induced hepatocarcinogenesis [9,10]. Moreover, several reports 
suggested that oxidative stress is considered to be related to cell 
injury and DNA damage induced by AFB1 through the generation of 

intracellular reactive oxygen species (ROS) [12,16] In contradiction, 
the present results showed that the administration of LGG before 
AFs-intoxication reduced the AFs-induced genotoxicity (somatic and 
germ cells by around three folds) and cytotoxicity in both cell types. 
These data are consistent with other experimental studies which had 
evidenced the ability of lactobacilli and bifidobacteria to decrease the 
genotoxic activity of some chemical compounds [32,77,78]. Gratz et 
al. [79] used DNA fragmentation as a marker of AFB1-induced DNA 
damage in differentiated Caco-2 cells exposed to AFB1 following 
induction of CYP3A4. DNA damage was apparent following treatment 
with AFB1, while coincubation with LGG reduced the AFB1-induced 
damage in this test system.

Regarding the reproductive toxicity, the present study clearly 
indicated that oral administration of the AFs caused adverse effects 
on male reproductive parameters in mice (Table 3). These findings 
clearly indicated to severe impact of AFs on spermatogenesis and/ or 
spermiogenesis; and it is a clear reflection of a direct or indirect toxic 
manifestation of these mycotoxins treatment in the spermatogenic 
compartment. Various authors have reported similar kind of 
observations in different animals emphasizing AFs as reproductive 
toxicants; disruption of spermatogenesis [80,81] and production of 
defective spermatozoa [82,83] when Swiss mice were treated with 
AFB1, the most potent and potentially lethal metabolite.

ROS peroxidized fatty acids producing metabolites that could 
damage phosphatides of cell membrane; consequently, damage the 
sperm morphology and might impair sperm motility [84,85,86]. 
Consequently, the decline in sperm motility might be due to 
mitochondrial disruption and/or oxidative stress, where a fairly percent 
of mid-piece disruption was found, in addition to the deformation of 
the flagellum. These findings confirm the previous data correlating the 
decrease in human sperm motility to mitochondrial disruption and/
or an increase in lipid peroxidation [87]. Furthermore, Chitra et al. 
[88] observed that increased levels of lipid peroxidation caused the 
reduction of sperm count and viability. The sticky flagellum observed 
in this study might be formed by fusing of two or more spermatozoa, 
where two or more axonemes are in a common cytoplasm [83]. On 
the other hand, pretreatment with LGG significantly mitigates the 
mycotoxin-induced alterations in reproductive parameters in mice, 
where a significant improvement in the sperm motility and raise in the 
sperm number; along with reducing sperm abnormalities were shown. 
Moreover, these probiotic reduced CD retention by more 2 folds with 
respect to the mycotoxins-treated groups.

The overall data indicate that the LGG have a broad range of 
biomodulatory properties; alleviate the mycotoxins-oxidative stress 
and protect against their genotoxicity; as well as mitigate their 
spermatotoxic effects. This might be, in part, due to the ability of lactic 
acid bacteria to adsorb this mycotoxin; where several studies clearly 
reported the adsorption mechanisms in vitro [24,79,89]. Previous 
work showed that LGG was the most efficient strain in binding a 
range of mycotoxins, including aflatoxins [27]. Furthermore, Gratz et 
al. [90] suggested that LGG treatment reduced the hepatotoxic effects 
caused by a high dose of AFB1, by increasing the excretion of orally 
dosed aflatoxin via the fecal route and suggested that LGG was able to 
retain additional AFB1 and AFM1 inside the intestinal lumens of rats. 
Moreover, LAB found to cause reduction of the formation of secondary 
bile acids [91] and enhancement of the immune system [92-94]. 	 

In conclusion, the present data confirm the toxicity induced 
by aflatoxins; where the hepatotoxicity and nephrotoxicity were 
accompanied by an elevation in LPO along with a reduction in GSH 
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contents and SOD activity. Also, AFs induced genotoxicity in somatic 
and germ cells, as well as resulted in mitotic and meiotic delay. In 
addition, AFs caused severe spermatotoxic effects. By contrast, the 
current results indicate that oral administration of LGG cultures to 
mice significantly mitigates mycotoxin-induced toxicity by means of 
preventing oxidative stress, and by maintaining glutathione content, 
as well as a stable activity of SOD, and protected against mycotoxins-
induced genotoxicity and sperm toxicity. However, further studies 
are needed to better understand the in vivo possible mechanism(s) by 
which LGG may reduce the toxicity induced by this mycotoxin. 
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