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Abstract
Unsolved problems in mathematics are attractive primarily because for many decades they remained mysteries for all of humanity. The uniqueness 
of these problems also lies in the fact that many of them are debunked by unknown amateur mathematicians, although they were once formulated 
by outstanding professional mathematicians. It is quite possible that this is precisely how the remarkable Collatz conjecture is debunked
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Introduction

L. Collatz formulated his piquant hypothesis in 1932 in an extremely 
laconic interpretation. Any natural number n is taken. If it is even, then divide 
it by 2, and if it is odd, then multiply it by 3 and add 1 to the result. Then 
the same actions are performed on the resulting number, etc. [1]. The Collatz 
conjecture, or Syracuse problem, is that no matter what initial number n we 
take, the generated sequence will sooner or later converge to the number 1. 
This sequence is also called the Syracuse sequence [1,2].

Arithmetic interpretation of the collatz conjecture: It is obvious that the 
rank of any even number 

Nc,1c2b,b2a ∈+== α
                                                       (2.1)

Is precisely determined by the degree of its pairing pr , namely: 

   N,2rp ∈α= α                                                                           (2.2)

How could one determine the rank of odd numbers? It turns out that if 
the Collatz conjec-ture is true, then the rank of any odd number would be 
characterized by the number of transfor-mations carried out according to the 
Collatz formulas:
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Moreover, the number n would in this case be nothing more than the 
degree of unpairing of a given odd number, i.e.

Nn,nri ∈= .                                                                             (2.4)

In this case, the number 3 turns out to be an odd number of the second 
rank, and the number 5 is an odd number of the first rank. Thus, it remains 
to prove the validity of the Collatz conjecture in order to be able to assert the 
validity of this method of classifying odd numbers. Perhaps, this was the true 
background to the emergence of the Collatz conjecture.

Reducing the collatz problem to the problem of solving a system of 

linear algebraic equations: Introducing a certain sequence of odd numbers, 
we formulate the collatz problem as follows: (Figure 1).
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The system of linear algebraic equations (3.1) admits a unique solution 
provided that in (3.1) constb 1n =+ , based on the analogy with the structural 
matrix of a simple open kinematic chain H of a multibody dynamic system 
known in the scientific literature (Figure 1) [3]. In this case we get:

[H] [b]= [p],                                                                                      (3.2)

Where from where

[b] =[H]-1 [p],                                                                                      (3.3)

The matrix 
1]H[ −
 in (3.3), as is known is determined purely analytically. It 

is expressed through constants n21 ,...,, λλλ  as follows:
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Figure 1. Reducing the collatz problem to the problem of solving a system of linear 
algebraic equations.
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Let us show that in the matrix equation (3.2) n,...,1i,bb i1n =≠+

. In this case, the Syracuse sequence would enter a closed cycle, and the 
structural matrix H would take the form:
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As a result, it ceases to have an analytical expression for the inverse matrix 
for the variable vector ]b[  in positive integers. A rigorous proof of the absence 
of solutions for the system of linear algebraic equations (3.2) involving the 
matrix (3.5) is achieved using the classical Cholesky scheme (see appendix). 
In the future it will be shown that in the system of linear algebraic equations 
(3.2) 1b 1n =+ .

Conditions for the convergence of the Syracuse sequence. Let us 
consider a sequence that is an original Syracusan sequence (3.1):
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If it were not for the powers of the denominators of the number 2 in the 
sequence (4.1), then the Syracuse problem could be reduced to the study of 
some classical sequence of iterations for convergence. So, for example, in the 
case if n,...,1k,1k ==η , the Syracuse sequence would take the form
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in which it would, generally speaking, be divergent, since the mapping of 
successive approximations (4.2), namely:

,1x
2
3)x( +=ϕ                                                                                          (4.3)

is not contracting because

.1
2
3)x(' >=ϕ                                                                                          (4.4)

Let us call sequence (4.2) the limit Syracuse sequence, since the power 
of 2 in the denominators of the Syracuse sequence takes the smallest value. 
It is not difficult to verify that none of the original Syracuse sequences actually 
degenerate to such a sequence. Now recall that in the Collatz conjecture 
the denominator of the sequence actually varies. Let us show that the 
denominators of the Syracuse sequence (4.1) with a high degree of accuracy 
can be assumed to chaotically take one or another power of the number 2. 
From system (3.1) it follows that
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Since the odd numbers kb  and 1kb +  in (4.5), according to another common 
synonym for the Collatz sequence n21 b,...,b,b , are the so-called “hailstone 
numbers”, then the exponents n,...,1k,k =η  are also quasi-random variables. 
Therefore, they could be qualified as random variables. We replace the 
original Syracuse sequence (4.1) with some equivalent sequence in which the 
exponent of the denominators would take a constant value κ . We will further 
call the resulting sequence the equivalent Syracuse sequence:
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Then it would be easy to notice that for 6.1* =κ>κ  the mapping of the 
sequence (4.6)

1x
2
3)x( +=ϕ
κκ

                                                                                            (4.7)

would be contracting, since

ê
3f (x)< »0.99<1. (4.8)

3.03
′                                                                           (4.8)

To achieve complete equivalence between sequences (4.1) and (4.6), it is 
necessary to establish an exact value κ  in (4.6), which is an indefinite function 

of exponents n,...,1k,k =η , i.e.
).,...,,( n21 ηηηκ=κ                                                                    (4.9)

The exact expression for the value κ , if it exists, is impossible to 
indicate due to the lack of a specific analogue for dependence (4.9), which 
establishes a connection between sequences (4.1) and (4.6). However, 
regarding the abstract dependence (4.9), it can be stated with all rigor that 
the value κ  directly depends on all exponents n,...,1k,k =η . Moreover, 
assuming the truth of the Collatz conjecture, one could also argue that for any 
original Syracusan sequence (4.1), the equivalence exponent in (4.6) must be 

6.1* =κ>κ  on the grounds that every Syracusan sequence is convergent.

It is not difficult to guess that the above-mentioned property of the 
abstract dependence (4.9) between the exponents of the original (4.1) and 
equivalent (4.6) Syracuse dependences includes well-known expressions for 
the arithmetic mean and the geometric mean. So, for example, in the case of 
identifying the equivalence exponent κ  of the sequence (4.6) with the value 
of the arithmetic mean of the exponents of the sequence (4.1), we obtain the 
following approximation for the exponent κ : (Figure 2).
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If the true equivalence exponent is replaced by its approximation (4.10), 
the equivalent Syracuse sequence (4.6) would be rightfully called a simplified 
Syracuse sequence, which would look like this:
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At the same time, it should be noted that in the simplified Syracuse 
sequence (4.11), in contrast to the equivalent Syracuse sequence (4.6), 
the approximate equivalence exponent κ  can also take on the values 

6.1* =κ<κ .

Justification for the convergence of the Syracuse sequence: Let us 
present a justifica¬tion for the fact that the exponent in the equivalent Syracuse 
sequence (4.6) increases monoto¬nically with increasing field of variation of 
numbers. It is well known that as numbers increase, the distribution density 
of prime numbers decreases monotonically; it is not difficult to verify that the 
density of even numbers of the first rank remains unchanged everywhere, 
amounting to exactly 50% of the total number of even numbers, since we are 
talking about the asymptotic den-sity of numbers of the form. At the same 
time, with an increase in the field of change of numbers, more and more even 
numbers of the second and higher ranks appear, and also there is a gradual 
appearance of numbers of higher and higher degrees of pairing. Then, as the 
scatter field of numbers of the Syracuse sequence grows, we will have a table 
of the distribu-tion of the entire range of powers shown in Figure 2, therefore, 
due to the assumption of the ran-dom nature of the choice of power exponents 
in (4.9), the exact value will continuously in-crease (Figure 2).

From the above it follows that as the field of scatter of numbers grows, the 
exponent κ  in the equivalent sequence (4.6) invariably increases, reaching 
somewhere and then exceeding the critical value 6.1* =κ . There is also a 
continuous increase in the simplified exponent κ  in (4.11). This means that 
the Syracuse sequence cannot be divergent. In other words, we are dealing 
with a sequence of variable convergence, or contractibility, monotonically 
increasing as the field of number scatter increases. This circumstance explains 
the fact that large numbers converge to one “faster” than some two-digit 
numbers, which, like hailstones, meander for a long time before “shrinking” to 
one. This is where the figurative expression “hailstone numbers” came from 
due to the fact that the graphs of the Syracuse sequence are similar to the 
trajectories of hailstones in the atmosphere. So, in Figure 3 shows a graph of 
the convergence of the number 27, which, due to the recognition of the Collatz 

Figure 2. Justification for the convergence of the syracuse sequence.
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conjecture as a theorem, could be qualified as an odd number of rank 41.

Now it remains to pay attention to the statement in paragraph 2 that 
1b 1n =+ . Currently, through ordinary computer recalculation, it has been 

shown [2] that all positive integers up to the number 9.1021 (nine sextillion) and 
higher obey the Collatz conjecture. For such large values, the exponent κ  
significantly exceeds the critical value 6.1* =κ , which means that for numbers 
bi > 9.1021. there is a guaranteed contraction of the Syracuse sequence. 
Consequently, any initially taken odd number, after a certain finite number of 
iterations, must sooner or later “squeeze” to unity. The only number among all 
natural numbers, one, which maps onto itself, can be conventionally called a 
nodal number, or an odd number of 0-rank (Figure 3).

Conclusion

This article presents a proof of the world-famous Collatz conjecture. The 
use of a special structural matrix from the theory of multibody dynamic systems 
made it possible to significantly simplify the mathematical justification for the 
existence and uniqueness of a solution to the Syracuse problem, provided 
that the obvious requirements are met. The Syracuse sequence has also 
been studied for classical convergence, from which follows the property of its 
guaranteed contraction for large numbers.

Appendix

Let us show that the system of linear algebraic equations (3.2) in the 
context with matrix (3.5) is not resolved in positive integer numbers of variables

n,...,1i,bi = .

Let us use the Cholesky scheme to invert matrix (3.5). Then matrix 
equation (3.2) is written as:

],p[]b][C][B[]b][H[ ==   (*)

For simplicity, in the system of linear algebraic equations we will assume: 
4n = . Therefore, for a matrix ]H[  of size )4x4( : 
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The matrices ]C[and]B[  take the form
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From where the matrices 1]C[ −  and 1]B[ −  will accordingly have the form
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The matrix equation (*) is resolved as follows:

[H] [b] = [C] [b] [p],  (**)

From the last equation of the system, taking into account the fact that the 
column vector ]p[  in (3.2) no longer contains the product 1nnb +λ , the expression 
for the last component of the needed column vector ]p[  follows:
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Expressing in the last form of recording an irreducible fraction containing 
the parameters: 4321 ,,, λλλλ . It is easy to conclude that if we were talking 
about a system of linear algebraic equations of dimension n, then the similar 
component nb  in (F) would in this case contain the variables n21 ...,,, λλλ . 
However, the last variable nb  of the Collatz sequence { }n

1kkb = , by definition, 
cannot depend on all parameters n21 ...,,, λλλ , since it is a function of only 
the parameter nλ . It follows from this that the matrix 1]H[ −  inverse to the matrix 

]H[  in the form (A) does not allow the system of linear algebraic equations 
(3.2) to be resolved in positive integers (natural numbers). It is easy to see 
that this is possible only when the composite matrix of the Cholesky scheme

]I[]B[]B[ 1 == − , where  is the identity matrix. What needed to be 
demonstrated.
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Figure 3. Graph of the convergence of the number 27, which, due to the recognition of 
the collatz conjecture as a theorem.
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