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Abstract
The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like 

most of biological molecules, AR functional activities are modulated by post-translational modifications. This review 
is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-
directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of 
AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be 
synergistic to antagonizing the C-terminal domain by clinical antiandrogens.

Proline-Directed Androgen Receptor Phosphorylation
Yanfei Gao and Shaoyong Chen*

Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline, MA 02115, USA

Keywords: Androgen receptor; Phosphorylation; Proline-directed
serine/threonine phosphorylation; Kinases; Phosphatase 

Abbreviations: AF-1/2: AR Activation Function 1/2; AIS:
Androgen-Insensitivity Syndrome; AR: Androgen Receptor; CBP: 
CREB Binding Protein; CHIP: E3 ligase COOH Terminus of Hsp70-
interacting Protein; Co-IP: Co-immunoprecipitation; CRPC: 
Castration-resistant Prostate Cancer; DBD: AR DNA-binding Domain; 
DHT: Dihydrotestosterone; GR: Glucocorticoid Receptor; GRIP1: 
Glucocorticoid Receptor-Interacting Protein 1; H: AR Hinge Domain; 
IHC: Immunohistochemistry; JNK: c-Jun N-terminal Kinase; LBD: AR 
Ligand-Binding Domain; Mdm2: E3 Ligase Murine Double Minute-2; 
MR: Mineralocorticoid Receptor; NLS: Nuclear Translocation Signal; 
NTD; AR N-terminal Domain; PCa: Prostate Cancer; PCOS: Polycystic 
Ovarian Syndrome; PEST Sequence: A Peptide Sequence which is 
Rich in Proline (P), Glutamic Acid (E), Serine (S), and Threonine 
(T); Pin1: Peptidyl-Prolyl Cis-Trans Isomerase (PPIase) 1; Poly-Q: 
Polyglutamine; PP1/2A: Phosphoprotein Phosphatase 1/2A; PR: 
Progesterone Receptor; SBMA: Spinal And Bulbar Muscular Atrophy; 
ST: Tumor Antigens Simian Virus 40 Small T Antigen

Introduction
Androgen receptor (AR) 

The identification of steroid receptors (including AR) in the mid-
1980s led to the definition of a family of ligand-mediated transcription 
factors that occupy specific chromatic locus for gene regulation. The next 
chapter in advancements is the identification of cofactors participating 
chromatin remodeling, including histone “writers”, “erasers”, and 
“readers” that have continuously been researched up to now. Besides 
the well-established AR activity in mediating transcriptional activation, 
recent studies further revealed novel functions of AR in transcriptional 
repression, genomic translocation, and mTOR activation [1-6]. 
Abnormal AR activity is associated with various pathogeneses such 
as male infertility, androgen-insensitivity syndrome (AIS), polycystic 
ovarian syndrome (PCOS), spinal and bulbar muscular atrophy 
(SBMA), rheumatoid arthritis, hirsutism, baldness, acne, breast cancer, 
and prostate cancer (PCa).

The AR molecule is structurally organized into distinct domains: 
the N-terminal domain (NTD) that has a potent activation function 1 
(AF-1), DNA-binding domain (DBD), hinge domain (H), and ligand-
binding domain (LBD) that binds to androgens and has a modest 
activation function 2 (AF-2) (Figure 1A). The AR protein shares 
highly structural similarities in the DBD and LBD with other steroid 
nuclear receptor family members, such as glucocorticoids receptor 

(GR), mineral corticoid receptor (MR), and progesterone receptor 
(PR). However, its NTD and hinge regions are unique and structurally 
disordered, and share marked diversity among family members. The 
NTD and hinge domain are also less conservative than the DBD and 
LBD among ARs from different species. Functionally, these distinct 
domains confer activities such as N-to-C interactions, DNA loading, 
antiparallel dimerization, and recruitment of cofactors. The AR 
proteins are also subjected to multiple post-translational modifications 
such as acetylation, methylation, ubiquitination and sumoylation. 
This review will be focused on AR phosphorylation, with emphasis on 
proline (Pro)-directed phosphorylation.

AR phosphorylation 

The identification of AR was immediately followed by the recognition 
that the receptor is a phosphoprotein and that phosphorylated AR is 
localized to the nucleus upon ligand stimulation [7-10]. More extensive 
studies indicated that AR is synthesized as a single 110 kDa protein 
that is rapidly converted into a 112 kDa phosphoprotein in the absence 
of hormone, with constitutive phosphorylation at two Pro-directed 
serines (Ser650 and Ser94); and that androgens can further induce the 
expression of a 114 kDa isoform which is phosphorylated at additional 
residues and associated with AR nuclear activities [11-13]. The 
distribution of these three isoforms can be attributed to the NTD, in 
particular the length of the outstanding polyglutamine (poly-Q) stretch 
and the phosphorylation at two adjacent Pro-directed serines (Ser81 
and Ser94) [14]. 

As shown in table 1, AR has more than 150 theoretically 
phosphorylable residues, which are modestly enriched in the hinge and 
NTD regions. Interestingly, the AR molecular evolution is associated 
with a decrease in the serines, an increase in the threonines, and a 
basically unchanged number of tyrosines. Furthermore, the Pro-
directed Ser (7) and Thr (2) are well conserved among species (Table 1). 
In addition, the human AR also has abundant glycine (G, 97), proline 
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(P, 74), and glutamine (Q, 69). Computational calculation indicates 
that the Pro-directed Ser residues are subjected to phosphorylation by 
Pro-directed Ser/Pro kinase (Figure 1B). While the Acid Ser/Pro kinase 
theoretically covers AR but the C-terminal LBD, the Baso Ser/Pro kinase 
can potentially phosphorylate all four domains (Figure 1B). This result 
is in concordance with an analysis by a distinct program, indicating that 
the N-terminal region (NTD-DBD-H; in particular the NTD) is the 
major phosphorylation locus of AR (Figure 1C). Consistently, multiple 
studies indicated that the NTD is the predominant AR phosphorylation 
region and the phosphorylation occurs mainly on Ser and Thr residues 
[15-17]. Lower phosphorylation frequency identified in DBD and 
especially the LBD is rather due to their highly structural conformation 
than low percentage of phosphorylable residues, considering that 
phosphorylation occurs mainly on intrinsically unstructured locus 
(Figure 1C and Table 1) [18].

The enrichment of phosphorylation at NTD implies its function 
in AR-mediated transactivation. Indeed, AR phosphorylation status 
is strongly correlated with the transcriptional function and the 
agonistic activity of ligands [19]. Consistently, the NTD (the major AR 
phosphorylation region) bears AR activation mediated by the HER2/
EGFR and IL-6/ MAPK pathways [20,21]; and Aurora-A and Ack1 also 
activate AR by phosphorylating the NTD (Thr282/Ser293 versus Tyr267/
Tyr363, respectively) [22,23]. Furthermore, AR phosphorylation is 
involved in AR degradation by the proteasome-dependent pathway: 

while phosphorylation at Ser578 promotes AR-Mdm2 (E3 ligase murine 
double minute-2) association and AR degradation, phosphorylation 
on Tyr (534) attenuates AR ubiquitination and interaction with the E3 
ligase CHIP (COOH terminus of Hsp70-interacting) protein, leading 
to increased AR expression [24-26]. In addition, AR phosphorylation 
is also linked to additional modifications such as AR acetylation [27].

Proline-directed AR phosphorylation 

Despites the scattered reports on AR phosphorylation at various 
residues, it is well documented that the receptor phosphorylation 
occurs predominantly on the Pro-directed serines, as evidenced by the 
studies based on phosphoamino acid and mass-spec analyses (data not 
shown) [28]. As indicated in figure 1A and table 1, AR totally has seven 
Pro-directed serines, with six located at the NTD and one at the hinge 
region. Functionally, AR phosphorylation at Ser308 by cyclin D3/
CDK11p58 reduced transcriptional activity [29], while the functional 
significance of S515 phosphorylation appears different between 
exogenous and endogenous studies [13,30,31]. In addition, S424 and 
S515 phosphorylation contributes to AR nuclear localization and 
functions against receptor aggregation upon hormone treatment [32]. 

Next, we will concentrate on three Pro-directed Ser residues 
(Ser81, Ser94, and Ser650) that are most robustly phosphorylated based 
on multiple phosphoamino acid and mass-specanalyses (Figure  2) 
[12,14]. Although Ser81 is apparently the highest androgen-stimulated 

Total AA Serine Theonine Tyrosine S/T/Y Percentage Pro-Ser Pro-Thr

Human AR
Chimpanzee AR
Mouse AR
Rat AR

919
911
899 
902

81
81
87 
92

37
37
35 
33

33
33
34 
33

151
151 
156 
158

%16.43
%16.58 
%17.35 
%17.52

7
7 
7 
7

2
2 
2 
2

Human AR NTD
Human AR DBD
Human AR Hinge domain
Human AR LBD

537 
90 
45 
247

56 
4 
4 

17

20 
5 
6 
6

20 
5 
1 
7

96 
14 
11 
30

%17.88 
%15.56 
%24.44 
%12.15

6 
0 
1 
0

1 
0 
0 
1

Table 1: Characterization of AR amino acid composition regarding theoretically phosphorylable residues. GenBank entry: human AR (M20132.1); chimpanzee AR 
(NM_001009012.1); mouse AR (NM_013476.3); and rat AR (NM_012502.1). AA: amino acid; S: Serine/Ser; T: Threonine/Thr; Y: Tyrosine/Tyr.

Figure 1: Theoretical and computational characterization of human androgen receptor (hAR) phosphorylation.(A) hAR amino acid linear organization indicated of 
structural domains and proline(Pro)-directed phosphorylable residues (GenBank: M20132.1); (B) Motif Scan Graphic analysis ofhAR subjected to Pro-directed Ser/
Pro kinase (Pro_ST_Kin or Pro_), Acid Ser/Pro kinase (Acid_ST_Kin or Acid_); and Baso Ser/Pro kinase (Baso_ST_Kin, or Baso_) (http://scansite.mit.edu); (C) 
Phosphorylation analysis of hAR by the DISorder-enhanced PHOSphorylation predictor (DISPHOS, http://www.ist.temple.edu/DISPHOS) program.
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AR phosphorylation residues, this event cannot be readily captured by 
mass-spec due to its particular embedment in the Poly-Q stretch that 
would compromise the fragmentation efficiency during digestion and 
processing (Figure 2 and 3) [17].

Pro-directed Ser81 phosphorylation

Ser81 is the most stoichiometrically serine residue phosphorylated 
in response to androgens and its phosphorylation occurs with distinct 
dynamics compared to other AR phosphorylation residues [12,17]. 
The particular activities of Ser81 phosphorylation can be attributed to 
its extraordinary positioning in an unusual polyglutamine (poly-Q) 
stretch in the NTD (Figure 3A). Interestingly, a linear increase in the 
length of poly-Q is proportional to the time of animal divergence, 
suggesting an association of polyglutamine expansion with evolution of 
the higher primate species [33]. Pathologically, the polymorphic poly-Q 
is causative to certain neurodegenerative diseases, as exemplified by 
the neuromuscular disorder SBMA [34]. In the molecular settings, 
expansion of the poly-Q track led to abnormal AR protein folding, 
aggregation, and interaction with other proteins, resulting in excessive 
AR degradation and compromised AR transcriptional capacity [35].

In the prostate cancer (PCa), Ser81 phosphorylation contributes to 
cell growth, AR-mediated transcription, and AR sensitivity to ligand [36-
39]. Although transient transfection assay yielded little effect of Ser81 
phosphorylation on AR-mediated transcription [17,36], studies based 
on PCa and endogenous genes indicated that this phosphorylation had 

pronounced effects on AR nuclear distribution, chromatin binding, 
and transactivation functions [37,39,40]. Consistently, attenuation of 
AR Ser81 phosphorylation by antagonists for CDK1, CDK9, TOPO1 
(topoisomerase I) and HER2 led to decreased PCa cell growth and 
AR nuclear functions such as chromatin binding and transcriptional 
activation [37,39,41,42]. Interestingly, AR Ser81 phosphorylation can 
also function in the PCa epithelial-stromal interactions, mediated by 
the ERK pathway that may directly phosphorylate this residue [36,43].

Mechanistically, the initial work from our Lab identified Cdk1 as 
a Ser81 kinase that can phosphorylate Ser81 to stimulate AR nuclear 
functions [36]. Further studies indicated that CDK9 specifically 
phosphorylate AR at Ser81 upon androgen stimulation, leading 
to productive AR chromatin binding for sustained transcription 
[37,39]. Consistently, DNA binding has been implicated in Ser81 
phosphorylation and androgens-induced AR localization to the 
active chromatin may be associated with phosphorylation by specific 
protein kinase occupying the locus [14,44,45]. Together, these findings 
suggested that CDK1-mediated Ser81 phosphorylation may account 
for the basal Ser81 phosphorylation that can initiate AR loading to the 
chromatin locus, followed by CDK9-mediated phosphorylation that is 
coupled to transcriptional activation (Figure 3B). At molecular levels, 
Ser81 phosphorylation is implicated in AR nuclear distribution and 
its interaction with co-factors, such as CBP (CREB binding protein) 
and GRIP1 (glucocorticoid receptor-interacting protein 1) [45]. In 
addition, a recent report also indicated that Ser81 phosphorylation 

Figure 2: A typical mass-spec analysis in AR study. LNCaP  cells in androgen-deprived medium were treated with DHT (dihydrotestosterone) and AR was harvested by 
Co-IP (Co-immunoprecipitation) for mass-spec analysis that was aligned to human AR (GenBank: M23263.1). Highlighted are identified phosphorylation corresponding 
to Ser94 and Ser650(GenBank: M20132.1), with Ser424 at lower frequency. Phosphorylation on Ser81 is not identified, likely due to its particular location that affects 
fragmentation during processing.

Figure 3: AR linear amino acid sequences in the vicinity of Ser81 and Ser94 residues.(A) Alignment of human, chimpanzee, mouse and rat AR with highlighted 
conserved residues (in red) and polyglutamine region (underlined); (B) Schematic drawing indicates that Ser81 phosphorylation is correlated to AR functional activities.
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mediates the interaction between AR and Pin1, a peptidyl-prolyl cis-
trans isomerase (PPIase) that specifically isomerizes Pro-directed 
phospho-Ser/Thr motifs [46].

Pro-directed Ser94 phosphorylation 

The Ser94 locates to the C-terminal of the NTD poly-Q track 
(Figure 3A) and its phosphorylation can occur in the absence of ligands 
[12]. Ser94 together with Ser81 and Ser650 are the three Pro-directed 
residues that are most substantially phosphorylated AR residues 
(Figure 2) [17]. The functional significance of Ser94 phosphorylation 
is unknown; although a bias was found for Ser94 phosphorylated AR 
distribution in the cytoplasm in the absence of androgens [40]. In 
addition, increased Poly-Q length is associated with enhanced Ser94 
phosphorylation while transient transfection study has indicated 
that Ser94 phosphorylation has minimal effect on AR-mediated 
activation of exogenous promoters [13,17,33]. The Ser94 kinase(s) are 
also unknown, although CDK1 and CDK5 but not CDK9 can be the 
candidates [36,37]. Considering Ser94 phosphorylation can happen in 
the absence of androgens, it remains to be determined whether this 
phosphorylation is involved in the interaction between AR with the 
HSP90 complex in the cytoplasm that binds to and stabilizes the new-
synthesized AR proteins [47].

Pro-directed Ser650 phosphorylation 

The Ser650 in the only Pro-directed serine residue that locates 
outside of the NTD. It resides in the hinge region and centers on 
the diverse PEST sequence that potentially mediates AR protein 
degradation (Figure 4). The hinge region contains part of the NLS 
(nuclear translocation signal) and regulates AR transactivation and 
nuclear localization, and is one major target site for modifications 
(acetylation, ubiquitination and methylation) [48,49]. The hinge 
region is also enriched in phosphorylable residues and indeed, mass-
spec analysis has identified phosphorylation occurring at Ser650 and 
several adjacent residues (Table 1, Figure 4; data not shown). Although 
transient transfection assays suggested thatS650 phosphorylation 
has no or minimal effects on AR functional activities, study based 
on endogenous AR indicated that the stress kinases (JNK (c-Jun 
N-terminal kinase) and p38) regulate Ser 650 phosphorylation and 
AR nuclear export [13,17,28]. The functions of phosphorylation at the 
adjacent residues (Ser646, Ser647, and Thr652) are unknown (Figure 
4).

Phosphoprotein phosphatases targeting the Pro-directed Ser/
Thr residues of AR

The findings that phosphorylated AR is transcriptionally active are 
essentially consistent with the observations that AR dephosphorylation 
impairs receptor functional nuclear activities like ligand binding 
[50,51]. Consistently, the tumor antigens simian virus 40 small t 

antigen (ST) can mediate PP2A (phosphoprotein phosphatase 2A) 
binding to AR, leading to AR dephosphorylation at five Pro-directed 
phosphoserines in the NTD and reduction in AR activities [51]. 
Significantly, PP2A activity is attenuated in the androgen-independent 
C4-2 PCa cells as compared with the parental androgen-dependent 
LNCaP cells [52]. Furthermore, PPP2R2C (a PP2A regulatory subunit) 
was down-regulated in advanced PCa to drive castration-resistance 
[53]. In addition, study from our Lab indicated PP1 (phosphoprotein 
phosphatase 1) stimulates AR nuclear functions (in opposite to that 
of the PP2A), mediated by PP1-elicited dephosphorylation of Ser650 
in the hinge region [54]. These findings are fundamentally in line 
with the report that caveolin-1 can increase nuclear functions of the 
phosphorylated AR by binding to and inhibiting the PP1 and PP2A 
[55].

Clinical implications of AR phosphorylation 

AR phosphorylation has been extensively implicated in 
pathogeneses, as exemplified by that the development of castration-
resistant prostate cancer (CRPC) can be attributed to AR 
phosphorylation at Tyr267 (by the Ack1 pathway) and Ser515/Ser578 
(by the EGFR/MAPK signaling), respectively [56,57]. The enrichment 
of AR phosphorylation at the NTD indicates one therapeutic strategy 
is to co-target AR phosphorylation and ligand binding functions. 
Indeed, inhibition of phospho-Ser81 can synergize with anti-androgen 
to disturb CRPC [36,42]. Significantly, a recent systematic study based 
on screening 673 human kinases in PCa cells identified six potential 
targeting kinases (MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1), 
and it is important to assess efficacy of antagonizing these candidates 
in combination with clinical antiandrogens [58]. In addition, as one 
frontier in AR research, the receptor phosphorylation has emerged as 
a potential biomarker in clinical analysis. Indeed, breast and prostate 
cancer studies have been reported based on immunohistochemistry 
(IHC) assays with the phospho-Ser213, Ser515, and Ser650 antibodies 
[31,59-62].These studies can be further substantiated by sufficient 
antibody validation, such as dose optimization and specific peptide 
competition analysis. 

Conclusions
In summary, altered and amplified phosphorylation can contribute 

to abnormal AR activities, including its ligand-independent activation in 
diseases including PCa. The AR NTD is bestowed with highly selectivity 
and enriched phosphorylation, providing ample opportunities for 
specific interventions. Targeting NTD phosphorylation (by kinase 
and phosphatase modulators) can be applied in synergy with the 
LBD antagonists (such as antiandrogens) in therapy. Targeting AR 
phosphorylation is also an option to overcome the AR splicing variants 
that lose the functional ligand binding capacity and are overexpressed 
in advanced PCa [63]. Finally, although AR phosphorylation has been 
extensively studied in receptor activation, its intrinsic connections need 
to be clarified to AR-mediated transrepression and AR non-genomic 
functions (like mTOR activation). 
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