
J Comput Sci Syst Biol  Volume 2(6): 298-299 (2009) - 298

ISSN:0974-7230   JCSB, an open access journal

Research Article    OPEN ACCESS Freely available online   doi:10.4172/jcsb.1000045

Prokaryotic and Eukaryotic Non-membrane

Proteins have Biased Amino Acid Distribution
Rajneesh Kumar Gaur

Bioinformatics Infrastructure Facility, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India – 110062

Abstract

Proteins constitute the important constituent of the cel-

lular machinery. The comparative analysis of non-mem-

brane proteins (nMPs) between prokaryotes and eukary-

otes carried out to determine the biasedness in amino acid

distribution. On comparison, the results revealed that ‘Ala’

is the dominant amino acid in prokaryotic nMPs while

‘Lys, Ser and Cys’ are the dominant amino acids in eu-

karyotic nMPs.
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Introduction

Proteins constitute about 50% of the dry weight of most cells

and are the most structurally complex macromolecules known.

Proteins can be classified in different manner but for the pur-

pose of this study we classified them as membrane (part of ei-

ther cellular or organelle membrane; MPs) and non-membrane

(located outside the membrane; nMPs) proteins. Amino acids

are the building block of a protein and their composition deter-

mines the overall properties and stability of a protein. Many pre-

vious studies have shown how amino acid composition can be

successfully applied to protein sequence analysis, including pre-

diction of structural class (Zhang et al., 1992), discrimination of

intra- and extra cellular proteins (Nakashima et al., 1994), pre-

diction of sub-cellular location (Cedano et al., 1997). It was sug-

gested that composition differences are a consequence of differ-

ent requirements for protein folding, stability and transportation.

The recent increase in the number of whole genome sequences

has made the analysis of the corresponding proteomes possible.

So far the amino acid composition of both the prokaryotic and

eukaryotic proteomic databases have been explored separately

for different purposes such as determination of sequence length

(Gerstein, 1998a), identification of conserved sequences

(Sobolevsky et al., 2005); elucidation of simple sequences

(Subramanyam et al., 2006) etc. However, till now the compara-

tive analysis of their non-membrane proteins (nMPs) have not

been carried out to determine the overall amino acid composi-

tional differences. This computational study is performed to de-

velop the amino acid distribution of proteins as a tool to identify

the proteins frequently undergo mutations and largely respon-

sible for the pathogenicity of the organism.

Methodology

The dataset was curated manually from the sequences extracted

from PSORT (Rey et al., 2005), eSLDB (Pierleoni et al., 2007)

and RefSeq (Pruittet et al., 2005) databases. Only the experi-

mentally annotated entries were extracted from PSORT data-

base. From the RefSeq database, we used microbial

(microbial1.protein.faa.gz; 05/11/2009) and eukaryotic

(vertebrate_mammalian1.protein.faa.gz; 05/11/2009 &

vertebrate_other1.protein.faa.gz; 05/10/2009) sequence release

files for construction of the experimental dataset. Protein se-

quences flagged as putative, hypothetical, potential,

uncharacterized, similar to the predicted protein, membrane,

porin, receptor are deleted from the initially downloaded RefSeq

sequence release files in the preparation of experimental dataset.

The prokaryotic sequence dataset was created by merging the

sequence entries from PSORT db and refseq dataset after appro-

priate deletions. Similarly, the eukaryotic dataset was prepared

after deleting and merging the sequence entries from eSLDB

and refseq dataset.

The entire dataset used for computing the composition of 20

amino acid residues comprised of prokaryotic (63644) and eu-

karyotic (88400) nMP sequences. The amino acid composition

for the prepared datasets was computed using the number of

amino acids of each type and the total number of residues. It is

defined as Residue composition (%) (r) = ∑n
r
/N X100 (1) where

‘r’ stands for any one of the 20 amino acid residue. ∑n
r
 is the

total number of residue of each type and N is the total number of

residues in the dataset.

Results and Discussion

The amino acid compositional distribution between prokary-

otic and eukaryotic nMPs was computed using eq. (1). The

prokaryotic nMPs shows the dominant occurrence of a non-po-

lar amino acid ‘Ala’ (σ = 0.45) while the eukaryotic nMPs pre-

dominantly possess the polar amino acids ‘Lys’ (σ = 0.66), ‘Ser’

(σ = 0.60) and ‘Cys’ (σ = 0.29)   (Figure 1). In prokaryotic nMPs,

the high frequency of short side-chained non-polar aliphatic

amino acid ‘Ala’ may be due to various possibilities such as its

over-representation in highly expressed proteins (Tats et al.,

2006), its role in determining the cleavage of N-terminal formyl

methionine (Solbiati et al., 1999), its role in assisting the en-

trance of the nascent peptide chain into the ribosomal tunnel

(Tenson et al., 2002) and in helix–helix packing (Eyre et al.,
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2004). Though ‘Ala’ might perform the similar functions in both

prokaryotic and eukaryotic nMPs but its higher frequency in

nMPs probably related to the higher proportion of prokaryotic

helical nMPs.

The eukaryotes show the high occurrence of positively charged

polar residue ‘Lys’ in their nMPs repertoire. This positively

charged residue helps in the secretion of proteins through the

membrane via interaction with export machinery and signal rec-

ognition particles (vonHeijne, 1984). The overabundance of ‘Ser’

in eukaryotic nMPs may be due to their ability to form H-bonds

and stabilizing the helices (Subramaniam et al., 2006). In par-

ticular, the two-fold higher ‘Cys’ of eukaryotic nMPs compared

to prokaryotic nMPs most probably compensates for their lower

hydrophobicity (D’Onofrio et al., 1999).
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Figure 1: Histogram showing the overall amino acid composition of prokaryotic (black bars) and eukaryotic (white bars) nMPs. The amino acids are arranged in

decreasing order of hydrophobicity. Pro: Prokaryotic nMPs; Euk: Eukaryotic nMPs
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