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Introduction
Optical biopsies using in vivo imaging at the microscopic level 

have opened up the possibility of non-invasive tissue sampling. Probe-
based confocal laser endomicroscopy (pCLE) via flexible bronchoscopy 
is an emerging technology that may make this a reality. The confocal 
microscope was first patented by Minsky in 1957 [1]. It utilizes point 
illumination and a pinhole apparatus to block out-of-focus rays of 
light, enabling the generation of high-resolution images with a lateral 
resolution of 5 μm. Started from 1980’s, it has been used in vivo to 
image organs such as eye, skin and oral cavity. With the emerging 
technique of fiber based confocal microscopy, it has become small 
enough to enter body cavities such as the gastrointestinal tract, bladder, 
cervix and now the lungs [2]. In gastrointestinal endoscopy, pCLE is 
considered non-inferior to standard biopsy for Barrett’s esophagus and 
there are consensus recommendations for its use in the detection of 
gastrointestinal malignancies, as well as inflammatory bowel diseases 
[3]. This review will describe how pCLE is performed as part of 
bronchoscopic evaluation, explain image interpretation and provide an 
update on emerging clinical indications in pulmonary diseases.

How to Perform pCLE
There are currently two commercially available confocal 

endomicroscope systems for thoracic imaging [4]. Optiscan Five 1®

(Optiscan PTY Ltd, Victoria, Australia) utilizes a 5 mm to 6.3 mm rigid 
probe that can be used during thoracoscopy and rigid bronchoscopy. 
However, it cannot be passed through the working channel of a standard 
flexible bronchoscope [5]. Cellvizio® (Mauna Kea Technologies, Paris, 
France) utilizes a 1.4 mm semi-flexible bronchoscopic miniprobe 
(Figure 1) that can be used in flexible bronchoscopy under moderate 
sedation. This miniprobe generates a 600 μm × 600 μm field of view 
under the illumination of a laser source with an excitation wavelength 
of 488 nm. Images are acquired at 12 frames per second and the z-depth 
is fixed at 50 μm. The lateral resolution is 3.5 μm. This review will focus 
on the data available on the bronchoscopic miniprobe.

Prior to bronchoscopy the pCLE processor requires an initialization 
process that takes 2 minutes. The small field of view makes systematic 
examination of the entire airways impractical. Therefore, white light 
bronchoscopy is performed first before a target area is scanned with 
pCLE. Images are obtained by gentle perpendicular application of the 
miniprobe directly against the mucosa. For optimal imaging, secretions 

must first be suctioned out and the airways adequately anaesthetized 
with topical lidocaine. Further processing of video sequences is possible 
with an algorithm that uses data fitting to ‘stitch’ together a mosaic. This 
algorithm combines successive images, as well as cancels movement-
induced artifacts to reconstitute a widened field of view. A mosaic is 
created by gently drawing the probe across the target and the image area 
can be increased 2-fold to 4-fold.

Examination of distal airspaces should be attempted after detailed 
review of thoracic computed tomography imaging and performed with 
the smallest available bronchoscope (outer diameter 4.9 mm in the 
authors’ institution) to facilitate access to a targeted bronchopulmonary 
segment. Usually up to eight segments are scanned and only unilateral 
examination is performed because of the potential for pneumothorax. 
For correlation with radiology, it is necessary to rigorously document the 
segment that is entered. Scanning of the apical and posterior segment of 
the upper lobes is not always possible because of the stiffness of the pCLE 
miniprobe. Once the bronchoscope is placed in the smallest accessible 
bronchus, the miniprobe is gently advanced until it passes through 
bronchiolar walls before reaching the alveolar acini. Typically en-face 
images are obtained but images at different angles provide various 
perspectives. Once the alveoli are reached, the miniprobe pressing 
on more distal structures causes a compression effect. This visualizes 
background planes beyond the 50 μm focus creating a 3-dimensional 
effect. Best results are obtained by withdrawing the probe once acini 
are seen and analyzing the last image before contact is lost [6] (Figure 
2). At this point alveolar deformation is minimized and reproducible 
measurements are possible. When clear images are seen, videos of up to 
30 seconds are recorded in each targeted area.

Post bronchoscopy, videos are reviewed and representative still 
pictures are obtained for analysis. The viewer software facilitates 
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Figure 1: Probe-based confocal laser endomicroscope system utilizing a bronchoscopic miniprobe. (A: White arrow indicates the probe; B: White arrow head indicates 
the tip of the probe).

Figure 2: Normal alveolar acini captured just prior to loss of contact with the 
miniprobe.

measurement of alveolar structure dimensions and fluorescence 
intensity. Figure 3 shows how images and video clips are systematically 
evaluated at the authors’ institution. Intra-observer (intraclass 

correlation coefficient i.e. ICC ranging from 0.69 to 0.91; p<0.001) and 
intra-patient (ICC ranging from 0.65 to 0.84; p<0.001) reliability have 
been proven to be excellent [7]. Inter-observer agreement between 
blinded reviewers on the brightness of images has been shown to be 
high with an ICC ranging from 0.53 to 0.99 (p<0.001). However, the 
agreement on fiber thickness in the respiratory bronchioles is poor with 
an ICC of 0.12 (p<0.05) and in the alveoli is fair with an ICC of 0.37 to 
0.42 (p<0.001) [7].

The reported complication rate of pCLE is low. One reported 
case of pneumothorax recovered spontaneously without chest tube 
insertion or hospitalization [8]. In addition, the visceral pleural 
surface has characteristic pCLE imaging of cross hatched fluorescent 
linear structures that can be used to identify the limit of advancing 
the miniprobe [9]. There is no current recommendation for the use 
of fluoroscopy to prevent pneumothorax. Although most studies have 
performed pCLE on only one side, preliminary data suggest that it can 
even be performed safely bilaterally [10]. Other complications of minor 
bleeding and transient pain have also been reported [6,11]. Occasional 
desaturations have occurred in authors’ experience. Even patients with 
emphysema, pulmonary fibrosis and lung transplantation can tolerate 
the procedure safely with minimal discomfort and no additional 
sedation [12,13]. It is estimated that pCLE adds approximately 10 
minutes to flexible bronchoscopy duration [6,11].

Image Interpretation
After excitation with light at 488 nm, the predominant fluorescence 

emission in the lungs originates from elastin as demonstrated by in 
vivo spectral analysis [14]. Collagen and intracellular flavins emit an 
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Figure 3: Checklist for image interpretation.

extremely weak signal and cannot be seen. Elastin is a component of 
the subepithelial layer of the airways (Figure 4) and the scaffolding 
of pulmonary acini (Figure 2) where it is concentrated at the alveolar 
duct rims, as well as the alveolar entrances [14,15]. Elastin is also a 
component of the external sheath of small blood vessels [14]. Intensity 
of fluorescence from elastin increases with age, presumably related to 
cross-linking that occurs with time [16]. In addition, fluorescence is 
seen in the alveolar macrophages of smokers (Figure 5) as confirmed 
by bronchoalveolar lavage [17]. The number, size and mobility of these 
fluorescent macrophages are directly correlated to the quantity smoked 
per day and in vitro evidence shows that the fluorescence is attributed 
to the particulate fraction of cigarette smoke especially tobacco tar [6].

Various images can be seen depending on the location within the 
bronchial tree [14]. At the anterior wall of the trachea and main stem 
bronchi, a dense homogenous pattern without crossing fibers is seen 
in Figure 6. At the orifices of the lobar bronchi, a network of tightly 
compacted, crossing fibers is found. This pattern is also seen around 
bronchial gland openings, which are 100 μm to 200 μm in diameter 
(Figure 7). The rest of the bronchi have the classical mat pattern of 
longitudinal 10 μm fibers that are crossed perpendicularly by thin fibers. 
At the bronchiolar level, an interlacing lattice of 2 μm to 5 μm fibers 
is seen in Figure 8. Terminal bronchioles are identified by a helicoidal 
pattern, which can be transiently seen as the endoscopist penetrates into 
the alveolar acini. In carcinoma-in-situ and severe airway dysplasia, the 
regular fibers appear disorganized or may not even be seen [14].

In the distal airspaces, pCLE visualizes the axial framework of the 
alveolar ducts. Alveolar entrance diameters are normally distributed 
with a mean size of 278 μm ± 53 μm, but appear smaller in the upper 
lobes and right medial basal segment (paracardiac region) [6]. This may 
be explained by reduced ventilation to these segments in the supine 
position. Healthy individuals have a mean axial fiber thickness of 10 
μm ± 2.7 μm with no measured differences between smokers and non-
smokers [6]. Small vessels are distributed throughout the lung with a 
mean diameter of 90 μm ± 50 μm (Figure 9) [6]. Minor trauma can 
be expected given the relative size of the miniprobe compared to 
terminal bronchioles. Therefore, free swaying septal walls and severing 
of microvessels can be seen even in normal lungs.

Emerging Clinical Applications
Malignant lesions

The pCLE can be used to screen central airways for cancer. Without 
the administration of contrast agents, airway epithelial cells cannot 
be seen. Disappointingly, intravenous fluorescein sodium has not 
been able to demonstrate cellular structures in central airways [18]. 
However, using the gastrointestinal probe, which has a lateral resolution 
of 1.0 μm and z-depth of 65 μm, administration of intravenous 10% 
fluorescein was able to demonstrate that squamous cell carcinoma had 
increased cellular densities, irregular stratified patterns and capillary 
neovascularization [19]. Adverse effects have been primarily related to 
the mild allergic properties of fluorescein [4].

Figure 4: Schematic figure showing microscopic cross section of the airway 
wall (not drawn to scale). 

Figure 5: Alveolar macrophages (white arrow) in a smoker’s lung. 

Figure 6: Anterior wall of the trachea and the main stem bronchi with a dense 
homogenous pattern and of fibers. No crossing fibers are seen. 
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Figure 7: Bronchial gland opening (white arrow) with a network of tightly 
compacted, crossing fibers.

Figure 8: Bronchiole with an interlacing lattice of 2 μm to 5 μm fibers.  

Topical acriflavine (10 mL of a 0.05% solution) is an alternative 
contrast agent. It can be administered via the working channel of the 
bronchoscope 2 minutes prior to pCLE [20]. These 2 minutes allow even 
distribution and cellular uptake such that the nuclei of epithelial cells 
are seen. The confocal images that were captured can be classified into 
three different categories: normal tissue, inflammation/regeneration 
and neoplasia [20]. Normal airway mucosa has homogeneous tissue 
architecture with bright nuclei and overlapping of cells. In contrast, 
neoplastic lesions have heterogeneous architecture with areas of poor 
acriflavine uptake. There is no overlapping and the cell distribution 
is chaotic. Furthermore, the nuclei are of different sizes with variable 

Figure 9: Micro vessel (white arrow) in the distal airspaces. Broken fibers 
(white arrow head) secondary to miniprobe trauma are also seen.

distances between them. Inflammatory lesions/regenerative tissues tend 
to have expanded cytoplasm with heterogeneous architecture and no 
overlapping cells. In airway lesions, neoplastic changes can be predicted 
using these criteria with a sensitivity of 96% and specificity of 87% [20]. 
However, caution is advised because animal studies have suggested 
that acriflavine is carcinogenic [21]. Methylene blue is another topical 
contrast agent and is able to highlight both the nucleus and cytoplasm. 
It has a better safety profile, but requires illumination under a different 
light wavelength (660 nm) [21,22].

Any attempt to evaluate peripheral lung lesions, especially early 
stage neoplasm necessitates the use of navigational bronchoscopic 
technology such as radial endobronchial ultrasound to ensure that 
imaging and biopsy are obtained from the same location within the 
thorax [23]. Preliminary data shows that malignant lesions tend to 
have alteration in alveolar structure; compact and thickened alveoli 
[24,25]; disruption of elastin around the alveolar walls; disorganized 
clumping of tissue; and sometimes, a ‘Swiss cheese’ appearance of nests 
of tumor [26]. There may also be stippling along the edge of clumped 
tissue suggesting a lepidic growth pattern [26]; mottled or ‘black hole’ 
appearance of the microvessels caused by shadow effect of tumor cells 
[27]; and thickened, irregular fibers in the interstitium [28]. In contrast, 
infected areas have preserved alveolar architecture, normal alveolar 
wall thickness and alveolar spaces filled with inflammatory cells [29]. 
These patterns are currently being tested to evaluate the sensitivity in 
diagnosing malignancy using pCLE [23]. Computer-aided diagnosis is 
also being developed to perform the quantitative analysis using alveolar 
diameter, vessel size and optical density to differentiate malignant from 
benign lesions [30]. With administration of intravenous fluorescein 
sodium, dark neoplastic and inflammatory cells are visible in the distal 
airspaces in peripheral lung regions [18,19]. However, due to the local 
detergent effect, foam-like structures are quickly formed and block the 
view of alveolar structures [18].

Airway diseases

Three patterns of airway wall elastin fibres have been identified: 
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lamellar, loose and mixed [13]. The lamellar pattern is characterised by 
a linear and parallel bronchial thick fibre orientation. The loose pattern 
is described as wispy i.e. no specific pattern with some occasional thin 
lines that lack a specific orientation [31]. There is good agreement 
between elastin fibre patterns on histology and pCLE images with a 
linearly weighted kappa 0.744 [31]. However, no specific elastin fibre 
pattern was detected in patients with asthma. Subjects with a laminar 
pattern tend to have lower post-bronchodilator forced expiratory 
volume in one second percentage predicted. Further studies with 
more severe asthma may show the fragmentation of fibres observed 
in histological study [32]. The loose pattern is 3 times more prevalent 
in patients with chronic obstructive pulmonary disease (17%) than in 
controls (5%) [13].

Besides elastin fibre pattern, other structural changes corresponding 
to lung function abnormalities in chronic obstructive pulmonary 
disease have been found [13]. There appears to be a correlation between 
the small vessel diameter and the carbon monoxide transfer coefficient 
(r=0.388, p=0.044). The alveolar diameter has been visualized to be 
significantly larger in emphysema (322.4 μm ± 45.8 μm) compared 
to both smokers (282.2 μm ± 42.2 μm) and non-smokers (267.8 μm 
± 54 μm). This increase in alveolar size has been corroborated by 
other studies [11,33]. The alveolar diameter was inversely related to 
measures of airflow limitation such as the forced expiratory volume 
in 1 second (r=−0.338, p=0.033) [13]. This opens new possibilities 
for in vivo assessment of therapeutic interventions in COPD, such as 
bronchoscopic lung volume reduction.

In patients post lung transplantation, the combination of the 
autofluorescent cell count, the intensity of cellular fluorescence and 
vascular index (ratio between the thickness of the autofluorescent lining 
of a vessel and its diameter) has a sensitivity of 93% and a specificity 
of 83% of diagnosing acute rejection [12]. To avoid confounding 
this finding with smoking status, the data excluded current smokers 
and those who had ever smoked for the preceding 6 months. The 
autofluorescent cell count (>19 cells per microscopic field) alone had 
both a sensitivity and specificity of 79% [12]. Another study shows that 
perivascular cellular infiltration in patients with clinical signs of acute 
rejection has a sensitivity of 83% and specificity of 94% for diagnosing 
acute rejection [34]. By comparison, conventional transbronchial 
lung biopsy has a sensitivity ranging from 72% to 84% [35,36]. The 
histopathological basis for these findings in acute rejection has not yet 
been explained especially since pCLE cannot visualise lymphocytic 
airway infiltration in other studies.

Diffuse parenchymal lung disease

In diffuse parenchymal lung disease, elastin autofluorescence is 
reduced and the images can become indistinct [11]. The worst affected 
areas on radiology have the most disruption of normal architecture 
and loss of autofluorescence. Single lung transplant recipients 
have facilitated comparison between the transplanted lung and the 
remaining diseased lung [10]. In idiopathic pulmonary fibrosis (n=28), 
the alveolar diameter is smaller (228 μm ± 68 μm) compared to the 
transplanted lung (258 μm ± 42 μm) [10]. The age groups of the donors 
and recipients were well matched in this study. Elastin fiber thickness is 
greater (15.9 μm ± 5 μm) in idiopathic pulmonary fibrosis compared to 
10.2 μm ± 3 μm in the transplanted lung [10]. In other case reports of 
idiopathic pulmonary fibrosis, the elastin fibers were also found to be 
thickened and rigid with higher concentration. In addition, the alveolar 
architecture was indistinct (Figure 10) [37-39]. It remains unclear as to 
how various radiological patterns such as ground glass opacification, 
reticulation and honey comb appearance affect pCLE imaging.

Amiodarone pneumonitis and pulmonary alveolar proteinosis 
are two diffuse parenchymal lung diseases where pCLE can produce 
distinct images. The presence of at least one alveolar area with large 
(>20 μm) and strongly fluorescent cells has a sensitivity of 100% and a 
specificity of 88% in the diagnosis of amiodarone induced pneumonitis 
[40]. These cells appear to correspond to foamy macrophages. In 
patients with pulmonary alveolar proteinosis, fluorescent floating 
complexes (100 μm to 450 μm) were found in 74.4% (90 out of 121) of 
alveolar areas explored [41]. Cytologic examination of bronchoalveolar 
lavage fluid showed clustered alveolar macrophages and characteristic 
globular lipoproteinaceous material that corresponded in size and 
morphology to the pCLE images [42]. Alveolar acinar structures 
were preserved and the fluorescent complexes appeared to be floating 
in a slightly fluorescent alveolar fluid. Even in the segments which 
had no high resolution computed tomography features of alveolar 
proteinosis, fluorescent complexes could still be found suggesting 
superior sensitivity to radiology. In addition, after whole lung lavage, 
these complexes were clearly reduced based on a semi-quantitative 
estimation [41]. However, the majority of cases of pulmonary alveolar 
proteinosis were also smokers with clearly visible alveolar macrophages 
[41,42]. The reproducibility of these distinct features in non-smokers 
has yet to be shown.

Future Direction
Bronchoscopic lung biopsy can be complicated by pneumothorax 

(1% to 6%) and bleeding (1.9%) [43]. Specimens obtained by forceps 
are subjected to crush artifact and biopsied areas often undergo scarring 
thus altering the natural history of disease. Processing of tissues involves 
dehydration and chemical fixation that result in specimens not being 
analyzed in their natural state. The risks of bronchoscopic biopsy and 
the limitations of specimen processing have fueled the development 
of in vivo optical biopsies. This will enable non-invasive diagnosis and 
monitoring of both treatment response and disease progression.

The pCLE shows potential to deliver optical biopsies, but there 
are limitations that should be addressed. Diagnostic ability is greatly 

Figure 10: Idiopathic pulmonary fibrosis with thickened, rigid and highly 
concentrated fibers (white circle). The alveolar architecture is indistinct.
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limited by only being able to visualize elastin. Use of contrast agents or 
activation light of alternative wavelengths need to be developed. Recent 
animal studies using fluorescein isothiocyanate labelled erythrocytes 
can overcome the foaming problems in fluorescein aided pCLE and 
clearly visualize capillary networks with alveolar structures [18,44]. 
A ventilating ex vivo asinine lung model with optical lysyl oxidase 
probe has shown real-time lysyl oxidase activity which is an indicator 
of lung fibrosis [45]. Additionally the field of view is extremely small 
and better targeting with other bronchoscopic technology such as 
navigation bronchoscopy, narrow-band imaging or autofluorescence 
bronchoscopy should be considered. Miniprobes with less stiffness 
will enable consistent visualization of all bronchopulmonary segments. 
Endoscopists will also need to reach a consensus on standardization 
of pCLE procedure, image acquisition and analysis to facilitate further 
comparison between patients. These developments can then unlock the 
true potential of pCLE.
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