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Introduction

The landscape of numerical analysis is undergoing a fundamental transformation,
with increasing emphasis on quantifying uncertainty. A pivotal area in this evo-
lution is Probabilistic Numerical Linear Algebra (PNLA), which reimagines tradi-
tional tasks like solving linear systems as sophisticated inference problems. This
approach, as highlighted in a comprehensive overview, aims to move beyond mere
single point estimates by rigorously quantifying the inherent uncertainty within nu-
merical computations. The outcome is the provision of richer, more reliable in-
sights into numerical solutions across a wide array of applications, empowering
practitioners with a deeper understanding of computational reliability [1].

Similarly, the integration of uncertainty quantification into deep learning models
represents a significant advancement, especially when applied to numerical sim-
ulations. A key review in this domain surveys the array of uncertainty-aware deep
learning methods, underscoring their capacity to deliver more dependable predic-
tions for complex engineering and scientific problems. This shift moves beyond
deterministic outputs, offering crucial insights into the confidence levels of simu-
lation results, which is vital for real-world decision-making [2].

Neural networks are also adapting to this probabilistic paradigm, demonstrating
efficacy in generating forecasts for numerical time series, particularly within fields
such as hydrology. This work reviews how these networks can provide not just
single point estimates but full predictive distributions, effectively quantifying the
uncertainty in future numerical outcomes. This capability allows for more robust
decision-making in sectors heavily reliant on sequential numerical data, enhancing
forecast utility [3].

For complex 'black-box’ numerical models, especially those prevalent in engineer-
ing, the application of various Bayesian methods for uncertainty quantification
proves invaluable. A comparative study evaluates techniques like Gaussian pro-
cesses and Bayesian neural networks, emphasizing their crucial role in provid-
ing reliable uncertainty estimates. These estimates are essential for informed
decision-making, particularly when dealing with models whose internal workings
are not fully transparent [4].

The inherent randomness of systems modeled by stochastic differential equations
(SDEs) presents a unique challenge, which probabilistic numerical methods ad-
dress directly. These advanced algorithms are designed to not only approximate
SDE solutions but also precisely quantify the uncertainty stemming from both nu-
merical approximations and the stochastic nature of the equations themselves.
This provides robust insights into inherently uncertain numerical dynamics, foster-
ing a more complete understanding of system behavior [5].

The quantification of uncertainty in deep learning models is gaining significant
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traction, particularly for scientific and engineering applications where reliability is
paramount. A comprehensive review examines modern approaches, highlighting
how probabilistic deep learning offers vital insights into the reliability of numeri-
cal predictions and simulations. This method moves beyond deterministic model
outputs to provide a clearer picture of their confidence and limitations, aiding in
critical application areas [6].

Probabilistic Graphical Models (PGMs) offer another structured framework instru-
mental in machine learning tasks that involve numerical data and require robust un-
certainty quantification. A review of PGMs demonstrates their effectiveness in rep-
resenting complex dependencies and propagating uncertainty throughout a model.
This leads to more robust and interpretable numerical predictions across diverse
domains by explicitly modeling stochastic relationships inherent in the data [7].

Extending probabilistic numerical methods to the challenging domain of partial dif-
ferential equations (PDEs) marks another significant advance. This research treats
PDE solving as an inference problem, yielding solutions accompanied by a quan-
tification of approximation uncertainty. This approach provides a principled way
to incorporate prior knowledge and rigorously quantify numerical errors in complex
scientific computations, enhancing the trustworthiness of results [8].

Bayesian Deep Learning (BDL) provides a principled and robust framework for
quantifying uncertainty within deep neural networks. A thorough review delves
into various BDL techniques and their applications, especially in regression tasks
involving numerical predictions. The emphasis is on BDL's crucial ability to output
confidence intervals alongside point estimates, a feature critical for the develop-
ment of truly trustworthy Artificial Intelligence systems [9].

Finally, in the realm of control theory, Probabilistic Model Predictive Control
(PMPC) offers a sophisticated strategy for managing dynamic systems with in-
herent uncertainties. This control methodology explicitly accounts for system dy-
namics and disturbance uncertainties, utilizing probabilistic models to optimize
numerical control actions. PMPC ensures constraint satisfaction with a high prob-
ability, thereby establishing a robust framework for managing dynamic numerical
systems under unpredictable conditions [10].

Description

The landscape of modern numerical analysis is increasingly focusing on the crit-
ical aspect of uncertainty. Traditional deterministic approaches often fall short in
providing a complete picture, prompting a shift towards methods that quantify in-
herent ambiguities. For instance, Probabilistic Numerical Linear Algebra (PNLA)
reframes fundamental numerical tasks, such as solving linear systems, as infer-
ence problems [1]. This allows for moving beyond single point estimates by actively
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quantifying the uncertainty present in numerical computations, offering richer and
more reliable insights across diverse applications. Expanding on this, probabilis-
tic numerical methods have also been specifically developed for inherently random
systems, like stochastic differential equations (SDEs) [5]. These algorithms not
only approximate solutions but precisely quantify uncertainty stemming from both
numerical approximations and the stochastic nature of the equations, providing
robust insights. The principles extend to highly complex scientific computations
involving partial differential equations (PDEs), where treating PDE solving as an
inference problem yields solutions with associated quantification of approximation
uncertainty. This principled approach incorporates prior knowledge and rigorously
quantifies numerical errors [8].

Uncertainty quantification is becoming paramount in the realm of Artificial Intelli-
gence, especially within deep learning for numerical simulations. Research high-
lights how integrating uncertainty quantification into deep learning models leads
to more reliable predictions for complex engineering and scientific problems, pro-
viding crucial insights into the confidence of simulation results rather than just de-
terministic outputs [2]. Further reinforcing this, a comprehensive review examines
modern approaches for quantifying uncertainty in deep learning models specif-
ically tailored for scientific and engineering applications [6]. Probabilistic deep
learning offers vital insights into the reliability of numerical predictions and simu-
lations, moving beyond simple outputs to present a clearer picture of confidence
and limitations. Bayesian Deep Learning (BDL) offers a principled framework for
quantifying uncertainty in deep neural networks, with various techniques explored,
especially for regression tasks involving numerical predictions [9]. The emphasis
here is on outputting confidence intervals alongside point estimates, which is cru-
cial for building trustworthy Artificial Intelligence systems.

Beyond general deep learning applications, probabilistic forecasting with neural
networks addresses the challenges of sequential numerical data. This is particu-
larly relevant in areas like hydrology, where neural networks generate probabilistic
forecasts for time series data. These techniques provide not just single point es-
timates but full predictive distributions, effectively quantifying the uncertainty in
future numerical outcomes and supporting more robust decision-making [3].

For complex ’'black-box’ numerical models prevalent in engineering, Bayesian
methods offer a powerful comparative framework for quantifying uncertainty. A
study evaluates techniques such as Gaussian processes and Bayesian neural net-
works, emphasizing their essential role in delivering reliable uncertainty estimates
[4]. These estimates are fundamental for informed decision-making based on the
often opaque outputs of these models. Similarly, Probabilistic Graphical Models
(PGMs) present a structured framework for machine learning tasks dealing with
numerical data and uncertainty. PGMs are effective at representing complex de-
pendencies and propagating uncertainty, leading to more robust and interpretable
numerical predictions across various domains by explicitly modeling stochastic
relationships [7].

In control systems, accounting for uncertainty is critical for effective operation.
Probabilistic Model Predictive Control (PMPC) is a control strategy that explicitly
considers system dynamics and disturbance uncertainties. By leveraging prob-
abilistic models, PMPC optimizes numerical control actions while ensuring con-
straint satisfaction with a high probability [10]. This offers a robust and reliable
framework for managing dynamic numerical systems even in the presence of in-
herent uncertainties. Collectively, these advancements illustrate a broad and im-
pactful movement across scientific and engineering disciplines towards robustly
handling and quantifying uncertainty in numerical computations.

Conclusion
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This collection of papers highlights a significant shift in numerical computations,
moving beyond deterministic point estimates to embrace probabilistic methods
and uncertainty quantification. A core theme is framing numerical tasks, like solv-
ing linear systems and differential equations, as inference problems to quantify in-
herent computational uncertainty, offering richer and more reliable insights. This
probabilistic approach extends to deep learning, where uncertainty-aware mod-
els provide reliable predictions for complex scientific and engineering problems.
Neural networks are shown to generate probabilistic forecasts for numerical time
series, especially in hydrology, allowing for robust decision-making by providing
full predictive distributions.

Various Bayesian methods, including Gaussian processes and Bayesian neural
networks, are explored for quantifying uncertainty in black-box numerical mod-
els. Probabilistic Numerical Linear Algebra (PNLA) is a key area, alongside prob-
abilistic numerical methods tailored for stochastic and partial differential equa-
tions, which inherently model randomness or complex physical phenomena. These
methods quantify uncertainty arising from both numerical approximations and the
underlying stochastic nature of the systems.

Deep learning specifically benefits from this paradigm, with methods like Bayesian
Deep Learning providing confidence intervals for numerical predictions, critical for
trustworthy Artificial Intelligence. Probabilistic Graphical Models offer a structured
framework for propagating uncertainty in machine learning tasks. Finally, in control
theory, Probabilistic Model Predictive Control (PMPC) leverages probabilistic mod-
els to optimize actions under uncertainties, ensuring high-probability constraint
satisfaction in dynamic numerical systems. Overall, these works underscore the
importance of understanding and quantifying uncertainty for more informed, re-
liable, and robust numerical outcomes across diverse scientific and engineering
applications.
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