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Introduction
This is huge information encoded in the human genome and 

these are very useful in personalized medicine, paternity testing, 
disease susceptibility testing and genetic compatibility testing. The 
question on everybody’s mind is; how can we protect patient privacy 
while still making the most out of their data? [1] Some researchers 
are apprehensive that preservation of privacy might be impossible to 
realize, even when sharing only summary statistics [2]. This concern 
is obsessed with high profile demonstrations over the past decade of 
how de-identified genomic data can be tracked back to named persons, 
leading to public apologies [3].

A model for genomic data dissemination can be achieved using 
game theory to account for adversarial behavior and capabilities. The 
proposed approach is unique about genomic data privacy, though such 
techniques have already been used to analyse the reidentification risk 
in [4].

In this paper, game model is applied to determine the optimal set 
of protections for genomic data sharing using a public resource, the 
Sequence and Phenotype Integration Exchange (SPHINX) system 
for a case study. SPHINX reports single-nucleotide polymorphism 
(SNP) summary statistics (that is, MAFs) on data collected from 
the NIH-sponsored Electronic Medical Records and Genomics 
Pharmacogenomics (eMERGE-PGx) network [1].

Related Works
In this section, a brief overview of existing techniques adopting 

cryptographic and non-cryptographic approaches is presented. 
Cryptographic approaches make computation on encrypted data 
to guarantee the privacy of individuals. A cryptographic approach 
to outsource genomic sequences in a cloud server is presented [4,5]. 
Researchers leveraged a trusted hardware inside untrusted cloud to 
ensure privacy [5-7]. This secure hardware helps server to execute 
queries independently. Instead of homomorphic encryption, the authors 
use symmetric cryptosystem. However, both of these techniques can 
only process count queries. Some recent works from scientists shows 
some secure versions of statistical algorithms used in genomic studies 
like Hardy-Weinberg Equilibrium, Pearson Goodness-Of-Fit Test, and 
Linkage Disequilibrium [6]. A new notion of ‘Similar Patient Queries’ 
was introduced by [4] which showed the importance of secure ranked 

query. The main contribution of this work approximated Edit Distance 
which can be securely computed between two parties. With this 
distance (or string difference) you can rank the sequences of different 
patients and get similar patients like the searched one. There are a 
number of other cryptographic solutions proposed for genomic data 
privacy. These techniques use either homomorphic encryption Yao’s 
garbled circuit or both as the underlying secure computation primitive. 

Non-cryptographic approaches implement various sanitization 
techniques to ensure the privacy of genomic data. Privacy preserving 
data publishing (PPDP) has been researched extensively for various 
types of data. These techniques study how to transform raw data 
into a version that is immunized against privacy attacks but that still 
preserves useful information for data analysis. Existing techniques 
are primarily based on two major privacy models: k anonymity and 
ε-differential privacy. In spite of its wide applicability in the healthcare 
domain, recent research results indicate that k anonymity-based 
techniques are vulnerable to an adversary’s background knowledge. 
This has stimulated a discussion in the research community in favor 
of the ε-differential privacy model, which provides provable privacy 
guarantees independent of an adversary’s background knowledge. 
However, it is not well understood yet whether differential privacy is the 
right privacy model for biomedical data as it fails to provide adequate 
data utility proved that de-identification is an ineffective way to protect 
the privacy of participants in genome-wide association studies [3,4]. 

Building upon [3] and [7] provide quantitative guidelines for 
researchers willing to make a certain number of SNPs publicly available 
in GWAS, without revealing the presence of a single individual within 
a study group. Scientist proposed using differential privacy to protect 
the identities of participants in scientific study [8]. In the same vein, 
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researchers proposed privacy-preserving algorithms for computing 
various statistics related to the SNPs, while guaranteeing differential 
privacy [9,10]. Scientist proposed privacy-preserving schemes for 
medical tests and personalized medicine methods that use patients’ 
genomic data [9]. For privacy-preserving clinical genomics, a group of 
researchers proposes to outsource some costly computations to a public 
cloud or semi-trusted service provider [4]. 

Methodology
Genome contains very sensitive information about the owners. 

Predisposition to some diseases can be determined based on Single 
Nucleotide Polymorphism (SNPs). SNP occurs when a nucleotide at a 
specific position on the Deoxyribonucleic acid (DNA) varies between 
individuals of a given population

The SNPs of all individuals are represented by the random variable 
X that takes value in the set X={0,1,2}^(n × m),containing n individuals 
and m SNPs in a single DNA sequence. The genomic privacy game is 
depicted using equation 1.1:

G=({P,S,U} ) (Σ(SNP))		  1.1

where P is the set of players (sharer and recipient), S is the set of 
strategies, U is the set of payoff functions and Σ is a finite set of (DNA) 
alphabets Σ={A(Adenine), C(Cytosine), G(Guanine), T(Thiamine)}. 
Sharer(S) and Recipient (R) are the two actors involved in genomic 
data sharing interactions. The sharer is an investigator of a study or 
an organization such as an academic medical center that manages 
genomic data and the recipient requests and accesses the data for some 
purpose (For example, replication of published findings or discovery 
of new associations). The privacy worry is on recipient with potential 
to exploit named genomes or targets by determining their presence in 
the research study. A core motivation for both sharing and attacking 
genomic records is the belief that the data have intrinsic value. The 
sharer benefits by gaining utility from disseminating data, while the 
recipient benefits by detecting (and exploiting) the targets. Attacks entail 
costs, such as obtaining identified data needed for linkage, as well as the 
human capital or computational power necessary to run the attack. The 
sharer’s decision about a combination of instituting a DUA and technical 
protection measures (For instance, suppressing information on certain 
SNPs), as well as the recipient’s decision as to whether an attack is worth 
its cost, constitute a Stackelberg game, a natural model of this interaction. 
In this model, the sharer is a leader who can (1) require a DUA with 
liquidated damages in the event of a breach of contract and (2) share 
a subset of SNP summary statistics from a specific study (suppressing 
the rest). The recipient of the data then follows by determining whether 
or not the benefits gained by attacking each target outweigh the costs. 
Importantly, the sharer chooses the policy that optimally balances the 
anticipated utility and privacy risk. To be precise, g is defined as a set of 
genomic variants (or SNPs) to be shared, a as a set of individuals to be 
attacked, B_s (g) as the benefit, and Ĉ_s (a) as the estimated cost to the 
sharer. The sharer’s goal is to maximize the following payoff function by 
selecting the best strategy g^* 

( ) ( )( )( )* *
g s sg argmax B g c a g= −                                1.2

( ) ( ) ( )( )* ,a R Ra g argmax B g a c a= −
 

                          1.3

where ( ) ( )( )( )*
s sB g c a g− 

 
represent the sharer’s payoff and 

( ) ( )( ),R RB g a c a−
 

 is the recipient’s payoff

In this model, the recipient aims to maximize his or her own payoff 
(achieved through exploiting the data) and thus determines the subset 
of targets that they believe can successfully be attacked. We use Ĉ_R (a) 
to define the estimated cost to the recipient for attacking targets, which 
includes the expected prefixed liquidated damage penalty for breach of 
DUA. The estimated benefit to the recipient is denoted B ̂_R (g,a) which 
is the benefit the recipient expects to gain from attacking targets.

For any successfully attacked target, the recipient gains a fixed 
amount, GR, but the sharer loses a fixed amount, LS. As a result, both the 
sharer’s cost and the recipient’s benefit are proportional to the number of 
successfully attacked targets.

To simulate the recipient’s uncertainty, the framework introduced 
by [11] which compares MAFs between the shared data and a public 
reference is adopted (which assumes the shared data are drawn from 
a reference population), so that the estimated number of successfully 
attacked targets is computed as:

( ) ( ) [ ] [ ] [ ] ( ) [ ] [ ], , ,R
i I i I

N g a i g a i i p i l i g a i iπ τ τ
∈ ∈

=∑ ∑


           1.4

where π(i,g) is the posterior probability that target i is in the study, 
I is the set of individuals available for attack, p[i] is the prior probability 
that target i is in the study, l(i,g) is the likelihood ratio comparing the 
likelihood that target i is in the study versus that it is in a reference 
population, τ[i] is the probability that individual i is targeted, and a[i] is 
a binary variable, which is 1 if target i is attacked and 0 otherwise 

System implementation and results
A Genomic Privacy Game Solver is developed to find the best 

solution for sharing genomic summary statistics (MAF of SNPs) under 
an economically motivated recipient(adversary)’s inference attack based 
on a Stackelberg game model. Inference attack is to infer if a targeted 
DNA is in a genome pool with published summary statistics (that is, 
minor allele frequency of SNPs). 

MATrix LABoratory (MATLAB) (R2016a)) (9.0.0.341360) is used 
for modelling, computation, visualization (graphs), data analyses and 
algorithm development. 

In Experimental Setup, the proposed model is applied to determine 
the optimal set of protections for genomic data sharing. The model 
is evaluated with the data of 8,194 individuals from the Sequence 
and Phenotype Integration Exchange (SPHINX) system datasets 
(Auton,2015) for a case study. SPHINX reports single-nucleotide 
polymorphism (SNP) summary statistics (i.e., minor-allele frequencies 
[MAFs]) on data collected from the NIH-sponsored Electronic Medical 
Records and Genomics Pharmacogenomics (eMERGE-PGx) network

The genomic data include 82 genes identified as important for 
pharmacogenomics, with 38,112 variant regions (that is, areas of the 
genome with any type of notable variation across individuals), including 
51,826 SNPs, and the phenomic data include various clinical factors 
extracted from the electronic medical records of these participants 
(that is., diagnosis codes, procedural codes, and medications). SPHINX 
publishes all summary statistics and requires an end user licensing 
agreement that prohibits re-identification attempts.

Experimental Setup
Datasets

We use the GWAS datasets from the 2015 iDASH Healthcare 
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Privacy Protection challenge, which consists of 311 SNPs located on 
human chromosome 2 from 200 PGP participants. 

Searching for the Best Solution to the Game

Globally and locally optimal solutions to the Stackelberg game are 
provided via a backward induction algorithm (BIA). 

Modules

Algorithm 1.1: Filtering module

[𝑓, λ, 𝑢, 𝐷′] = Filter (𝐷, 𝑅, 𝜃̅, mafcutoff, ldcutoff)

Input: The pool dataset (D), the reference dataset (R), where each 
row represents an individual, each column represents a SNP, each cell 
represents the genotype using integer numbers from -1 to 2, where 2 
represents minor-minor, 1 represents minor-major, 0 represents major-
major, and -1 represents missing genotype values, the maximal allowable 
missing rate (𝜃̅), a threshold on minor allele frequency (mafcutoff), and 
a threshold on the p-value indicating linkage disequilibrium (ldcutoff).

Output: The minor allele frequencies (MAFs) in pool (𝑓), the 
MAFs in reference (λ), the utilities for each SNP (𝑢), and the remaining 
pool dataset (𝐷′).

Main body

Handle missing values: For each SNP in the pool dataset (𝐷)

IF the portion of individuals with missing data is smaller or equal 
to maximal allowable missing rate (𝜃̅) remove the SNP from both 
datasets;

Compute MAFs: For each SNP in the pool dataset (𝐷)

 Compute its MAF in pool (𝑓) as the sum of all individuals’ values, 
divided by number of individuals with no missing data, divided by 2;

For each SNP in the reference dataset (𝑅) 

Compute its MAF in reference (λ) as the sum of all individuals’ 
values, divided by number of individuals with no missing data, 
divided by 2;

Compute utilities associated with each SNP: For each SNP in the 
pool dataset (𝐷)

Compute its utility (𝑢) as the absolute difference between its MAF 
in pool (𝑓) and it’s MAF in reference (λ);

Remove SNPs with MAF smaller than mafcutoff: For each SNP 
in the pool dataset (𝐷)

IF it’s MAF in pool is smaller than mafcutoff or larger than 
(1-mafcutoff)

Remove the SNP from both datasets (𝐷, 𝑅), the utility vector (𝑢), 
both MAF vectors (𝑓, λ);Let 𝑚 be the number of remaining SNPs; Sort 
the utility vector in descending order and adjust both datasets, both 
MAF vectors accordingly;

Compute the correlation matrix: For each SNP i from 1 to m

For each SNP j from 1 to m

Compute the Chi-square correlation r2 and corresponding p-value 
for each SNP-pair;

IF p-value is smaller than ldcutoff

SNP i and SNP j are correlated;

Exclude the SNP outliers: Initialize a Boolean vector Selection of 
all TRUE values;

Compute the standard deviation of differences between MAF in 
pool and MAF in reference, 𝜎;

Find 𝑛drop, the number of SNPs that have differences larger than 
6𝜎;

Let the first 𝑛 drop of the vector be FALSE;

Select a subset of independent SNPs for the sharer: For each 
SNP i from i to (m-1)

IF Selection (i) is true

For each SNP j from (i+1) to m

IF SNP i and SNP j are correlated

Let Selection (i) be FALSE;

 Trim both datasets, both MAF vectors, and the utility vector 
according to vector Selection;

RETURN 𝑓, λ, 𝑢, 𝐷;

Algorithm 1.2: LR statistics module

𝐿R = Compute_LR (𝐷, 𝑓, λ)

Input: The remaining pool dataset (D), the MAFs in pool (𝑓), and 
the MAFs in reference (𝑓)̂,

Output: The LR statistics (𝐿R).

Main Body: Let m be the number of remaining SNPs;

Let 𝑛 be the number of individuals in the pool dataset;

Initialize a n-by-m log-likelihood ratio matrix LR;

For each SNP j from 1 to m

For each individual i from 1 to n

IF D[𝑖, 𝑗] == 0

𝐿R[𝑖, 𝑗] = 2 * log ((1- 𝑓[𝑗])/(1- λ[𝑗]));

ELSE IF [𝑖, 𝑗] == 1

𝐿R[𝑖, 𝑗] = log ((1- 𝑓[𝑗])/(1- λ[𝑗])) + log (𝑓[𝑗]/ λ[𝑗]);

ELSE IF [𝑖, 𝑗] == 2

𝐿R[𝑖, 𝑗] = 2 * log (𝑓[𝑗]/ λ[𝑗]);

ELSE

𝐿R[𝑖, 𝑗]=0;RETURN LR;

Algorithm 1.3: Sharer’s perspective payoff

Ýs=compute_Payoff (LR,u,g,H,GR,ca,cp,Ls,nx)

Input: The LR statistics (𝐿R),the utilities for each SNP (𝑢),the 
sharer’s strategy (𝑔),the worth of the data to the sharer (𝐻),the prior 
probability that a target is in the pool (𝑝), the gain to the recipient per 
successful attack (𝐺𝑅), the cost of access to the recipient per attack 
(𝑐𝑎), the expected cost of penalty to the recipient per attack (𝑐𝑝), the 
loss to the sharer per successful attack (𝐿𝑆), and the number of targets 
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(𝑛𝑥).

Output: The sharer’s expected payoff (Ý_s)

Main body: Let m be the number of remaining SNPs;

Let 𝑛 be the number of individuals in the pool dataset;

Let sum_utility be the sum of the utility vector (𝑢);

Benefit =H*(sum of shared SNPs’ utilities)/sum_utility;

Sum_TP=0;

For each individual i from 1 to n

Sum_LR =0;

For each SNP j from 1 to m

IF SNP j will be shared

Sum_LR=Sum_LR+𝐿R[𝑖, 𝑗];
Posterior_prob= exp(Sum_LR)*p;

IF Posterior_prob>1

Psterior_prob = 1;
IF 𝐺𝑅*Posterior_prob > (𝑐𝑎 + 𝑐𝑝)

Sum_TP=Sum_TP+1;

Select_rate=𝑛𝑛𝑥𝑥*p/n;

Cost = 𝐿𝑆*  Sum_TP* Select_rate;

Ýs= Benefit – Cost;

RETURN Ýs

Algorithm 1.4: Backward induction algorithm

In the Stackelberg game, the sharer needs to evaluate his or her 
payoff for each available strategy. For each of the sharer’s strategies, the 
recipient can play any of their own available strategies. The sharer will 
choose the strategy that maximizes his or her own payoff. Given the 
large space of possible strategy combinations, BIA is applied to facilitate 
the search. BIA is a brute force approach that systematically evaluates all 
of the possible strategies to discover the one with the maximal payoff. 

Backward induction algorithm (BIA)

Input: The pool dataset (D),

the reference dataset (R), where each row represents an individual, 
each column represents a SNP, each cell represents the genotype using 
integer numbers from -1 to 2, where 2 represents minor-minor, 1 
represents minormajor, 0 represents major-major, and -1 represents 
missing genotype values,the maximal allowable missing rate (𝜃̅),a 
threshold on minor allele frequency (mafcutoff),a threshold on the 
p-value indicating linkage disequilibrium (ldcutoff),the worth of 
the data to the sharer (𝐻),the prior probability that a target is in the 
pool (𝑝),the gain to the recipient per successful attack (𝐺𝑅),the cost of 
access to the recipient per attack (𝑐𝑎),the expected cost of penalty to 
the recipient per attack (𝑐𝑝),the loss to the sharer per successful attack 
(𝐿𝑆), andthe number of targets (𝑛𝑥).

Output: The sharer’s best strategy (𝑔∗), and the sharer’s maximal 
payoff ( )*

sÝ

Main Body: [𝑓, λ, 𝑢, 𝐷′]  = Filter (𝐷, 𝑅, 𝜃̅, mafcutoff, ldcutoff);

𝐿R= Compute_LR (𝐷′, 𝑓, λ);

*
ssÝ Ý>

;

FOR EACH k from 1 to 2𝑚

Let a binary vector 𝑔 = dec2bin (𝑘);

Ý_S= Compute_Payoff (𝐿R, 𝑢, 𝑔, 𝐻, 𝐺𝑅, 𝑐𝑎, 𝑐𝑝, 𝐿𝑆, 𝑛𝑥);

IF	 *
ssÝ Ý>

*
s sÝ Ý=
*g g=

** ;, sRETURN g Ý

Experimental Results Presentations
Table 1 shows Average running time (ART) of BIA. 𝑛 is the number 

of individuals in the study. 𝑚 is number of SNPs available for sharing. 
𝛵is the number of iterations. 𝛫 is the size of each subpopulation.

Figure 1 shows a bar chart showing ART of BIA. 

Table 2 shows the performance comparison of two algorithms on 
computational results of the sharer’s payoff. It can be seen that the results 
of the two algorithms are the same. 𝑛 is the number of individuals in the 
study. 𝑚 is number of SNPs available for sharing.

Figure 2 shows Sharer’s payoff. BIA is compared with the work of 
researchers that used and Genetic Algorithm which are compared on 
two types of performance: 1) computational complexity and average 
running time and 2) accuracy, to determine which one 1) more efficient 
in terms of computational results.

The parameters used by BIA are shown in Table 3. To measure 
the runtime (in milliseconds, or ms), we use an Intel Core i7 3 GHz 

𝑚=5
𝑛=20

𝑚=5,
𝑛=200

𝑚=1
𝑛=200

𝑚=15,
𝑛=200

𝑚=20,
𝑛=200

 BIA 3 4 4,685 19,831 149,465

Table 1: Average running time (ART) of BIA.

Figure 1: Bar chart showing ART of BIA.
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Figure 2: Sharer’s payoff.

𝑚=5
𝑛=20

𝑚=5,
𝑛=200

𝑚=15,
𝑛=200

𝑚=15,
𝑛=2000

𝑚=20,
𝑛=200

BIA 755 17,280 16,560 169,020 15,660

Table 2: Computational results (CR).

machine, with 8 GB RAM. The average running time is the world clock 
time averaged across repeated experimental runs. 𝑛 is the number of 
individuals in the study.

Table 4 shows the performance comparison of two algorithms on 
computational complexity and running time with varying size of study 
dataset. It can be seen that initially, when there are only 5 SNPs and 20 
individuals, GA is approximately 263 times slower than BIA. However, 
as the size of the search space grows, the running time for BIA quickly 
outpaces GA. By the time there are 20 SNPs and 200 individuals; GA is 
189 × faster than BIA. Given that the dataset used in real life scenario 
case study contains hundreds of SNPs and thousands of individuals. 
𝑛 is the number of individuals in the study. 𝑚 is number of SNPs 
available for sharing. 𝛵 is the number of iterations. 𝛫 is the size of each 
subpopulation.

Table 5 shows the performance comparison of two algorithms 
on computational results of the sharer’s payoff. 𝑛 is the number of 
individuals in the study. 𝑚 is number of SNPs available for sharing.

Conclusion 
Biomedical research cannot succeed without human genomic 

data sharing, and genomic data sharing cannot progress without some 
reasonable level of assurance that de-identified data from patients and 
other research participants will stay de-identified after they’re released 
for research. 

Parameter Settings
Loss to the sharer per successful attack Ls  

The gain to the recipient per successful attack 𝐺𝑅

The worth of the data to the sharer 𝐻 × 𝑛𝑛
The cost of access to the recipient per attack 𝑐𝑎                      

The expected cost of penalty to the recipient per attack 𝑐𝑝   
The prior probability that a target is in the study 𝑝        

The threshold on minor allele frequency Mafcutoff                        
The threshold on the p-value indicating linkage 

disequilibrium Ldcutoff                                 

The maximal allowable missing rate 
                                

The number of targets 𝑛𝑥                                     
Table 3: Parameter settings for the backward induction algorithm in the 
performance analysis.

Average running time(ms)

𝑚=5
𝑛=20

𝑚=5,
𝑛=20

𝑚=1,
𝑛=20

𝑚=15,
𝑛=200

𝑚=20,
𝑛=200

 BIA 3 4 4,685 19,831 149,465
GA 781 781 783 789 791

BIA/GA 0.0038 0.0051 5.9834 25.1343 188.9570

Table 4: Comparison of algorithms on the computational complexity and the 
running time.

𝑚=5
𝑛=20

𝑚=5,
𝑛=200

𝑚=15,
𝑛=200

𝑚=15,
𝑛=2000

𝑚=20,
𝑛=200

 BIA 755 17,280 16,560 169,020 15,660
 GA 755 17,280 16,560 169,020 15,660

Table 5: Comparison of algorithms on computational results.

Data use agreements that carry penalties for attempted re-
identification of participants may be a deterrent, but they’re hardly a 
guarantee of privacy. Genomic data can be partially suppressed as they’re 
released; addressing vulnerabilities and rendering individual records 
unrecognizable, but suppression quickly spoils a data set’s scientific 
usefulness. Game frameworks provide a quantitative framework for 
modeling the interaction between sharers and recipients. This game 
and its solution could serve as a basis for decision making to predict 
attacker’s behavior. Game theoretical perspective is used to represent 
the way sharer and recipient can interact with each other around the 
release of genomic data. Estimating risk and the attacker’s costs, the 
model estimates the likelihood that any named individual genotype 
record already held by the attacker is included in the de-identified data 
set slated for release. 
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