

Prime Distribution in Pythagorean Triples (1)

Chun-Xuan Jiang*

Institute for Basic Research, Palm Harbor, P.O. Box 3924, Beijing 100854, P.R. China

Mini-Review

Using Jiang function we study the prime distribution in Pythagorean triples.

Pythagorean triples

$$a^2 + b^2 = c^2, \quad (1)$$

In coprime integers must be of the form:

$$a = x^2 - y^2, \quad b = 2xy, \quad c = x^2 + y^2, \quad (2)$$

Where x and y are coprime integers.

Theorem 1: From eqn. (2) we have,

$$a = (x+y)(x-y) \quad (3)$$

Let $x-y=1$ and $a=x+y=P_1$, we have,

$$P_1^2 = (x+y)^2 = x^2 + y^2 + 2xy = c + b, \quad (4)$$

$$1 = (x-y)^2 = x^2 + y^2 - 2xy = c - b \quad (5)$$

From eqns. (4) and (5) we have,

$$a = P_1, \quad b = \frac{P_1^2 - 1}{2}, \quad c = \frac{P_1^2 + 1}{2} = P_2 \quad (6)$$

There are infinitely many primes P_1 such that P_2 is a prime.

Proof: We have Jiang function [1]

$$J_2(\omega) = \prod_{P>2} (P-1 - \chi(P)), \quad (7)$$

where $\omega = \prod_{P>2} P$, $\chi(P)$ is the number of solutions of congruence

$$q^2 + 1 \equiv 0 \pmod{P}, \quad q = 1, \dots, P-1. \quad (8)$$

From (8) we have,

$$\chi(P) = 1 + (-1)^{\frac{P-1}{2}} \quad (9)$$

Substituting (9) into (7) we have

$$J_2(\omega) = \prod_{P>2} (P-2 - (-1)^{\frac{P-1}{2}}) \neq 0 \quad (10)$$

Since $J_2(\omega) \neq 0$, we prove that there are infinitely many prime P_1 such that P_2 is a prime.

We have the best asymptotic formula [1].

$$\pi_2(N, 2) = |\{P_1 \leq N : P_2 = \text{prime}\}| \sim \frac{J_2(\omega)\omega}{2\phi^2(\omega) \log^2 N} = \left(1 - \frac{1 + P(-1)^{\frac{P-1}{2}}}{(P-1)^2}\right) \frac{N}{\log^2 N}, \quad (11)$$

where $\phi(\omega) = \prod_{P>2} (P-1)$.

Theorem 2: Let $x+y=P_1$ and $x-y=P_1-2$, we have $a=P_1(P_1-2)$ and,

$$P_1^2 = (x+y)^2 = c + b, \quad (12)$$

$$(P_1-2)^2 = (x-y)^2 = c - b \quad (13)$$

From eqns. (12) and (13) we have,

$$a = P_1(P_1-2), \quad b = \frac{P_1^2 - (P_1-2)^2}{2}, \quad c = \frac{P_1^2 + (P_1-2)^2}{2} = P_2 \quad (14)$$

There are infinitely many primes P_1 such that P_2 is a prime.

Proof: We have Jiang function [1]

$$J_2(\omega) = \prod_{P>2} (P-1 - \chi(P)), \quad (15)$$

Where $\chi(P)$ is the number of solutions of congruence

$$q^2 + (q-2)^2 \equiv 0 \pmod{P}, \quad q = 1, \dots, P-1. \quad (16)$$

From (16) we have,

$$\chi(P) = 1 + (-1)^{\frac{P-1}{2}} \quad (17)$$

Substituting (17) into (15) we have,

$$J_2(\omega) = \prod_{P>2} (P-2 - (-1)^{\frac{P-1}{2}}) \neq 0 \quad (18)$$

Since $J_2(\omega) \neq 0$, we prove that there are infinitely many prime P_1 such that P_2 is a prime.

We have the best asymptotic formula [1]

$$\pi_2(N, 2) = |\{P_1 \leq N : P_2 = \text{prime}\}| \sim \left(1 - \frac{1 + P(-1)^{\frac{P-1}{2}}}{(P-1)^2}\right) \frac{N}{\log^2 N} \quad (19)$$

Theorem 3: Let $x-y=1$ and $a=x+y=P_1^2$, we have,

$$a = P_1^2, \quad b = \frac{P_1^4 - 1}{2}, \quad c = \frac{P_1^4 + 1}{2} = P_2 \quad (20)$$

There are infinitely many primes P_1 such that P_2 is a prime.

Proof: We have Jiang function [1],

$$J_2(\omega) = \prod_{P>2} (P-1 - \chi(P)), \quad (21)$$

Where $\chi(P)$ is the number of solutions of congruence,

$$q^4 + 1 \equiv 0 \pmod{P}, \quad q = 1, \dots, P-1. \quad (22)$$

From (22) we have,

$$\chi(P) = 4 \text{ if } 8|P-1, \quad \chi(P) = 0 \text{ otherwise.} \quad (23)$$

***Corresponding author:** Chun-Xuan Jiang, Institute for Basic Research, Palm Harbor, P.O. Box 3924, Beijing 100854, P.R. China, Tel: +1-727-688 3992; E-mail: jcxuan@sina.com

Received March 10, 2017; **Accepted** July 29, 2017; **Published** July 31, 2017

Citation: Jiang CX (2017) Prime Distribution in Pythagorean Triples (1). J Generalized Lie Theory Appl 11: 276. doi: [10.4172/1736-4337.1000276](https://doi.org/10.4172/1736-4337.1000276)

Copyright: © 2017 Jiang CX. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Since $J_2(\omega) \neq 0$, we prove that there are infinitely many prime P_1 such that P_2 is a prime.

We have the best asymptotic formula [1]:

$$\pi_2(N, 2) = \left| \{P_1 \leq N : P_2 = \text{prime}\} \right| \sim \frac{J_2(\omega)\omega}{4\phi^2(\omega) \log^2 N}, \quad (24)$$

These results are in wide use in biological, physical and chemical fields.

References

1. Chun-Xuan Jiang, Jiang function $J_{n+1}(\omega)$ in prime distribution.