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Mini-Review
Using Jiang function we study the prime distribution in 

Pythagorean triples.

Pythagorean triples
2 2 2a b c+ = , 					                 (1)

In comprime integers must be of the form:
2 2 2 2, 2 ,a x y b xy c x y= − = = + ,		    (2)

Where x and y are coprime integers.

Theorem 1: From eqn. (2) we have,

 ( )( )a x y x y= + −  			   (3)

Let 1x y− =  and 1a x y P= + = , we have,
2 2 2 2

1 ( ) 2P x y x y xy c b= + = + + = + ,   (4)

2 2 21 ( ) 2x y x y xy c b= − = + − = −                (5)

From eqns. (4) and (5) we have,
2 2

1 1
1 2

1 1, ,
2 2

P Pa P b c P− +
= = = =   (6)

There are infinitely many primes P1 such that P2 is a prime.

Proof: We have Jiang function [1]

2
2

( ) ( 1 ( ))
P

J P Pω χ
>

= − −∏ , 			                 (7)

where 
2

, ( )
P

P Pω χ
≥

=∏  is the number of solutions of congruence

2 1 0(mod ), 1, , 1q P q P+ ≡ = −

.                (8)

From (8) we have,
1

2( ) 1 ( 1)
P

Pχ
−

= + −  				   (9)

Substituting (9) into (7) we have
1

2
2

2

( ) ( 2 ( 1) ) 0
P

P

J Pω
−

>

= − − − ≠∏                (10)

Since J2(ω)≠0, we prove that there are infinitely many prime P1, 
such that P2 is a prime.

We have the best asymptotic formula [1].

{ }
1
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2 1 2 2 2 2 2
( ) 1 ( 1)( , 2) : ~ 1

2 ( ) log ( 1) log

P

J N P NN P N P prime
N P N

ω ωπ
φ ω

− 
+ − = ≤ = = − − 

 

, (11)

where 
2

( ) ( 1)
P

Pφ ω
≥

= −∏ .

Theorem 2: Let 1x y P+ =  and 1 2x y P− = − , we have 

1 1( 2)a P P= −  and,

2 2
1 ( )P x y c b= + = + ,              (12)

2 2
1( 2) ( )P x y c b− = − = −              (13)

From eqns. (12) and (13) we have,
2 2 2 2

1 1 1 1
1 1 2

( 2) ( 2)( 2), ,
2 2

P P P Pa P P b c P− − + −
= − = = =        (14)

There are infinitely many primes P1 such that P2 is a prime.

Proof: We have Jiang function [1]

2
2

( ) ( 1 ( ))
P

J P Pω χ
>

= − −∏ , 			               (15)

Where χ(P) is the number of solutions of congruence
2 2( 2) 0(mod ), 1, , 1q q P q P+ − ≡ = −

. 		               (16)

From (16) we have,
1

2( ) 1 ( 1)
P

Pχ
−

= + −  				               (17)

Substituting (17) into (15) we have,
1

2
2

2

( ) ( 2 ( 1) ) 0
P

P

J Pω
−

>

= − − − ≠∏              (18)

Since J2(ω)≠0, we prove that there are infinitely many prime P1 such 
that P2 is a prime.

We have the best asymptotic formula [1]
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2 1 2 2 2

1 ( 1)( ,2) : ~ 1
( 1) log
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P NN P N P prime
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− 
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(19)

Theorem 3: Let 1x y− =  and 2
1a x y P= + = , we have,

4 4
2 1 1

1 2
1 1, ,

2 2
P Pa P b c P− +

= = = =  .             (20)

There are infinitely many primes 1P  such that 2P  is a prime.

Proof: We have Jiang function [1],

2
2

( ) ( 1 ( ))
P

J P Pω χ
>

= − −∏ , 			               (21)

Where ( )Pχ  is the number of solutions of congruence,
4 1 0(mod ), 1, , 1q P q P+ ≡ = −

. 			                 (22)

From (22) we have,

( ) 4Pχ =  if 8 1, ( ) 0P Pχ− =  otherwise. 		  (23)
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Since J2(ω)≠0, we prove that there are infinitely many prime P1 such 
that P2 is a prime.

We have the best asymptotic formula [1]:

{ } 2
2 1 2 2 2

( )( ,2) : ~
4 ( ) log
J NN P N P prime

N
ω ωπ

φ ω
= ≤ = ,              (24)

These results are in wide use in biological, physical and chemical 
fields.
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