Primary Tumour Characteristics as Potential Prognostic Factors in Brain Metastases from Breast Cancer

Carsten Nieder^{1,2*}, Oddvar Spanne³, Ingvild Bilberg¹ and Astrid Dalhaug¹

¹Radiation Oncology Unit, Nordland Hospital, 8092 Bodø, Norway

²Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway ³Department of Oncology, University Hospital of North Norway, Tromsø, Norway

Abstract

Background: Recursive partitioning analysis classes is the prognostic score that has been found by several groups to predict survival in patients with brain metastases from primary breast cancer. Recent data suggests that primary tumour characteristics might provide further important information.

Methods: The impact of primary tumour size, histological grade, hormone receptor status, number of lymph node metastases and Nottingham prognostic index (NPI) was evaluated together with established factors such as performance status by uni- and multivariate analyses in 90 patients. All patients had been treated with whole-brain radiotherapy with or without radiosurgery or surgical resection.

Results: In multivariate analysis, only performance status, age and interval from primary tumour diagnosis to brain metastases were significant. Patients with favourable NPI survived longer. However, this finding is based on a small group of patients and needs to be confirmed in larger studies. Higher histological grade and NPI were associated with significantly shorter interval to development of brain metastases.

Conclusions: The standard brain metastases scores might not fully appreciate the unique biology and time course of breast cancer. Emerging prognostic factors such as NPI or triple-negative status might improve the models currently used by clinicians.

Keywords: Breast cancer; Brain metastases; Radiotherapy; Prognostic factors; Nottingham prognostic index

Introduction

Several groups have recently provided data that improve our understanding of prognostic factors in patients with brain metastases from breast cancer (Bartsch et al., 2006; Bartsch et al., 2007; Claude et al., 2005; Melisko et al., 2008; Melisko et al., 2009; Nam et al., 2008). The unique biological features of breast cancer allow for therapeutic approaches that might improve the response of both extra- and intracranial disease manifestations, e.g., trastuzumab, lapatinib, aromatase inhibitors etc. (Bartsch et al., 2006 and 2007; Melisko et al., 2009; Sutherland et al., 2010). Emerging data suggests that the increasing use of these drugs might also impact on survival (Bartsch et al., 2007; Nieder et al., 2008; Nieder et al., 2009; Niwinska et al., 2009). In order to avoid overuse of costly treatments and the potential side effects of therapy, accurate prognostic models need to be developed. These considerations have led us to study the usefulness of established prognostic scores in this particular patient population (Nieder et al., 2009). While scores such as the recursive partitioning analysis (RPA) classes (Gaspar et al., 1997) performed quite well, evidence from several studies reviewed in Nieder et al. (2009) suggests that additional factors should be evaluated. The present short communication builds on these findings and examines the prognostic impact of primary tumour characteristics (T- stage, N-stage and histological grading). Due to the limited size of the study population, the purpose is to generate hints and hypotheses and to stimulate further research activity around these potential prognostic factors.

Materials and Methods

We used our previously described database of female

patients with brain metastases from breast cancer treated with whole-brain radiotherapy (WBRT, most often 10 fractions of 3 Gy administered via lateral opposing 6MV photon beams that did not cover the upper cervical spine/optic nerves) with or without surgery or radiosurgery (Nieder et al., 2008; Nieder et al., 2009). The database, which was updated in October 2009, included 103 patients. Ninety of these had information on all 3 primary tumour characteristics available. In the remaining patients, primary surgery was performed so many years ago that missing data could not be collected or recovered. The patient characteristics are shown in Table 1. With regard to established prognostic factors such as Karnofsky performance status (KPS), age or extracranial metastases no statistically significant differences existed between the 90 patients analysed here and the 103 patients in the database. KPS prior to treatment was routinely documented in all patient charts. Hormone receptor status was known in 80 patients. HER2 receptor status was available in 75 patients and therefore only exploratory analysis of this parameter was performed. Systemic treatment (chemotherapy, hormonal therapy, trastuzumab) was provided as indicated for extracranial disease manifestations,

*Corresponding author: Carsten Nieder, M.D., Radiation Oncology Unit, Department of Oncology and Palliative Medicine, Nordland Hospital, 8092 Bodø, Norway, Tel: +47 755 78449; Fax: +47 755 34209; E-mail: <u>carsten.nieder@nlsh.no</u>

Received March 21, 2010; Accepted April 15, 2010; Published April 15, 2010

Citation: Nieder C, Spanne O, Bilberg I, Dalhaug A (2010) Primary Tumour Characteristics as Potential Prognostic Factors in Brain Metastases from Breast Cancer. J Cancer Sci Ther 2: 070-073. doi:10.4172/1948-5956.1000026

Copyright: © 2010 Nieder C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Median age, range	57 yrs., 29-76	
% age <65 years vs. ≥65 years	71 vs. 29	
Median KPS, range	70, 40-90	
% KPS 80-90 vs. 70 vs. <70	40 vs. 29 vs. 31	
Median time interval*	35 mo., 5-191	
% single brain metastasis	36	
Median number of brain metastases	2	
% without extracranial metastases	20	
% with controlled primary tumour	96	
% with grade 1 vs. 2 vs. 3 tumour	4 vs. 47 vs. 49	
% with N0 stage vs. 1-3 lymph		
node metastases vs.	40 vs. 36 vs. 24	
more than 3 lymph node metastases		
Median primary tumour size, range	23 mm, 8-96	
% with T1 vs. T2 vs. T3 vs. T4 stage	20 vs. 49 vs. 18 vs. 13	
% with Nottingham prognostic index <3.4 vs. 3.4-5.4 vs. >5.4	11 vs. 42 vs. 47	
% with triple-negative, HER-2 positive and luminal breast cancer, n=75	20 vs. 44 vs. 36	
% in RPA class I vs. II vs. III	4 vs. 64 vs. 31	
% with surgical resection of brain metastases before WBRT	9	
% with radiosurgery in addition to WBRT	11	

KPS: Karnofsky performance status, RPA: recursive partitioning analysis, WBRT: whole brain radiotherapy, * from breast cancer diagnosis to brain metastases

Table 1: Patient characteristics, n=90 (no male patients included).

taking performance status, previous systemic therapy and organ function into consideration. Thirty-six percent of HER2 positive patients received trastuzumab-containing regimens after their local treatment for brain metastases. The systemic treatment algorithms provided by the Norwegian Breast Cancer Group were followed (www.nbcg.no). These algorithms did not include screening for brain metastases in clinically asymptomatic patients. At the time of analysis, 8 patients were alive (median follow-up 7.2 months, range 2.2-34). The Kaplan-Meier method was used to generate actuarial survival curves. These were compared with the log rank test. Multivariate analysis of prognostic factors was performed with the Cox proportional hazards model (forward stepwise data selection method). For comparison of dichotomous variables the chi square test and Fisher's exact test, where applicable, were employed and for continuous variables the Mann-Whitney U-test. A p-value ≤0.05 was considered statistically significant.

Results

Median survival was 4.0 months in patients treated with WBRT alone (n=72) and 10.5 months in those treated with additional radiosurgery or surgery (n=18). Regarding the prognostic factors in our patient population (Table 2), primary tumour control was not evaluated as almost all patients had controlled primaries. Number of brain metastases, extracranial metastases, hormone receptor status, N-stage and Nottingham prognostic index (NPI, based on primary tumour size, number of lymph node metastases and histological grade) (Galea et al., 1992) were not significant prognostic factors in univariate analyses. As shown in Figure 1, patients with NPI <3.4 might have longer survival, but only 10 patients had NPI <3.4.

Patients with HER2 positive tumours survived longer than their HER2 negative counterparts (median 7 versus 4.6 months), but this difference was not significant either. Patients with triple-negative tumours had unfavourable outcome (median survival 3.9 months). Few patients belonged to RPA class I (KPS \geq 70, age <65 years, controlled primary tumour, no extracranial metastases). Thus, analysis was limited to class III

(KPS <70) and II (other patients). Patients in class II survived significantly longer than those in class III (median 7 versus 2 months, p<0.01). Few patients had G1 primary tumours. Thus, analysis was limited to G2 and G3 cases. Patients with G2 tumours survived significantly longer (median 5.5 versus 2.5 months, p=0.03). Regarding primary tumour size, patients with tumours <5 cm survived significantly longer than those with larger tumours (median 6.5 versus 2.5 months, p=0.03). There were 3 other statistically significant prognostic factors in univariate analyses. Longer survival was associated with higher KPS, younger age and longer interval from primary tumour diagnosis to brain metastases.

Only these 3 factors retained significance in multivariate analysis. Primary tumour size lost its significance due to the fact that patients with larger tumours were significantly older. Histological grade lost its significance due to the fact that patients with G3 tumours had a significantly shorter interval from primary tumour diagnosis to brain metastases. Thus, the primary tumour characteristics analysed here were less important than other parameters. The interval from breast

Parameter	Univariate (log rank test)	Multivariate Cox model
N-stage	Not significant	Not included
Nottingham prognostic index	Not significant	Not included
Hormone receptor status	Not significant	Not included
HER2 status	Not significant	Not included
Extracranial metastases	Not significant	Not included
Number of brain metastases	Not significant	Not included
RPA class II vs. III	p<0.01	Not included*
Histologic grade 2 vs. 3	p=0.03	Not significant
T-size <5 vs. ≥5 cm	p=0.03	Not significant
KPS	p<0.01	p=0.01** coefficient -0.28
Age	p=0.02	p=0.03** coefficient 0.04
Interval	p=0.01	p=0.04** coefficient -0.12

RPA: recursive partitioning analysis, KPS: Karnofsky performance status, Interval: primary diagnosis – development of brain metastases

*because age and KPS determine RPA classification (redundancy)

**parameter included as continuous variable

Table 2: Univariate and multivariate analyses of prognostic factors.

cancer diagnosis to brain metastases was influenced not only by histological grade but also NPI. Patients with NPI <3.4 developed brain metastases significantly later (median 81 months, range 35-191) compared to those with 3.4-5.4 (median 36 months, range 7-81) and >5.4 (median 20 months, range 5-84), p=0.04. It is therefore possible that survival differences, which at first sight seem to be caused by variation in NPI, merely reflect the impact of time interval between initial diagnosis and development of brain metastases.

Discussion

The present retrospective analysis attempts to expand our previous work by analysing additional parameters related to primary tumour stage and biology. In an ideal world, the number of patients would have been larger and detailed information on HER2 status and factors such as lymphopenia would have been available. However, we are not aware of previous studies that evaluated the potential impact of NPI on survival after treatment for brain metastases. Liu et al. (2009) have recently reported that NPI predicts survival in patients with metastatic breast cancer in a group of 135 patients with metastases at various sites. We found that patients with NPI <3.4 might have longer survival, but only 10 patients had NPI <3.4. Therefore, this issue needs to be addressed in larger databases.

Harputluoglu et al. (2008) reported that tumour stage, grade, hormone receptor status and HER2 status were not associated with survival (Table 3). In contrast, Altundag et al. (2007) found that one of these parameters, i.e. estrogen receptor status, significantly influenced survival in a quite large patient sample. The other studies summarized in Table 3 also provide quite contradictory results regarding the prognostic impact of HER2, estrogen and progesterone receptor status. Niwinska et al. (2009) evaluated tumor biology in a different manner. They reported significantly longer survival in patients with brain metastases from luminal breast cancer (15 months) compared to HER2 positive (9 months) and triple-negative (3.7 months). Our own results confirm the poor prognosis of triple-negative

cases (median survival 3.9 months) and the survival figure of HER2 positive cases (median 7 months), but these results are derived from small subgroups.

The overall survival figures after WBRT alone or combined treatment, which includes surgical resection or radiosurgery, are in line with numerous previous reports (Eichler et al., 2008; Le Scodan et al., 2007; Mahmoud-Ahmed et al., 2002; Viani et al., 2007) and will not be discussed in greater detail as this analysis was focused on baseline prognostic factors, which influence survival independent of treatment. Patients in RPA class II survived significantly longer than those in class III (median 7 versus 2 months). This confirms previous reports (Claude et al., 2005; Le Scodan et al., 2007; Mahmoud-Ahmed et al., 2002; Niwinska et al., 2009; Viani et al., 2007).

Previous studies did not find time interval between initial diagnosis and brain metastases to be prognostically significant. However, it might be important to look at different cut-off values rather than dividing the population by median interval. Our own data suggest that survival improves particularly in patients with interval \geq 36 months. It appears justified to evaluate this finding in larger databases. Two previous studies found that lymphopenia is an important and independent predictor of survival (Claude et al., 2005; Le Scodan et al., 2007). Lymphopenia has not been included in other analyses published so far and was not available in our patients either.

In conclusion, lymphopenia, breast cancer subtype and interval from primary tumour diagnosis to development of brain metastases are promising emerging prognostic factors, which have been reported in several retrospective studies. The challenge for the future is the validation of the current preliminary findings on tumour biology and other host factors in a head to head comparison with KPS, extracranial metastases (or number of sites or disease status as suggested by different studies listed in Table 3), number of brain metastases, interval and age. Such studies will eventually allow for increasingly individualised palliative approaches, which might contribute to prolonged survival and avoid unnecessary toxicity.

	n	PI of hormone receptor status	PI of HER-2 status	PI of various factors (multivariate)
Claude et al., 2005	120	none	no data	performance status, lymphopenia
Bartsch et al., 2006	174	none	none	performance status, number of metast. sites
Le Scodan et al., 2007	117	receptor negative sign. worse	none	performance status, lymphopenia, hormone receptor status
Nam et al., 2008	126	receptor negative sign. worse	HER-2 negative sign. worse	number of metast. sites, age, hormone and HER-2 receptor status, leptomeningeal disease
Eichler et al., 2008	83	none	HER-2 negative sign. worse	HER-2 receptor status, number of brain metast., local disease control
Melisko et al., 2008	112	receptor negative sign. worse	none	hormone receptor status, age, performance status, stable or responding systemic disease
Harputluoglu et al., 2008	144	none	none	number of brain metast.
Park et al., 2009	125	none	HER-2 positive sign. worse	HER-2 receptor status, performance status
Altundag et al., 2007	420	receptor negative sign. worse	none	age, hormone receptor status
Niwinska et al., 2009	222	best prognosis in luminal breast cancer	worst prognosis in triple-negative breast cancer	RPA class, biological subtype
Viani et al., 2007	174	no data	no data	extracranial metastases, RPA class
Mahmoud-Ahmed et al., 2002	116	no data	no data	performance status
Present study	90	none	worst prognosis in triple-negative breast cancer	performance status, age, interval

RPA: recursive partitioning analysis

Table 3: Prognostic impact (PI) of different tumour- and patient-related parameters in the literature.

References

- Altundag K, Bondy ML, Mirza NQ, Kau SW, Broglio K, et al. (2007) Clinicopathologic characteristics and prognostic factors in 420 metastatic breast cancer patients with central nervous system metastasis. Cancer. 110:2640-2647. » CrossRef » PubMed » Google Scholar
- Bartsch R, Fromm S, Rudas M, Wenzel C, Harbauer S, et al. (2006) Intensified local treatment and systemic therapy significantly increase survival in patients with brain metastases from advanced breast cancer – A retrospective analysis. Radiother Oncol. 80:313-317. » CrossRef » PubMed » Google Scholar
- Bartsch R, Rottenfusser A, Wenzel C, Dieckmann K, Pluschnig U, et al. (2007) Trastuzumab prolongs overall survival in patients with brain metastases from Her2 positive breast cancer. J Neurooncol 85: 311-317. » CrossRef » PubMed » Google Scholar
- Claude L, Perol D, Ray-Coquard I, Petit T, Blay JY, et al. (2005) Lymphopenia: A new independent prognostic factor for survival in patients treated with whole brain radiotherapy for brain metastases from breast carcinoma. Radiother Oncol 76: 334-339. » CrossRef » PubMed » Google Scholar
- Eichler AF, Kuter I, Ryan P, Schapira L, Younger J, et al. (2008) Survival in patients with brain metastases from breast cancer. Cancer 112: 2359-2367.
 » CrossRef » PubMed » Google Scholar
- Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22: 207-219. » CrossRef » PubMed » Google Scholar
- Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, et al. (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37: 745-751. » CrossRef » PubMed » Google Scholar
- Harputluoglu H, Dizdar O, Aksoy S, Kilickap S, Dede DS, et al. (2008) Characteristics of breast cancer patients with central nervous system metastases: a single-center experience. J Natl Med Assoc 100: 521-526.
 » CrossRef » PubMed » Google Scholar
- Le Scodan R, Massard C, Mouret-Fourme E, Guinebreterierre JM, Cohen-Solal C, et al. (2007) Brain metastases from breast carcinoma: validation of the Radiation Therapy Oncology Group recursive partitioning analysis classification and proposition of a new prognostic score. Int J Radiat Oncol Biol Phys 69: 839-845. » CrossRef » PubMed » Google Scholar
- Liu MT, Huang WT, Wang AY, Huang CC, Huang CY, et al. (2009) Prediction of outcome of patients with metastatic breast cancer: evaluation with prognostic

factors and Nottingham prognostic index. Support Care Cancer [Epub ahead of print]. » CrossRef » PubMed » Google Scholar

- Mahmoud-Ahmed AS, Suh JH, Lee SY, Crownover RL, Barnett GH (2002) Results of whole brain radiotherapy in patients with brain metastases from breast cancer: a retrospective study. Int J Radiat Oncol Biol Phys 54: 810-817.
 » CrossRef » PubMed » Google Scholar
- 12. Melisko ME, Moore DH, Sneed PK, De Franco J, Rugo HS (2008) Brain metastases in breast cancer: clinical and pathologic characteristics associated with improvements in survival. J Neurooncol 88: 359-365. » CrossRef » PubMed » Google Scholar
- Melisko ME, Glantz M, Rugo HS (2009) New challenges and opportunities in the management of brain metastases in patients with ErbB2-positive metastatic breast cancer. Nat Clin Pract Oncol 6: 25-33. » CrossRef » PubMed » Google Scholar
- Nam BH, Kim SY, Han HS, Kwon Y, Lee KS, et al. (2008) Breast cancer subtypes and survival in patients with brain metastases. Breast Cancer Res 10: R20. » CrossRef » PubMed » Google Scholar
- Nieder C, Marienhagen K, Dalhaug A, Norum J (2008) Have changes in systemic treatment improved survival in patients with breast cancer metastatic to the brain? J Oncol 417137. » CrossRef » PubMed » Google Scholar
- Nieder C, Marienhagen K, Astner ST, Molls M (2009) Prognostic scores in brain metastases from breast cancer. BMC Cancer 9: 105. » CrossRef » PubMed » Google Scholar
- 17. Niwinska A, Murawska M, Pogoda K (2009) Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann Oncol [Epub ahead of print]. » CrossRef » PubMed » Google Scholar
- 18. Park BB, Uhm JE, Cho EY, Choi YL, Ji SH, et al. (2009) Prognostic factor analysis in patients with brain metastases from breast cancer: how can we improve the treatment outcomes? Cancer Chemother Pharmacol 63: 627-633. » CrossRef » PubMed » Google Scholar
- Sutherland S, Ashley S, Miles D, Chan S, Wardley A, et al. (2010) Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases--the UK experience. Br J Cancer 102: 995-1002. » CrossRef » PubMed » Google Scholar
- 20. Viani GA, Castilho MS, Salvajoli JV, Pellizzon AC, Novaes PE, et al. (2007) Whole brain radiotherapy for brain metastases from breast cancer: estimation of survival using two stratification systems. BMC Cancer 7: 53. » CrossRef » PubMed » Google Scholar