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Abstract

A critical size bone defect may arise due to severe trauma or tumors where a large portion of the bone is
removed. In some instances, autografts cannot be used for filling such large defects. Allografts may be used to
reconstruct large bone defects, but these grafts may not incorporate in the healing response. Consequently, it is still
a challenge for reconstructive surgery to reconstruct large bone defects. A variety of treatment strategies have been
progressed to promote the healing response and close the bone defects. Micro and nano particles (MNPs)
technology is a newer option than traditional grafts, which may defeat many limitations of the bone graft usage.
However, there are still no well approved treatment strategies to override all the expected requirements. Due to the
existence of variety strategies for treatment of critical size bone defects, this impartial review, highlights on the
techniques and strategies that have been accomplished to anatomize the complicated treatment problems of large
bone defect healing, the limitations of therapeutic relevant biodegradable materials, and service the regeneration of
large bone defects.
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Abbreviations
MNPs: Micro/Nano Particles; TGF-β: Transforming Growth Factor-

β; BMPs: Bone Morphogenic Proteins; DBM: Demineralized Bone
Matrix; HA: Hydroxyapatite; βTCP: βTricalcium Phosphate; PTH:
Parathyroid Hormone; PLAGA: Poly Lactic-co-Glycolic Acid; PEVA:
Poly(Ethylene-Vinyl Acetate); ADMSCs: Adipose-Derived
Mesenchymal Stem Cells; VEGF: Vascular Endothelial Growth Factor;
PLGA/HA/SIM: Poly(Lactic-co-Glycolic Acid)/Hydroxyapatite/
Simvastatin; PLLACL: Poly(L-Lactide-Co-Caprolactone)

Introduction
A critical size bone defect is a large void in a bone whereby the bone

cannot heal itself naturally [1]. This may arise due to severe trauma or
tumors where a large portion of the bone is removed, or it may occur
due to bone irradiation. The critical size defect appears to be equal to
or greater than 20% of the length of a long bone [2]. Bone defect
healing passes in several phases, these include hematoma formation,
inflammation, soft cartilaginous callus formation, neovascularization,
soft callus mineralization, hard callus formation and osteoclastic
remodeling of the hard callus to create the lamellar bone [3]. Bone
healing is not sufficient in large bone defects and may be complicated.
Under these circumstances, the autografts are the most popular
method for bone replacement [4-6]. In some instances, autografts
cannot be used for filling such large defects. Allografts may be used to
reconstruct large bone defects, but these grafts may not incorporate in
the healing response; hence, it may be absorbed by the rejection.
Xenografts are more popular than auto and allografts, but the healing
process outcomes are poorly understood [7]. Also, considering the
large number of local complications and the unpredictable

nature of the radiological and histological outcome xenografting
should be discontinued [8]. Consequently, it is still a challenge for
reconstructive surgery to reconstruct large bone defects. A variety of
treatment strategies have been progressed to promote the healing
response and close the bone defects. Micro and Nano particles (MNPs)
technology is a newer option than traditional grafts, which may defeat
many limitations of the bone graft usage. However, there are still no
well approved treatment strategies to override all the expected
requirements. Simvastatin seems to play an important role in bone
regeneration by participating in osteoblast activation (increasing
BMP2 expression) and in osteoclast inhibition, also by stimulating
neovascularization [9]. Local delivery of simvastatin from carriers
appears to be an attractive solution to the problem of maintaining
therapeutic doses to treat large bone defects and to minimize
undesired side effects [10]. Generally, controlled release of drugs can
be triggered by various external or internal stimuli. The idiom “smart”
has been applied to MNPs that can react in an expectant and certain
course to external and internal stimuli. Light, ultrasound,
electromagnetic fields, and temperature, are known as external stimuli,
while pH, redox, enzyme activity and temperature, are internal stimuli
[11,12]. Thus, controlled drug delivery approaches based on micro/
nano particles could be a promising approach for sustained-localized
delivery of simvastatin. Due to the existence of variety strategies for
treatment of critical size bone defects, this impartial review, highlights
on the techniques and strategies that have been accomplished to
anatomize the complicated treatment problems of large bone defect
healing, the limitations of therapeutic relevant biodegradable
materials, and service the regeneration of large bone defects.

Bone Defects Healing
Bone tissue consists of bone extracellular matrix and bone cells,

extracellular matrix is comprised of both organic and inorganic
components [13]. The organic components are formed of type-I

Kheirallah and Almeshaly, Oral health case Rep 
2016, 2:3

DOI: 10.4172/2471-8726.1000127

Research Article                   Open Access

Oral health case Rep, an open access journal
ISSN: 2471-8726

Volume 2 • Issue 3 • 1000127

O
ra

l H

ealth Case Reports

ISSN: 2471-8726

Oral Health Case Reports



collagen fibrils, osteopontin and osteocalcin. Within the bone
extracellular matrix, osteopontin is known to promote cell attachment
through covalent binding with fibronectin and type I collagen. Both
osteopontin and osteocalcin have an alliance with calcium and may
support the nucleation of calcium phosphate during mineralization
[14]. The inorganic components of the matrix are calcium, carbonate,
and phosphate ions, arranged in a crystalline-like structure. Matrix
mineralization starts with nucleation of calcium phosphate crystals,
and followed by crystal growth [15]. Non-collagenous proteins can be
nucleation points for crystallization [16]. There are three types of bone
cells in bone tissue: osteoblasts, osteoclasts, and osteocytes. Osteoblasts
are responsible for bone formation through the synthesis and secretion
of an organic extracellular matrix, also synthesize a variety of growth
factors including transforming growth factor-β (TGF-β) and bone
morphogenic proteins (BMPs) that can aid in both the recruitment
and differentiation of stem cells. When matrix is no longer actively
being formed, the osteoblasts become embedded within the
extracellular matrix and become osteocytes. Osteoclasts are
responsible for bone resorption. Communication between the three
types of bone cells regulate the formation and resorption of bone [10].

Enhancement and Limitations of Bone Defects Healing
Four elements are needed for bone grafts healing, osteoconduction,

osteoinduction, osteointegration, and osteogenesis. Osteoconduction is
the ability to support bone growth on a surgical site, during which
pores, channels, and blood-vessels are formed within the bone.
Osteoblasts from the margin of the defect that is being grafted utilize
the bone graft material as a framework upon which to spread and
generate new bone. Osteoinduction involves the stimulation of
osteoprogenitor cells to differentiate into osteoblasts that then begin
new bone formation. Osteointegration is the direct contact of living
bone to graft material. Finally, osteogenesis is the formation of new
bone by osteoblasts within the graft material [17]. It is important to
link these elements together by assessing all techniques, materials and
information available for bone regeneration. Different treatment
strategies have been designed to increase the effectiveness, rate and
quality of bone defect healing. Each modality has its own limitations,
therefore has not been suggested as a perfect modality to enhance the
healing of bone defects. One of the alternative clinical techniques is
Masquelet technique. This technique is divided into two stages, during
1st stage, biological membrane is applied on a cement spacer, this acts
as chamber for insertion of non-vascularized autograft at the 2nd stage
[18]. Another technique used to enhance bone defects regeneration is
the distraction using intramedullary devices [19]. However, this
technique needs long time (1 mm per day) and may be associated with
complications [20]. Autografts provide necessary components
dependent on each other to promote bone regeneration. Autograft
contains collagen and bone minerals so it forms, a scaffold for
osteoconduction, also, it includes non-collagenous bone matrix
proteins which regulate activities of bone cells for osteoinduction, and
it takes in progenitor cells for osteogenesis [5,21]. Autograft can be
harvested as a tricortical graft for structural support [22], or as a
vascularized bone graft for restoration of large bone defects [23]. The
anterior and posterior iliac crests are the commonly used donor sites.
Nevertheless, harvesting requires an additional surgical procedure
[24-26]. Although, autografts do not stimulate immune response, and
can integrate into their new site, they are associated with morbidity,
infection, and pain at the donor site. Allografts are available in many
combinations, such as demineralized bone matrix (DBM), morcellised
cancellous chips, cortico-cancellous and cortical grafts. All lack cellular

component and osteoinductive properties because they are devitalized
by irradiation or freeze-drying processes [27]. Allografts and
xenografts are straightforward obtainable, but they have lazy
incorporation and likely graft rejection. Furthermore, freezing or
freeze drying; may modify the basic characteristics and architecture of
the grafts [28,29]. Moreover, the most evident limitation of allograft is
its deficiency of osteoinductive ability. For example, demineralized
bone matrix (DBM) is prepared by trituration of allogenic, followed by
mild acid extraction of the mineralized phase of bone. This process
results in a composite of non-collagenous proteins, growth factors, and
collagen [30]. Decellularized extracellular matrices (ECM) from other
mammalian tissues have been used also as biological scaffolds for bone
regeneration [31-33]. DBM is osteoconductive but does not extend
structural support. When preparing demineralized bone matrix for
implantation in the defect site, it is usually used as bone graft pasta and
mixed with bone marrow, to increase osteogenic factors [34]. Bone
graft substitutes consist of scaffolds made of natural or synthetic
biomaterials that promote bone healing. There are broad range of
synthetic bone substitutes for reconstruction of large bone defects,
such as hydroxyapatite (HA), collagen, β-tricalcium phosphate
(βTCP), calcium phosphate [35,36]. Moreover, an alternative to auto or
allografts is titanium mesh cage as a scaffold combined with
autologous bone, cancellous bone allograft, and DBM [37,38]. Many of
the growth factors appear to have overlapping functions at various
stages of bone healing, making it difficult to identify the specific role of
a single growth factor or a combination of a few growth factors at each
stage. Bone morphogenetic proteins are suggested to act locally both to
recruit stem cells and to induce them to differentiate into bone-
forming cells such as osteoblasts [39]. Thus, scaffold for bone
reconstruction should be three dimensional, accelerate
osteoinductivity, increase cell migration, and release growth factors
[40]. Even though new treatment techniques have been used as
alternatives to traditional techniques, the obstreperous conditions, still
the same, and traditional techniques must be applied.

Systemic Enhancement of Bone Healing
Recombinant human parathyroid hormone (PTH) is a new

treatment for postmenopausal osteoporosis that can be systemically
administered for the primary purpose of increasing bone formation.
Many clinical trials showed that PTH administration induces both
cancellous and cortical bone healing, enhances bone mass, and
increases mechanical bone strength and bone mineral density, with a
relatively safety profile [41-43]. Furthermore, systemically
administered growth hormone plays an important role in bone
metabolism [44,45]. Both hormones until now are under investigation
to use as bone forming agents in bone defect healing. On the other
hand, the use of stimulators of the prostaglandin EP2 and EP4
receptors (anabolic at cortical and cancellous sites), showed good
results without adverse effects [46]. Bisphosphonates are a class of
drugs that prevent the loss of bone mass, used to treat osteoporosis and
similar diseases. It inhibits the digestion of bone by encouraging
osteoclasts to undergo apoptosis, or cell death, thereby slowing bone
resorption, so it will be useful to enhance bone healing [47].

Scaffolds
Scaffolds are defined as 3-D porous solid biomaterials designed to

promote cell-biomaterial interactions, allow cell proliferation and
differentiation, and biodegrade with minimal degree of toxicity in vivo
[48]. Scaffolds are biological from human, or synthetic from polymers.
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The first report of tissues regeneration by a scaffold in humans
discussed skin regeneration across a gap [49]. Scaffolds strategy for
bone defect treatment focused on the mechanical properties (stiffness
and compression resistance), nanoscale topography, degradability, and
micro/macro porosity, and Nano scale topography. Here, we will
present some of the materials used in large bone defects.

Natural Scaffolds
Natural polymers can be classified as proteins such as silk, collagen,

gelatin, fibrinogen, elastin, keratin, actin, and myosin, or as
polysaccharides such as cellulose, amylose, dextran, chitin, and
glycosaminoglycan [50]. Poly (lactic-co-glycolic acid) (PLAGA)
copolymers are among the most commonly used synthetic polymers
[51]. For the healing of large bone defects, the mechanical and space-
filling features of the scaffold are at the first place. The combination of
degradable polymers and inorganic bioactive particles represents the
approach in terms of achievable mechanical and biological
performance in hard tissue [52]. Consequently, scaffolds in large bone
defects without structural support is a defiance. Therefore,
decellularization of harvested tissues have been used as scaffolds, to
keep the native architecture [53]. Sponge or foam porous scaffold have
been used for bone regrowth, their porous network simulates the
extracellular matrix allowing cells to interact effectively with their
environment. The collagen consists of over 25 molecular isoforms. The
most common form is type I collagen, which is organic component of
bone. Sponges have been used in bone healing as a delivery vehicle for
bone morphogenetic proteins (BMPs) [54] or as gene delivery
platforms [55]. Moreover, fabrication of collagen and hydroxyapatite
composites have the potential in mimicking and replacing skeletal
bones [56]. Chitosan has been used to make sponges, meshes and
scaffold which can be used for bone regeneration [57,58]. Scaffold
form, allows cell attachment, for that it has been proposed to be as
osteoinductive scaffold [59]. Chitosan have been mixed with other
matrix components to improve the mechanical properties of the
scaffold, so it can be used for clinical applications [60]. Also,
combination of chitosan with other polysaccharides [61], and proteins
[62], have been used to produce sponge format. Chitosan microsphere
scaffolds have been produced for cartilage and osteochondral
regeneration [63]. The chitosan molecule allows the material to be
used for drug and gene delivery directly from the scaffold [64,65].
Biocompatible hydrogels are used in bone regeneration, and as carriers
for drug delivery [66]. Hydrogel with growth factor can act directly to
support the development and differentiation of cells in the newly
formed tissues [67]. Hydrogels are often favorable for promoting cell
migration, angiogenesis, high water content, and rapid nutrient
diffusion [68]. The clinical benefit of hydrogels is that they can be
applied without invasive techniques to fill the bone defects.
Furthermore, they can be combined with osteoinductive factors and
cells to promote healing of critical bone defects [69]. Hydrogels such as
fibrin [70,71] and gelatin [72,73] showed hopeful results as
transporters for therapeutic factors to promote bone regeneration.
Hydrogels are insufficient for large bone healing but they can be as
component of titanium cages to stimulate new bone formation.

Synthetic Scaffolds
During last year's several synthetic materials have been widened for

critical sized bone defects healing. Calcium phosphate or calcium
carbonate-based scaffolds have shown an effect on the healing of
critical bone defects, during the formation process, go through the

bone-like mineral layer formed on the surface of these materials
[74-77]. β-tricalcium phosphate and calcium phosphate are the earliest
compounds which are used as a scaffold for bone regeneration [78].
βTCP have been used since 1920 when it has been injected into the gap
of bony defect [79]. Furthermore, a composite scaffold composed of
βTCP, collagen, and autologous bone fragments fixated with fibrin glue
to correct cranial defects, demonstrated that the materials composed of
βTCP with or without collagen would be important for cranial bone
regeneration [80]. Problem with βTCP is that less new bone is placed
than resorbed βTCP [81]. This reason has limited its clinical using.
Calcium phosphate ceramics, such as hydroxyapatite (HA), are
biocompatible materials because their composition is like the apatite in
natural bone [82]. Several shapes of HA as bone substitutes are
obtainable such as porous and dense blocks, powder, dense and porous
granules [83]. The porous forms allow nutrient transport, cell
migration, and vascularization [84,85]. Otherwise, porous spherical
HA granules can be used for drug delivery systems. Previously,
researches concentrated on the release of anti-inflammatory or anti-
bacterial drug from HA, to control the infection at the implanted area
[86]. Several drugs have been constructed to enhance bone formation,
and the loading of HA with these drugs and agents could be a very
effective method for enhancing bone formation at the defect site
[87,88]. Recent studies suggest that released mineral ions such as
calcium, phosphate, magnesium and strontium maybe they are
responsible to some extent for the behavior of bone precursor cells
[75,89,90]. Overtime, HA is ambidextrous to obtain and sustain a drug
with stable drug release over time [91,92].

Advanced Scaffold Materials and Drug Delivery
During the past few years' nanotechnology suggest that ceramics

can be good stands for drug delivery and controlled extended release.
Drugs have been encapsulated in hollow structures of calcium
phosphate and then were triggered by ultrasound [93]. Calcium
phosphate scaffolds snob the natural bone structure and provide initial
structural integrity for bone cells, and their proliferation and
differentiation. Thus, most ceramic Nano scaffolds serve as mechanical
support, drug transporter, and promote cell growth. Researchers
showed a model of using nanotubular Titania as a drug delivery
platform to load antibiotics by co-precipitation of the drug and
calcium phosphate crystals on the nanostructures [94]. This delivery
system showed a time-delayed release of antibiotics for up to three
weeks. Furthermore, another study on scaffolds included a composite
of silica and calcium phosphates, showed that this material has a
continuous release of gentamicin from the scaffolds for 70 days [95].
Another study has used electro spun scaffold which can be used for
treating bone defects and drug delivery. This technique depends on the
charging of solutions containing polymers, ceramics or metallic
precursors with a high voltage. The charged solution is drawn by
electric field from orifice onto collector plate to form desirable
structures. The structures can be fabricated to mimic various
architectures of biological systems, such as fibrous proteins in a native
extracellular matrix or collagen fibrils in bone [96]. One more study,
demonstrated new magnetic scaffold for bone regeneration. This study
proposed new class of magnetic hydroxyapatites which can be used to
develop new magnetic ceramic scaffolds with enhanced regenerative
properties for bone regeneration based on hyperthermia [97]. Other
common synthetic materials used to form scaffolds for bone healing
are polymer materials, such as poly (alpha-hydroxy esters) [98],
poly(urethanes) [99], and poly(carbonates) [100]. All of them have
been applied within large bone defects, as void filler and as an
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osteoconductive matrix. Synthetic hydrogels can incorporate and
deliver controllable dosages of robust molecules, such as growth factors
and cell adhesion peptides. Furthermore, self-assembling hydrogels
have been designed to nucleate mineral formation, present peptides for
cell adhesion [101,102], or present peptides for growth factor binding
[103]. Other studies demonstrated that mineral-coated hollow tubes
composed of poly(ε-caprolactone) can stimulate bone regeneration in
sheep tibia defects [104] and sheep lumbar spine fusion [105].
Moreover, it is remarkable that naturally-derived polymers can also be
synthetically modified to create natural/synthetic hybrids that
stimulate bone formation, such as alginate hydrogels which can be
used to deliver bone-forming stem cells or osteoinductive growth
factors [106]. A modern method for creating porous scaffolds
composed of micro and nano scale biodegradable fibers by
electrospinning is a latest development in this field [107]. Microsphere
scaffolds are progressively used as drug delivery systems for antibiotic
treatment of infected bone [108]. These scaffolds are a polymer matrix
used for drug encapsulation for the release of drugs at a relatively slow
rate over a prolonged period [109]. Polymers with low molecular
weight are used in developing porous microspheres for the rapid
release of the drug, while polymers with high molecular weight for
developing microspheres for a slower drug release which can be
achieved due to its dense nature [110]. Furthermore, particle
aggregation method is proposed to make two layered scaffolds to
improve bone and cartilage interface. Also, PLAGA microsphere
scaffolds are used as a scaffold for load-bearing bone tissue [111]. The
gel microsphere matrix and the sintered microsphere matrix were
designed using PLAGA microspheres to create a 3-D porous structure
for bone regeneration [112]. Polymer-ceramic microspheres are also
used for bone applications [113]. Nano fibers have been used as
scaffolds for bone repair and as vehicle for the controlled delivery of
drugs [114]. Natural polymers and synthetic polymers inspected to
produce nanofibers scaffold for biomedical application such as
collagen [115], gelatin [116], chitosan [117], PLGA [118], poly
(ethylene-vinyl acetate) (PEVA) [119], and PLLACL-collagen fibers
[120]. Drugs, growth factors, and genes can be directly mixed into the
polymer solution and electro spun to prepare drug carriers with
controlled release properties [121]. It is reported that simvastatin
promotes osteoblastic activity and inhibit osteoclastic activity.
However, the half-life for simvastatin is 2 hours, so, it is difficult to
maintain active simvastatin. To overcome this limitation, researchers
proposed controlled drug delivery approaches based on microparticles
which could be a promising approach for sustained-localized delivery
of simvastatin [122]. Furthermore, the novel PLGA/HA/SIM Nano-
fibrous scaffold may be beneficial for patients who have bone
deficiency soon [123].

Neovascularization
With microvascular surgical techniques, vascularized bone grafting

became a good option to provide restoration of large bone defects.
Vascularized bone grafts include the fibula, iliac crest and the ribs. This
treatment style requires special skills; however, it is considered as
procedure with limitations [124]. The limited clinical success of
scaffold strategies may be explained by a lack of vascularization.
Studies have demonstrated that new bone formation in porous
scaffolds was significantly increased by the insertion of a vascular
pedicle in the scaffold [125,126]. Therefore, promoting angiogenesis is
an important aspect to enhance large bone defects healing. There are
various techniques to enhance angiogenesis into the scaffold. One of
these procedures is the implantation of a scaffold into a rich arterial

supply area such as the abdominal mesentery [127], then waiting for
the scaffold to become vascularized, removing the scaffold, and
replanting the scaffold into the bone defect. The next procedure is
seeding of vasculogenic cells or endothelial cells onto a scaffold. In
addition, fusion of VEGF into a scaffold material has been shown to
induce angiogenesis and promote bone formation [128], also a
combination therapy of VEGF and BMPs seems to have a synergistic
effect on bone formation during the first few weeks of treatment of
critical size of bone defects [129]. Currently, Jusoh et al. have proposed
3D microvascular networks in a hydroxyapatite-incorporated
extracellular matrix for designing a vascularized bone tissue model in a
microfluidic device. This study concluded that hydroxyapatite
enhanced angiogenic properties such as sprout length, sprouting speed,
sprout number, and lumen diameter [130].

Cell Based
This strategy depends on seeded scaffolds with cells before

implantation, or acellular scaffolds that require in vivo recruitment of
autologous cells [131]. Studies have been shown that fresh
mesenchymal stem cells from the bone marrow can lead to improved
bone healing if more than 1,500 colonies forming units of
mesenchymal cells are applied per 1 cm3 of defect [132]. Therefore, for
large bone defects, exogenous cells may be necessary. Some studies
suggested that allogeneic MSCs are hypoimmunogenic relative to other
cell types [133]. Adipose-derived mesenchymal stem cells are
multipotent cells that can differentiate into numerous cell types
including osteogenic cells [134]. Studies demonstrated that
osteoinduced ADMSCs successfully repaired the defect when seeded
on coral scaffolds, also when seeded on polylactic acid scaffolds
[135,136]. Finally, chondrocytes may help in healing of critical size
defects of the calvarias. Doan et al. demonstrated that chondrocytes,
when implanted directly into a critical size cranial defect in mice, heal
the defect by 6 weeks' post implantation [137]. Although application of
MSCs as cellular material facilitates the construct innovation, there is
still some issue with MSC preparation. Furthermore, natural bone is a
composite of Nano hydroxyapatite particles with collagen nanofibers
which impart the tissue’s unique properties [138].

Gene Therapy
This procedure depends on delivery of protein of interest by a vector

to the bone defect. The encoding gene can be obtained from the
recipient and implanted at the defect site [139,140]. Vectors are
important to optimize the transduction of encoding genes. Vectors can
be viral or non-viral (polyplexes, DNA plasmids, lipoplexes etc.), but
generally vectors still did not achieve the intrinsic efficiency [139-141].
Although, a great number of articles which demonstrated successes in
healing of large bone defects, but all have been applied on animal's
models, without attentions to toxicology and other matters [142-144].
An update review [140] listed experimental studies conducted to
evaluate the in vivo and ex vivo gene transfer, using viral and non-viral
and thus establishing parameters of efficiency and safety, major
difficulties, advantages and disadvantages of each method. The authors
referred to expected future improvements in gene therapy,
emphasizing that although promising results have been achieved in
animal models, human trials have not yet been reported.
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Conclusion
Large bone defects do not heal by itself. Despite therapeutic

strategies discussed in this review, there is insufficiency of confirmed
product which give effective results clinically.

Modality Pros and Cons

Masquelet Clinical technique use non-vascularized autograft.
Needs two stages [18]

Distraction Clinical technique use intramedullary devices.
Needs long time and may associate with
complications [19,20]

Autografts Clinical technique requires an additional surgical
procedure. Do not stimulate immune response,
and can integrate into their new site, but associate
with morbidity [23-26]

Allografts and Xenografts Lack cellular component and osteoinductive
properties [27]. Have lazy incorporation and likely
graft rejection. Freeze drying may modify the
architecture of the grafts [28,29]

Natural or synthetic
scaffolds

Even have been used as alternatives to traditional
techniques, the obstreperous conditions, still the
same. Limited clinical success of scaffold
strategies [60,70,85]

Advanced scaffold
materials and drug delivery

It is difficult to maintain active drug delivery even
proposed controlled drug delivery based on
microparticles [123]

Vascularized bone grafting Requires special skills; however, it is considered
as procedure with limitations [124]

Cell based Although application of MSCs as cellular material
facilitates the construct innovation, there is still
some issue with MSC preparation. Furthermore,
natural bone is a composite of Nano
hydroxyapatite particles with collagen nanofibers
which impart the tissue’s unique properties [138]

Gene therapy Although, demonstrated successes in healing of
large bone defects, but all have been applied on
animal's models, without attentions to toxicology
and other matters [139-141]

Table 1: Pros and Cons of strategies used to enhance large bone defect
healing.

Possibly those strategies have based on inappropriate understanding
of bone defects healing. However, autografts still the best therapeutic
strategy for large bone defects. The limitations of allografts and
xenografts, imposed to look for an ideal composite graft and optimal
delivery system for osteoconductive materials, osteogenic cells, and
osteoinductive growth factors. Unfortunately, the synthetic and organic
biomaterials available to stimulate osteogenesis does not meet the
expectations required for bone graft substitute. Local stimulation with
growth factors or drugs still needs a proper carrier and a definition of
dose and time sequence appropriate for the kinetics of bone healing.
Moreover, a small number of clinical trials with inconclusive results do
not guarantee growth factors effectiveness in the medical settings.
There is still little information available about the cellular basis for
MSC mediated bone healing in humans. Finally, knowledge
concerning the interaction of nanoparticles within the body are still
nominal (Table 1).
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