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Abstract
Schistosoma japonicum are blood flukes of humans that cause chronic, highly debilitating diseases involving 

extensive liver damage. In the present study, fatty-acid-binding protein of the human blood fluke Schistosoma japonicum 
is being used to find out highly suitable MHC binding peptides and epitopes. MHC molecules are cell surface proteins, 
which take active part in host immune reactions and involvement of MHC class in response to almost all antigens and 
it give effects on specific sites. Predicted MHC binding regions acts like red flags for antigen specific and generate 
immune response against the parent antigen. So a small fragment of antigen can induce immune response against 
whole antigen. This theme is implemented in designing subunit and synthetic peptide vaccines. Fragments identified 
through this approach tend to be high efficiency binders, in which larger percentage of their atoms are directly involved 
in binding as compared to larger molecules. Binding ability prediction of peptides to major histocompatibility complex 
(MHC) class I & II molecules is important in vaccine development from fatty-acid-binding protein of the human blood 
fluke Schistosoma japonicum.

MHC molecules have been well characterized in terms of their 
role in immune reactions. They bind to some of the peptide fragments 
generated after proteolytic cleavage of antigen [11]. These binding sites 
are antigen specific and generate immune response against the parent 
antigen. Prediction methods to find out the small peptides fragments 
from a protein which may represent the whole protein and excite the 
immune response are available [12]. The present paper deals with the 
possibilities of exploiting  fatty-acid-binding protein of the human 
blood fluke Schistosoma japonicum  to find out the highly suitable 
MHC binding peptide and have high affinity to TAP biding peptides 
that can be used for inducing cross protection and as immunogen 
to produce antiserum for the development of sero-diagnostics for 
Schistosoma japonicum.

Materials and Methods
Protein sequence used

For recognition of immunologically relevant regions, 
hydrophilicity, antigenecity, solvent accessible regions and MHC class 
peptide binding of the fatty-acid-binding protein of the human blood 
fluke Schistosoma japonicum (GenBank accession no. AAA64426.1) 
had been considered.

Keywords: Epitopes; Fatty-acid-binding protein; Schistosoma 
japonicum; MHC binders; Support vector machine

Abbreviations: MHC: Major Histocompatibility Complex; PZQ:
Praziquantel; TAP: Transporter Associated with Antigen Processing; 
SVM: Support Vector Machine; ANN: Artificial Neural Networks

Introduction
Schistosomiasis, caused by trematode blood flukes of the genus 

Schistosoma, is recognized as the most important human helminth 
infection in terms of morbidity and mortality. Infection follows direct 
contact with freshwater harbouring free-swimming larval (cercaria) 
forms of the parasite. Despite the existence of the highly effective 
antischistosome drug praziquantel (PZQ), schistosomiasis is spreading 
into new areas, and although it is the cornerstone of current control 
programs, PZQ chemotherapy does have limitations. In particular, 
mass treatment does not prevent reinfection. Furthermore, there 
is increasing concern about the development of parasite resistance 
to PZQ. Consequently, vaccine strategies represent an essential 
component for the future control of schistosomiasis as an adjunct to 
chemotherapy. An improved understanding of the immune response to 
schistosome infection, both in animal models and in humans, suggests 
that development of a vaccine may be possible [1]. Approximately 
200 million people in 74 countries are infected with schistosomes; 120 
million are symptomatic, and 20 million suffer severe illness [2,3].

Schistosomiasis is the most important human helminth infection 
in terms of morbidity and mortality; a recent meta-analysis assigned 
2 to 15% disability weight to the disease [4]. There is also emerging 
evidence that schistosome infections may impact the etiology and 
transmission of human immunodeficiency virus/AIDS (HIV/AIDS) 
[5-7]. In particular, the possible interaction between schistosomiasis 
and HIV/AIDS is receiving increasing attention, given the role of 
immune responses in both diseases and the geographic overlap in 
distribution; low CD4+ T-cell counts resulting from HIV infection 
may increase susceptibility to schistosome infection and influence egg 
excretion [8-10]. Thus, schistosomiasis imposes a high socioeconomic 
burden on many affected developing countries.
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Prediction of secondary structure of protein and its 
antigenicity

The secondary structure diagram based on Garnier algorithm 
provides additional information about possible sequence accessibility 
[13]. The aim of secondary structure prediction is to provide the 
location of alpha helices, and beta strands within a protein or protein 
family. Residue conformational propensities, sequence edge effects, 
moments of hydrophobicity, position of insertions and deletions 
in aligned homologous sequence, moments of conservation, auto-
correlation, residue ratios, secondary structure feedback effects, and 
filtering [12,14] are the important concepts involved in secondary 
structure prediction. 

Antigenicity prediction tools adopted in this study predict those 
segments from fatty-acid-binding protein that are likely to be antigenic 
by eliciting an antibody response using Hopp and Woods [15], Welling 
[16], Parker [17], B-EpiPred Server [18] and Kolaskar and Tongaonkar 
[19].

Targeting the location in solvent accessible regions

Protein antigenecity is a surface property. Antigenic epitopes can 
be located as those segments of primary structure that are markedly 
hydrophilic [15]. Hydrophilicity plots provide a measure of distribution 
of polar and apolar amino acid residues within the protein sequence. 
The Kyte-Doolittle scale [20] provides a measure of hydrophobicity 
with each amino acid. Similarly Hopp-Woods scale was used to predict 
potential antigenic sites. This may be useful in predicting membrane-
spanning domains, potential antigenic sites and regions that are likely 
exposed on the protein surface [21-24].

Prediction of MHC binding peptide

Prediction methods for identifying binding peptides could 
minimize the number of peptides required to be synthesized and 
assayed, and thereby facilitate the identification of potential epitopes 
[12]. Several methods have been used to predict MHC binding peptides, 
including those based on binding motifs [25,26], quantitative matrices 
[27], artificial neural networks (ANNs) [28-30] and support vector 
machine (SVM) [27,31,32]. Binding motifs specify which residues 
at given positions within the peptide are necessary or favourable for 
binding to a specific MHC molecule [33]. In this study, prediction of 
MHC peptide binding is performed using neural networks trained on 
C terminals of known epitopes. An elegant machine learning technique 
i.e. SVM based method is used for prediction of promiscuous MHC 
class II binding peptides. In SVM based method, the average accuracy 
is reported to be high as compared to other methods since SVM can 
handle noise or non linearity in data very well [27,32,34]. The predicted 
peptides from fatty-acid-binding protein under study and their affinity 
to TAP biding peptides are determined by the scoring based on the 
average score / affinity of an amino acid at particular position and 
calculated as follows: Ai,r = Average affinity of peptides having residues 
r in position i, where Ai,r is the matrix entry of residue r in position i, r 
may be any natural amino acid and i varies from 1 to 9 [27]. 

Results
Study refers to the Sj-FABPc fatty-acid-binding protein of the 

human blood fluke Schistosoma japonicum having 132 aa protein 
described under material and methods. 

Determination of antigenic peptides

Parameters such as hydrophilicity, flexibility, accessibility, turns, 

exposed surface, polarity and antigenic propensity of polypeptides 
chains have been correlated with the location of continuous epitopes. 
Hydrophobicity (or hydrophilicity) plots are designed to display the 
distribution of polar and non-polar residues along a protein sequence. 
In our study, antigenic determinants have been targeted by locating 
the positive peaks in hydrophilicity plots, thus identifying the regions 
of maximum potential antigenecity. Hopp-Woods scale [15] was used 
for predicting potential antigenic sites of protein which is essentially 
a hydrophilic index, with non-polar residues assigned negative values 
(Figure 1). Welling antigenecity plot [16] gives antigenecity value as the 
log of the quotient between percentage in a sample of known antigenic 
regions and percentage in average proteins (Figure 2). Parker [17], 
Kolaskar and Tongaonkar antigenecity methods [19] and B-EpiPred 
Server [18] were also studied (Figures 3-5).

Secondary alignment

For the protein under study, secondary structure was predicted 
using Garnier-Osguthorpe-Robson (GOR) method [13]. It assumes 
that the amino acids flanking the central amino acid also influence 
the secondary structure. Values for alpha helix, beta sheet, turns and 

Figure 1: Hydrophobicity plot of Hopp & Woods for the fatty-acid-binding 
protein.
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Figure 2: Hydrophobicity plot of Welling et al. for the fatty-acid-binding protein.
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of the four possible conformations alpha, beta, reverse turn or coils can 
be calculated and the conformation with the largest likelihood may be 
assigned to the residue.

Solvent accessible regions

To predict potential antigenic sites of globular proteins, which 
are likely to be rich in charged and polar residues, solvent accessible 
scales are developed which delineate hydrophobic and hydrophilic 
characteristics of amino acids. The protein under study was exposed to 
Janin, Kyte & Doolittle, Abraham & Leo and Bull & Breese methods to 
predict its nature and prediction flexibility (Figures 7-10).

Determination of MHC binding peptides

The binding between peptide epitopes and MHC protein(s) is an 
important event in the cellular immune response. SVMs are a class 
of learning based on non-linear modelling techniques with proven 
performance in a wide range of practical applications [35]. The 
prediction method used in our study is based on this elegant machine 
learning technique. The cascade support vector machine approach 
based on amino acid sequence and properties was used to predict 
MHCI and MHCII binding regions. In this assay, prediction of the 
binding affinity of fatty-acid-binding protein having 132 amino acids, 
showing 124 nonamers was performed. SVM was trained on the binary 
input of single amino acid sequence. The binding regions obtained are 
reported in Table 1 and Table 2.

Fifty Eight peptide regions were found to have high affinity to 
TAP binding peptides. The data presented in Table 1 showed top 
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Figure 3: Hydrophobicity plot of HPLC / Parker et al. for the Fatty-acid-binding 
protein.
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Figure 4: Kolaskar and Tongaonkar antigenecity sites for the fatty-acid-
binding protein.
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Figure 5: B-cell epitopes sites for the fatty acid binding protein fatty-acid-
binding protein.

coils are assigned for each residue (Figure 6). With the aid of these 
information parameters, likelihood of a given residue assuming each 
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Figure 6: Secondary structure GOR plot of the fatty acid binding protein fatty-
acid-binding protein.
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Figure 7: Hydrophobicity plot of Janin for the fatty-acid-binding protein
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fifteen peptide regions. Few of these were 98- DSKNTTVIV with score 
8.634, 24- GVSWATRQI with score 8.630, 12- ESHNFDAVM with 
score 8.629, 85- TKDSESKIT with score 8.628 and 65- KFGEEFDEK 
with score 8.597, which are known as fatty acid binding protein TAP 
transporters. 

The SVM based method for prediction of promiscuous MHC 
Class II binders are reported in Table 2. MHCII-IAb peptide regions, 
111- GDTMKTTVT, 33- GNTVTPTVT, 46- GDTMTMLTE, 122- 
DVTAIRNYK; MHCII-IAd peptide regions, 104- VIVREIVGD, 
56- TFKNLSVTF, 62- VTFKFGEEF, 88- SESKITHTQ; MHCII-
IAg7 peptide  regions, 121- DDVTAIRNY, 24- GVSWATRQI, 
15- NFDAVMSKL, 61- SVTFKFGEE; and MHCII- RT1.B peptide 
regions, 41- TFTMDGDTM, 52- LTESTFKNL, 116- TTVTVDDVT, 
92- ITHTQKDSK represent predicted binders from fatty acid binding 
protein under study. Table 3 shows the predicted antigenic epitopes 
from fatty-acid-binding protein of the human blood fluke Schistosoma 
japonicum. 

Discussion
Schistosoma japonicum are blood flukes of humans that cause 

chronic, highly debilitating diseases involving extensive liver damage 
and requires attention. In the present study, B-EpiPred Server, Hopp 
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Figure 8: Hydrophobicity plot of Kyte & Doolittle for the fatty-acid-binding 
protein.
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Figure 9: Hydrophobicity plot of Abraham & Leo for the fatty acid binding protein 
fatty-acid-binding protein.
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Figure 10: Hydrophobicity plot of Bull & Breese for the fatty-acid-binding protein.

Peptide Rank Start Position Sequence Score ���������
1 98 DSKNTTVIV 8.634 High
2 24 GVSWATRQI 8.630 High
3 12 ESHNFDAVM 8.629 High
4 85 TKDSESKIT 8.628 High
5 65 KFGEEFDEK 8.597 High
6 82 SVVTKDSES 8.563 High
7 08 WKLSESHNF 8.524 High
8 53 TESTFKNLS 8.522 High
9 20 MSKLGVSWA 8.470 High
10 79 SVKSVVTKD 8.441 High
11 31 QIGNTVTPT 8.423 High
12 113 TMKTTVTVD 8.392 High
13 116 TTVTVDDVT 8.386 High
14 89 ESKITHTQK 8.385 High
15 11 SESHNFDAV 8.373 High

Table 1: TAP Peptide binders of fatty-acid-binding protein.

Table 2: The SVM based method for prediction of Peptide binders to MHCII 
molecules of fatty-acid-binding protein.

MHC  ALLELE RANK SEQUENCE RESIDUE NO. PEPTIDE
I-Ab 1 GDTMKTTVT 111 1.198
I-Ab 2 GNTVTPTVT 33 1.034
I-Ab 3 GDTMTMLTE 46 1.018
I-Ab 4 DVTAIRNYK 122 0.878
I-Ad 1 VIVREIVGD 104 0.455
I-Ad 2 TFKNLSVTF 56 0.439
I-Ad 3 VTFKFGEEF 62 0.391
I-Ad 4 SESKITHTQ 88 0.325
I-Ag7 1 DDVTAIRNY 121 1.560
I-Ag7 2 GVSWATRQI 24 1.248
I-Ag7 3 NFDAVMSKL 15 1.207
I-Ag7 4 SVTFKFGEE 61 1.040
RT1.B 1 TFTMDGDTM 41 1.002
RT1.B 2 LTESTFKNL 52 0.655
RT1.B 3 TTVTVDDVT 116 0.642
RT1.B 4 ITHTQKDSK 92 0.616
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and Woods, Welling, Parker, Kolaskar and Tongaonkar antigenecity 
scales were designed to predict the locations of antigenic determinants 
in fatty-acid-binding protein of the human blood fluke Schistosoma 
japonicum . High antigenecity of the fatty-acid-binding protein   along 
with beta sheets regions, which have high antigenic response than 
helical region of this peptide are reported. The Janin hydrophobicity, 
Kyte & Doolittle hydrophobicity, Abraham & Leo and Bull & Breese 
hydrophobicity scales show hydrophilic index, with a polar residues 
assigned negative values. Peptide regions, 98- DSKNTTVIV with score 
8.634, 24- GVSWATRQI with score 8.630, 12- ESHNFDAVM with 
score 8.629, 85- TKDSESKIT with score 8.628 and 65- KFGEEFDEK 
with score 8.597, which are known as fatty acid binding protein 
TAP transporters. It was observed that the highest ranked SVM 
based MHCII-IAb peptide region, 122- DVTAIRNYK; MHCII-IAd 
peptide region, 104- VIVREIVGD; MHCII-IAg7 peptide region, 121- 
DDVTAIRNY and MHCII- RT1.B peptide region, 116- TTVTVDDVT 
represented predicted binders from fatty-acid-binding protein.

Kolaskar and Tongaonkar antigenecity are the sites of molecules 
that are recognized by antibodies of the immune system for the fatty-
acid-binding protein. The region of maximal hydrophilicity is likely 
to be an antigenic site, having hydrophobic characteristics, because 
C- terminal regions of fatty-acid-binding protein is solvent accessible 
and unstructured. Antibodies against those regions are also likely to 
recognize the native protein. Seven antigenic determinant sites in 
the fatty acid binding protein sequence were predicted. The highest 
pick is recorded between sequence of amino acid in the regions 
102-VTKDSESKITHTQKDSKNT-19, 81-EFDEKTSDGRSVK-13 and 
39-RQIGNTVTPT-10 (Table 3). The average propensity for the fatty-
acid-binding protein is found to be 1.014. All residues having above 1.0 
propensity are always potentially antigenic.

Fragment identified through this approach tend to be high 
efficiency binders, in which larger percentage of their atoms are directly 
involved in binding as compared to larger molecules. These fragments 
may, therefore, be used in cross protection and to develop human blood 
fluke Schistosoma japonicum specific antibodies that can be exploited 
in serodiagnostics.
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