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Abstract
The objective of this study is to understand the loop formation phenomenon of yarn by considering their non-

linear bending behaviour and the effect of loop shape factor on properties of terry fabric. The yarn is modelled as a 
continuum thin solid beam, and the governing buckling equation is derived using Timoshenko’s elastic theory and the 
Bernoulli-Euler theorem. Since the formation of loop is effected by large deformation caused by the weight of yarn 
too, geometric non-linearity is also considered and Runge Kutta method of numerical technique is used to solve the 
governing equation. Further, finite element modelling technique is also used to see the accuracy of the prediction 
which is further verified by the actual experimental results. The results of the research prove that the finer yarn 
produce loops which are having more circularity i.e., higher loop shape factor, as compared to the loops produced 
from coarse yarn. It is also being proved that the increasing the loop length increases circularity of the loop i.e., higher 
loop shape factor.
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Introduction
The functional and aesthetic characteristics of terry fabric are 

predominantly governed by the geometrical profile of the loop [1-3]. 
The geometrical configuration of loop is primarily determined by yarn 
characteristics. Substantial amount of research work has been carried 
out to reveals the relationship between yarn properties and fabric 
properties. Loop geometry which is the peculiarity of the terry fabric 
has been ignored by most researchers. It seems to be interesting to 
know the relation between yarn properties and loop geometry. 

Formation of loop on fabric surface is effected by buckling of yarn 
which is largely influenced by its bending behaviour. The yarn bending 
rigidity can be evaluated experimentally by defining it as a Bernoulli-
Euler beam and differentiating the moment curvature relationship. 
Similar to the fabric, in the early stage of yarn bending process, a higher 
moment to overcome the interfibre friction is required to bend the unit 
curvature, and then after less moment is need for further bending. In 
both friction couple theory [4-7] and bilinear model [8,9] this early 
stage phenomenon is neglected, assuming a linear moment curvature 
relationship. In some latest research moment-curvature relationship 
was explained by an exponential function [10,11]. Therefore, we 
considered yarn bending as a highly non-linear phenomenon without 
any assumption [12,13].

The objective of this study is to understand the loop formation 
phenomenon of yarn by considering their non-linear bending 
behaviour. The yarn is modelled as a continuum thin solid beam, 
and the governing buckling equation is derived using Timoshenko’s 
elastic theory and the Bernoulli-Euler theorem. Since the formation of 
loop is effected by large deformation caused by the weight of yarn too, 
geometric non-linearity is also considered and Runge Kutta method of 
numerical technique is used to solve the governing equation. Further, 
FEM modelling technique is also used to see the accuracy of the 
prediction which is further verified by the actual experimental results. 

Formation of Loop during Terry Weaving
Formation of terry loop during terry weaving (Figure 1) is a process 

of buckling. Buckling is a mode of failure in which the structure 
experiences sudden failure when subjected to a compressive stress. 
During formation of loop, the structural behaviour has been found 
markedly non-proportional to the applied load which suggests the high 
non-linearity of the system of loop formation. These nonlinearities 
have to be considered to obtain the correct solution. Instead of one step 
solution found in linear problems, the non-linear problem is solved by 
incremental method [14,15].

Loop Shape Factor
Aspect ratio and shape factor are two important quantities that 

explain the geometry of any shape. Aspect ratio is the ratio of major 

Ground warp

Weft
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Loose pick distance

Back pile

Figure 1: Loop formation showing the yarn segment between fell of cloth and 
reed.
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axis length to the minor axis length. It is suitable for the regular shapes 
while shape factor is suitable for all kind of shapes. Loop shape factor 
is a measure of circularity of loop. Here loop shape factor is calculated 
as shown below.

Loop shape factor=loop area/perimeter of the loop

		      =loop area/(l+d)

Where l=loop length, d=distance between two legs (Figure 2).

Theoretical Analysis
Loop geometry has been described here by the loop shape factor. 

Loop shape factor is a measure of circularity of the terry pile loop which 
is defined as the ratio of maximum loop height to the maximum loop 
width.

Mathematical modelling

Using KES-FB2 bending tester, moment curvature relationships 
and consequently regression equation (1) were obtained:

( ) { }0 1 1 âkm k  c  k  c e−= + − 			                  (1)

where m=moment, k=curvature, and c0, c1, β are constants having a 
value of 0.024, 0.015, and 2.89, respectively.

The yarn bending properties were successfully modelled here using 
exponential function giving standard error compared to the KES-FB2 
m-k relationship below 0.002 and R2 higher than 0.96. Differentiating 
Equation (1) gives the bending rigidity- curvature relationship, 
Equation (2):

( ) 0 1
kb k c c e  ββ −= + 				                 (2)

where b=bending rigidity, k=curvature, and c0, c1, β are constants. 
Equation is plotted in Figure 3 for 100% cotton yarn, which shows that 
the bending rigidity is non-linear in nature.

Mathematical model and governing equation: According to 
large deformation beam theory, the curvature for a large deformation 
problem can be defined as:

dk   
ds
θ

= 					                     (3) 

Where θ = tangent angle at some point of the beam, s = arc length. 

According to elastic beam theory bending rigidity can be expressed as b 
(k). So Bernoulli-Euler theory for m-k relationship can be expressed as:  

( )
d m
ds b k
θ
= 					                    (4)

Elastica model and governing equation: Yarn had been modelled 
after Timoshenko’s elastic assuming it as bent bean with an identical 
cross-section. The moment equilibrium of the elastic model shown in 
Figure 4, gives the governing Equation (5). 

( ) ( ) ( )
0

sd db k b s Py me Rx w x x ds
ds ds
θ θ
= = − + − ′+ − ′∫                      (5)

Where P=compression load applied at the ends of beam, R=reactive 
force for the weight of beam, me= external moment, w=weight per unit 
length.

Differentiating Equation (5) by gives

( ) ( )
2

2d
db s Psin R ws cos
ds
θ θ θ= − + − 		                   (6)

Where: 

( ) 0 1 1d
d db s c c exp
ds ds
θ θβ β β    = + − −    

    
		                 (7)

 

l 

d 

Figure 2: Loop geometry.
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Figure 3: Relationship between bending rigidity and curvature of yarn.

 

 

 

 

 

 

 

 

 

 

 
R 

y 

x 

s 

ds’ 

θ 

x’ 

P 

me 

Figure 4: Yarn Elastic loop model.
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Numerical analysis: Highly non-linear differential Equation 
(6) can be solved by fourth-order Runge-Kutta method. The second 
order governing equation is modified into a system of two first order 
equations and normalised as in Equation (7):

d
ds
θ ϕ= 					                   (7a)

( )d Psin R Ws cos
ds
ϕ θ θ= − + − 			                 (7b)

Formation of yarn loop which is governed by the highly nonlinear 
differential Equation (7) is a two point boundary problem which can 
be effectively solved by shooting method considering the following 
condition.

0 1 s≤ ≤ 					                     (8a)

0,0.5,1| 0sθ = = 				                                  (8b)

0.5R W  = 					                    (8c)

Finite element modelling

The functional and aesthetic characteristics of terry fabric are 
predominantly governed by the geometrical profile of the loop. The 
geometrical configuration of loop is primarily determined by yarn 
characteristics. Need of precise study on how the yarn properties 
control the geometrical profile of the loop motivated us to explore the 
outcome using FEM. 

According to principle of virtual work, it possible to represent the 
distributed displacement field {u} of any solid body by

{ } [ ]{ }u N r= 					                       (9)

where [N]=set of known function of coordinates; {r}=set of constants

It follows that the algebraic equations for the axially loaded bar 
analysis are of the form

[ ]{ } { }K r R  = 					                 (10)

Where [K]=stiffness matrix; {r}= nodal displacement; 
{R}=equivalent nodal loads

The expression for [Kd] supposes that N is known. In the case of 
simple beams with a single axial load at one end, we have N= − P and

{ } [ ]{ }[ ]d TK r P N' N r dx  = − ′ ∫ 			                (11)

Adding shape function (equation 3) to equation 2 

[ ]( ){ } { }dK K r R + =  			                                  (12)

Where [Kd]=differential stiffness;

[ ] [ ][ ] [ ][ '']T TK B G B dv EI N N dx = = ′′∫ ∫
[ ] [ ] ( ) ( ) ( )[ ]

TT T
i Zi yjj

R N f x dx N x F W N x M = +   + ′  ∑∫
Equation (12) is a matrix equation for a beam- column. In case of 

buckling

[ ]( ){ } { }0dK K r + = 

Subsequently, critical load can be found by setting: 

[ ] 0dK P K   − =  				               (13)
Expanding the determinant in Equation (13) will produce a 

polynomial in P and the lowest root of this polynomial is critical value 
of P. For large deformation we take shape function as: 

[ ] 3 2 3 3 2 2 3 2 3 2 2 3
3

1 3 2 , 2 ,3 2 ,n L L s s  L s L s Ls  Ls s  L s Ls
L
 = − + − + − − +    (14)

Where L= length of element, s=distance measured from a node at 
one end of the element and is positive in the direction of the other 
node. The element stiffness matrix is: 

i i
2 2

i i i i
i 3

i ii
2 2

i i i i

12 6L 12 6L
6L 4L 6L 2LEl[K ]
12 6L 12 6LL
6L 2L 6L 4L

− − − 
 − =
 −
 
− 

		                 (15)

Inserting shape function into the integral for the element differential 
stiffness matrix gives us--

i

i i
2 2

L i i i iD T
i i i0

i i
2 2

i i i i

36 3L 36 3L
3L 4L 3L L1[ ] [ ] [ ]
36 3L 36 3L30
3L L 3L 4L

i

K n n ds
L

− − − 
 − ′=
 −
 
− − 

∫ 	               (16)

Yarn model: Yarn path and cross- section for designing yarn model, 
its path is represented by the yarn centre line in three dimensional 
spaces. SolidWorks 2010 software package is used to build the model. 
The yarn cross-section is a 2D shape of the yarn when cut by a plane 
perpendicular to the yarn path tangent. The yarns are treated as solid 
volumes with circular cross-section. So a circle is swept along the pre 
designed yarn path to build the yarn geometry. The final outcome is a 
bend elastica. The bend elastica (Figure 5) is the true representation of 
the yarn segment between cloth fell and the reed as this yarn segment 
is in bend condition. Keeping the same spline for the path of the yarn 
different yarn model has been created by changing the circle diameter 
for different count of yarn. 

Material model: Yarns are modelled as continuum solid bent 
beam with identical cross-section. The yarn is treated as a non-linear 
orthotropic material. The longitudinal direction is defined by 11, which 
is parallel to fibres; the transverse plane is described by the directions 
22 and 33, which are characterized by a plane of isotropy at every 
point in the material. The orthotropic behaviour of the yarn is typically 
described using a 3D stiffness matrix containing nine independent 
constants [16]. Since the yarn is transversally isotropic, E22= 33, υ12-υ13 
and G12=G13. The longitudinal modulus E11 is approximated as a linear 
function of fibre volume fraction Vf of a yarn and fibre modulus Ef by 
the following equation:

11
f

f

E
E  

V
= 					                               (17)

It is assumed that all fibres within a yarn are perfectly parallel and 
hence no stiffening of the yarn will occur due to fibre straightening at 
low strains. For simplicity a constant E11 (E11=Ef /Vf0, Vf0 is initial fibre 
volume fraction of the yarn) was used in the simulations.

The transverse stiffness, E33 (E22=E33) can be expressed as a function 
of strain to express the nonlinearity of the material because the material 
matrix is no longer constant [17]. The transverse stiffness reduces 
during the loop formation as the gap between fibres increases.

Figure 5: Yarn segment modelled for simulation.
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Loop shape by FEM model

Considering non-linear bending behaviour of yarn i.e., non-
linearity in geometrical and bending properties, loop geometry of 
different yarn count was studied. Results of FEM model were given 
in the Figures 8-13. These figures the variation in loop shape with the 
change in yarn count and loop length keeping twist level same. The 
loop shape factor increases with increase in yarn fineness and this 
phenomenon is attributed to the reduction in w/b ratio of the yarn. 

( )
( )

33

0
0

33
33 33

33 33

b
bf

få

V
a a V

e
E σε

ε ε

 
− + 

 = =
		                 (18)

The initial value of E33 is

( )
33

0
33 0

0 lim
T

b
fT T

T T

VdE  ab
d eεε

σ σ
ε ε→

 
= = =  

 
		               (19)

Where Vf0 is initial fibre volume fraction; a = 1151, b = 12.24

Due to transverse isotropy, the transverse shear behaviour is 
characterizes by [18]:

( )
33

23
232 1

EG  
ν

=
+ 				                   (20)

Material property used for simulation are E11 (MPa)=390, E33 
(MPa)=0.75, G12 (MPa)=0.2, G23 (MPa)=3.13, ν12=0.32, ν23 =0.32, 
density (kg/m3) =1530.

FE implementation: According to the proposed algorithm yarn 
structure model was constructed. The Solidworks 2010 and Ansys 
14 software package were used to model the yarn and predict the 
behaviour and loop shape factor. The yarn was discredited using 
solid-45, 4-noded tetrahedral three-dimensional elements. 

Boundary condition: Keeping yarn length 15 mm constant, yarn 
diameter varied up to four levels. Fixed support is applied at one end of 
the yarn, displacement is applied in negative x-direction only (keeping 
other direction frozen) at the other end. Static structural analysis has 
been performed keeping large deflection active so that the loop can be 
formed. In another simulation, yarn length was kept 18 mm and yarn 
count varied up to two levels.

Actual loop profile

To see the actual loop profile and set up the precise boundary 
condition for modelling, an experimental setup is done according 
to Figure 6 which shows the process of loop formation as in actual 
practice on loom.

Results and Discussion
Loop shape by mathematical modelling

Numerical analysis of the mathematical model gives the loop shape 
shown in Figure 7 for different weight per unit length/bending rigidity 
(w/b) ratio. It is clear from Figure 7 that the yarn having lower w/b ratio 
forms loop of higher shape factor.

 

 D 
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A C 

A=Slider, B=Yarn,   C=Pulley, D= Dead 
Weight 

Figure 6: Experimental set up for the process of loop formation.
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Figure 7: Loop shape by mathematical model.

Figure 8: Loop from 6’s Ne yarn.

Figure 9: Loop from 8’s Ne yarn.
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These results are very well supported by the results of our mathematical 
model as well as earlier research [19,20].

Figures 12 and 13 show the effect of loop length on loop shape 
factor, the loop shape factor increases with increase in loop length 
keeping yarn twist level constant.

Actual loop shape

Images of the actual loop shape from different loop length and 
yarn count produced on the experimental set up has been shown in 

Figures 14-17. These figures show the similar effect of yarn count and 
loop length on loop shape factor as the FEM modelled loops.

Figure 10: Loop from 12’s Ne yarn.

Figure 11: Loop from 14’s Ne yarn.

Figure 12: Loop from 14’s Ne yarn.

Figure 13: Loop from 20’s Ne yarn.

Figure 14: Actual loop from 12’s Ne (15 mm). 

Figure 15: Actual loop from 14’s Ne (15 mm).

Figure 16: Actual loop from 14’s Ne (18 mm).
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Figure 17: Actual Loop from 20’s Ne (18 mm).
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Prediction accuracy of FEM model

Shape factor of the loops and Area under the loop along with the 
RMSE between predicted and actual results are given in the Table 
1. Figure 18 shows that the prediction of loop geometry using finite 
element method is good which gives R2 value of 0.951.

Effect of loop length and yarn count on loop shape factor

It is clear from Figure 19 that the loop shape factor affected by loop 
length and yarn count. Finer yarn and higher loop length gives higher 
loop shape factor.

Conclusions
Formation of loop on terry fabric surface is affected by buckling 

of yarn which is highly non-linear. Geometric non-linearity and 
bending non-linearity both governs the yarn buckling process and 
consequently the shape of the loop. As mentioned in earlier research, 
geometric non-linearity is important for modelling large deformation 
like buckling and non-linear bending rigidity is important to get the 
real fabric behaviour from model. Considering these two non-linearity, 
mathematical modelling and finite element modelling was done. 
Results of FEM model was very well supported by the results of the 
numerical analysis. Further, the results of FEM model were verified by 
the actual experimental results and found that the absolute percentage 
error is 3.86 and R2 is 0.951. The results of the research prove that the 
finer yarn produce loops which are having more circularity i.e., higher 
loop shape factor, as compared to the loops produced from coarse yarn. 
It is also being proved that the increasing the loop length increases 
circularity of the loop i.e., higher loop shape factor.  

References

1.	 Behera BK, Singh JP (2013) Investigating absorbency behaviour of terry fabric. 
Res J Text Appal.

2.	 Behera BK, Singh JP (2014) Objective evaluation of aesthetic characteristics 
of terry pile structures using image analysis technique. Fibers and Polym 
15:2633-2643. 

3.	 Singh JP, Behera BK (2013) Compression behaviour of terry fabric. Proceedings 
of 13th Autex, Dresden, Germany.  

4.	 Grosberg P (1966) The mechanical properties of woven fabrics part ii: the 
bending of woven fabrics. Text Res J 36: 205-211.

5.	 Grosberg P, Swani NM (1966) The mechanical properties of woven fabrics part 
III: The buckling of woven fabrics. Text Res J 36: 332.

6.	 Clapp TG, Peng H (1990) Buckling of woven fabrics part I: Effect of fabric 
weight. Text Res J 60:228-234. 

7.	 Clapp TG, Peng H (1990b) Buckling of woven fabrics part II: effect of fabric 
weight and frictional couple. Text Res J 60: 285.

8.	 Ghosh T (1987) Computational model of the bending behaviour of plain woven 
fabrics. North Carolina State University.

9.	 Leaf GAV, Anandjiwala RD (1985) A generalized model of plain woven fabric. 
Text Res J 55: 92-99. 

10.	Kang TJ, Joo KH, Lee KW (2004) Analyzing fabric buckling based on nonlinear 
bending properties. Text Res J 74: 172-177. 

11.	Cornelissen B, Akkerman R(2009) Analysis of yarn bending behaviour. 

12.	Ivančo V (2006) Nonlinear finite element analysis. University of Applied 
Sciences-Technology, Business and Design, Wismar. 

13.	Deshpande S (2010) Buckling and post buckling of structural components.

14.	Bao L, Takatera M, Shinohara A (2002) Analysis of large non-linear elastic 
deformation of fabrics. J Textile Inst 93: 410-419. 

15.	Zienkiewiez OC, Taylor RL (1991) The finite element method. (4th Ed) McGraw-
hill, USA.

16.	Hull D, Clyne CW (1996)An Introduction to Composite Materials. (2nd Ed) 
Cambridge University Press, Cambridge. 

Loop Length (mm), Yarn 
Count (Ne)

Shape Factor 
(Model)

Shape Factor 
(Actual)

Error %

(18, 20) 0.55 0.57 3.52
(18, 14) 0.53 0.55 3.65
(15, 14) 0.52 0.53 1.93
(15, 12) 0.48 0.51 5.91
(15, 8) 0.47 0.49 4.08
(15, 6) 0.46 0.48 4.16

Table 1: Shape factor. 

http://dx.doi.org/10.1007/s12221-014-2633-2
http://dx.doi.org/10.1007/s12221-014-2633-2
http://dx.doi.org/10.1007/s12221-014-2633-2
http://dx.doi.org/10.1177/004051756603600301
http://dx.doi.org/10.1177/004051756603600301
http://dx.doi.org/10.1177/004051759006000406
http://dx.doi.org/10.1177/004051759006000406
http://dx.doi.org/10.1177/004051758505500203
http://dx.doi.org/10.1177/004051758505500203
http://dx.doi.org/10.1177/004051750407400214
http://dx.doi.org/10.1177/004051750407400214
http://doc.utwente.nl/74055/
http://s3.amazonaws.com/academia.edu.documents/35995629/FEA_of_Nonlinear_Problems_2011_Ivanco.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1479744359&Signature=q0BmeznZ2MliOdUgGIRWaXW8D6I%3D&response-content-disposition=inline%3B filename%3DNONLINEAR_FINITE_ELEMENT_ANALYSIS_SCRIPT.pdf
http://s3.amazonaws.com/academia.edu.documents/35995629/FEA_of_Nonlinear_Problems_2011_Ivanco.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1479744359&Signature=q0BmeznZ2MliOdUgGIRWaXW8D6I%3D&response-content-disposition=inline%3B filename%3DNONLINEAR_FINITE_ELEMENT_ANALYSIS_SCRIPT.pdf
https://uta-ir.tdl.org/uta-ir/handle/10106/5385
https://books.google.co.in/books?hl=en&lr=&id=BRcdDu4bUhMC&oi=fnd&pg=PR13&dq=An+Introduction+to+Composite+Materials:+Hull++&ots=E2F9lzK27-&sig=FpWHTB37nYKU4_NtLWpcgng7Z5k#v=onepage&q=An Introduction to Composite Materials%3A Hull&f=false
https://books.google.co.in/books?hl=en&lr=&id=BRcdDu4bUhMC&oi=fnd&pg=PR13&dq=An+Introduction+to+Composite+Materials:+Hull++&ots=E2F9lzK27-&sig=FpWHTB37nYKU4_NtLWpcgng7Z5k#v=onepage&q=An Introduction to Composite Materials%3A Hull&f=false


Citation: Singh JP, Behera BK (2016) Prediction of Geometry of Loop Formed on Terry Fabric Surface Using Mathematical and FEM Modelling. J 
Material Sci Eng 6: 304. doi: 10.4172/2169-0022.1000304

Page 7 of 7

Volume 6 • Issue 1 • 1000304J Material Sci Eng, an open access journal
ISSN: 2169-0022 

17.	Sherburn M (2007) Geometric and mechanical modeling of textiles. Nottingham 
University, USA.

18.	Lin H, Sherburn M, Crookston J, Long AC, Clifford MJ, et al. (2008) Finite 
element modelling of fabric compression. Model and Simul Mater Sci Eng 16: 
035010. 

19.	Yu WR, Kang TJ, Chung K (2000) Drape simulation of woven fabrics by using 
explicit dynamic analysis. J Textile Inst 91: 285-301. 

20.	Zhou N, Ghosh TK (1998) On-Line measurement of Fabric bending behaviour. 
Text Res J 68: 533.

http://eprints.nottingham.ac.uk/10303/
http://eprints.nottingham.ac.uk/10303/
http://iopscience.iop.org/article/10.1088/0965-0393/16/3/035010/meta
http://iopscience.iop.org/article/10.1088/0965-0393/16/3/035010/meta
http://iopscience.iop.org/article/10.1088/0965-0393/16/3/035010/meta
http://dx.doi.org/10.1080/00405000008659507
http://dx.doi.org/10.1080/00405000008659507

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Formation of Loop during Terry Weaving 
	Loop Shape Factor 
	Theoretical Analysis 
	Mathematical modelling 
	Finite element modelling 
	Actual loop profile 

	Results and Discussion 
	Loop shape by mathematical modelling 
	Loop shape by FEM model 
	Actual loop shape 
	Prediction accuracy of FEM model 
	Effect of loop length and yarn count on loop shape factor 

	Conclusions 
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	References

