

Precision Medicine: Revolutionizing Lung Cancer Treatment

Sun-Young Kim*

Department of Pulmonary and Critical Care Medicine, Seoul National University Hospital, Seoul, South Korea

Introduction

The early detection of lung cancer represents a cornerstone in improving patient prognosis, facilitating timely interventions that can lead to potentially curative treatments [1]. Significant advancements in screening technologies, particularly low-dose computed tomography (LDCT), have demonstrated considerable effectiveness in identifying lung nodules in their nascent stages, especially within high-risk demographics [1]. The subsequent molecular profiling of detected tumors is indispensable for guiding the selection of targeted therapies, which offer a more precise and less toxic approach compared to conventional chemotherapy [1]. These therapies, frequently developed based on specific genetic mutations such as EGFR, ALK, and ROS1, have dramatically reshaped the management of non-small cell lung cancer (NSCLC) and continue to evolve through ongoing research efforts [1].

The therapeutic landscape for lung cancer is undergoing a rapid transformation, propelled by a more profound understanding of the disease's molecular underpinnings [2]. Beyond established therapeutic targets, new driver mutations and mechanisms of resistance are continuously being identified, spurring the development of next-generation drugs [2]. Precision medicine strategies, incorporating comprehensive genomic profiling, are progressively becoming standard practice for informing treatment decisions in advanced NSCLC cases [2].

Low-dose computed tomography (LDCT) has conclusively proven its capacity to reduce lung cancer mortality by enabling earlier detection [3]. Nevertheless, the optimization of LDCT screening protocols, encompassing nodule characterization and subsequent follow-up strategies, remains an active area of investigation aimed at striking a balance between benefits and potential harms, such as minimizing false positives and unnecessary procedures [3].

The identification of actionable genetic alterations in NSCLC has significantly paved the way for targeted therapies that substantially enhance progression-free survival and overall survival in specific patient cohorts [4]. Ongoing research continues to uncover novel therapeutic targets and develop inhibitors designed to circumvent existing resistance mechanisms to current treatments [4].

Resistance to targeted therapies poses a substantial clinical challenge in the management of lung cancer [5]. A thorough understanding of the molecular mechanisms driving acquired resistance, including the emergence of bypass signaling pathways or secondary mutations, is paramount for devising effective strategies to re-sensitize tumors or transition to alternative treatment modalities [5].

Liquid biopsies, which analyze circulating tumor DNA (ctDNA), provide a less invasive method for molecular profiling and monitoring lung cancer [6]. These techniques are invaluable for detecting actionable mutations, identifying resistance mechanisms, and evaluating treatment response, serving as a valuable comple-

ment to tissue-based biopsies [6].

Immunotherapy has emerged as a critical treatment modality for lung cancer, particularly for patients exhibiting specific biomarkers like PD-L1 expression [7]. The synergistic combination of immunotherapy with either targeted therapy or chemotherapy is currently being explored to enhance outcomes across various NSCLC subtypes [7].

The application of artificial intelligence (AI) in the diagnosis and treatment of lung cancer is steadily increasing [8]. AI algorithms are being developed to improve the accuracy of nodule detection on LDCT scans, predict treatment responses, and personalize therapeutic strategies by analyzing complex patient data [8].

A multidisciplinary approach is fundamental to achieving optimal care for lung cancer patients [9]. Effective management necessitates close collaboration among pulmonologists, oncologists, radiologists, pathologists, and thoracic surgeons to ensure comprehensive staging, precise diagnosis, and carefully tailored treatment planning [9].

Addressing resistance to targeted therapies is a critical challenge in lung cancer treatment [10]. Investigating the molecular mechanisms underlying resistance and exploring strategies such as combination therapies, drug repositioning, and the development of novel therapeutic agents are crucial steps toward improving long-term patient outcomes in NSCLC [10].

Description

The advent of early detection methods for lung cancer, particularly through advancements in screening technologies like low-dose computed tomography (LDCT), has profoundly improved patient outcomes by enabling timely interventions [1]. LDCT is particularly effective in identifying early-stage lung nodules in high-risk populations, thereby facilitating prompt therapeutic engagement [1]. Following detection, the molecular profiling of tumors is a critical step that guides the selection of targeted therapies, which offer a more personalized and less toxic treatment approach compared to traditional chemotherapy [1]. These targeted therapies, often predicated on the identification of specific genetic mutations such as EGFR, ALK, and ROS1, have revolutionized the treatment paradigm for non-small cell lung cancer (NSCLC) and continue to be refined through ongoing research [1].

The field of targeted therapy for lung cancer is experiencing rapid expansion, driven by an evolving understanding of the disease's molecular basis [2]. Beyond well-characterized targets, researchers are continually identifying novel driver mutations and resistance mechanisms, which in turn fuels the development of new drug generations [2]. The integration of precision medicine, which includes com-

prehensive genomic profiling, is becoming a standard component in the decision-making process for treating advanced NSCLC [2].

Low-dose computed tomography (LDCT) has proven its efficacy in reducing lung cancer mortality through its capacity for early detection [3]. However, the ongoing research focuses on optimizing LDCT screening protocols, including the precise characterization of nodules and the establishment of appropriate follow-up strategies, to effectively balance the benefits against potential harms such as false positives and unnecessary procedures [3].

The identification of actionable genetic alterations in NSCLC has been pivotal in the development of targeted therapies [4]. These therapies have demonstrated a significant ability to improve both progression-free survival and overall survival in carefully selected patient populations [4]. The continuous research efforts are dedicated to uncovering new therapeutic targets and developing innovative inhibitors capable of overcoming resistance mechanisms that may arise against existing treatments [4].

A significant clinical hurdle in the management of lung cancer is the development of resistance to targeted therapies [5]. Understanding the intricate molecular mechanisms that underpin acquired resistance, such as the emergence of compensatory signaling pathways or the development of secondary mutations, is absolutely essential for formulating effective strategies [5]. These strategies aim to re-sensitize tumors to therapy or facilitate a transition to alternative treatment options [5].

Liquid biopsies, which involve the analysis of circulating tumor DNA (ctDNA), offer a less invasive alternative for molecular profiling and monitoring of lung cancer patients [6]. Their utility extends to the detection of actionable mutations, the identification of resistance mechanisms, and the assessment of treatment response, thereby complementing traditional tissue-based biopsies [6].

Immunotherapy has emerged as a highly impactful treatment modality for lung cancer, particularly for individuals whose tumors express specific biomarkers like PD-L1 [7]. Current research is actively exploring the combination of immunotherapy with targeted therapies or chemotherapy to further enhance treatment outcomes across diverse NSCLC subtypes [7].

The utilization of artificial intelligence (AI) in the diagnosis and treatment of lung cancer is a burgeoning area of development [8]. AI algorithms are being designed to enhance the accuracy of nodule detection on LDCT scans, predict patient responses to therapy, and contribute to the personalization of treatment strategies by integrating complex patient data [8].

A multidisciplinary approach is critically important for optimizing the overall care of lung cancer patients [9]. This collaborative strategy involves close coordination among various specialists, including pulmonologists, oncologists, radiologists, pathologists, and thoracic surgeons, to ensure comprehensive staging, accurate diagnosis, and the development of individualized treatment plans [9].

Overcoming resistance to targeted therapies remains a paramount issue in the ongoing fight against lung cancer [10]. Research endeavors are focused on investigating the molecular underpinnings of resistance and exploring therapeutic strategies such as combination therapy, drug repositioning, and the development of novel agents to improve long-term prognoses for patients with NSCLC [10].

Conclusion

Early detection of lung cancer through methods like low-dose computed tomography (LDCT) significantly improves patient outcomes by enabling timely treat-

ment. Molecular profiling of tumors guides the selection of targeted therapies, which are more precise and less toxic than traditional chemotherapy. These therapies, based on genetic mutations, have revolutionized non-small cell lung cancer (NSCLC) management. The field is rapidly advancing with the identification of new driver mutations and resistance mechanisms, leading to the development of next-generation drugs and the increasing adoption of precision medicine. Liquid biopsies offer a less invasive approach for molecular profiling and monitoring. Immunotherapy has emerged as a key treatment modality, often combined with other therapies. Artificial intelligence is being developed to improve diagnosis and personalize treatment. A multidisciplinary approach involving various specialists is crucial for optimal care. Addressing resistance to targeted therapies remains a critical focus of ongoing research.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Ueda, Shingo, Ohta, Shigehiro, Tsujimura, Tomoaki. "Lung cancer screening: progress and future directions." *J Thorac Dis* 14 (2022):378-386.
2. Tan, W L, Ong, C, Jiang, W. "Targeted therapy for non-small cell lung cancer: Recent advances and future directions." *Cancer Treat Rev* 97 (2021):102226.
3. Aberle, Denise R., Schoenfeld, D. A., Huang, Ching C.. "Lung Cancer Screening With Low-Dose Computed Tomography." *JAMA* 319 (2018):2043-2050.
4. Pao, William, Miller, Vaibhav A., Sein, Christopher. "Genomic profiling of lung cancer: an evolving paradigm for personalized therapy." *Nat Rev Clin Oncol* 18 (2021):350-362.
5. Gao, Jian, Zhang, Yanhui, Wang, Changzheng. "Mechanisms of Resistance to Targeted Therapies in Non-Small Cell Lung Cancer." *JAMA Oncol* 6 (2020):1085-1097.
6. Lee, Ji-Young, Kim, Do-Hyun, Yoo, In-Ae. "Liquid biopsy for non-small cell lung cancer: a review." *Thorac Oncol* 18 (2023):671-685.
7. Borghaei, Hossein, Brimo, Fouad, Hashemian, Mohammad. "Immunotherapy in lung cancer: a review." *J Clin Oncol* 39 (2021):5000-5010.
8. Choi, Sung-Jin, Lee, Jin-Soo, Kim, Hyoung-Joo. "Artificial intelligence in lung cancer detection and diagnosis." *Acad Radiol* 29 (2022):465-475.
9. Ng, See Wei, Tan, Swee Hiang, Lim, Alvin. "Multidisciplinary team approach in lung cancer management." *Respirology* 25 (2020):159-169.
10. Tan, D. S., Le Tun, J., Fong, P. C.. "Overcoming resistance to targeted therapy in non-small cell lung cancer." *JAMA Oncol* 5 (2019):980-985.

How to cite this article: Kim, Sun-Young. "Precision Medicine: Revolutionizing Lung Cancer Treatment." *J Lung Dis Treat* 11 (2025):306.

***Address for Correspondence:** Sun-Young, Kim, Department of Pulmonary and Critical Care Medicine, Seoul National University Hospital, Seoul, South Korea, E-mail: sunyoung.kim@snac.kr

Copyright: © 2025 Kim S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-May-2025, Manuscript No. ldt-25-178429; **Editor assigned:** 05-May-2025, PreQC No. P-178429; **Reviewed:** 19-May-2025, QC No. Q-178429; **Revised:** 23-May-2025, Manuscript No. R-178429; **Published:** 30-May-2025, DOI: 10.37421/2472-1018.2025.11.306
