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Introduction
The current concept for the assessment of bioequivalence (BE) is 

based on the Fundamental Bioequivalence Assumption that when two 
formulations of the same drug product or two drug products (e.g., an 
innovative or brand name drug and its generic copy) are equivalent 
in the rate and the extent of drug absorption, it is assumed that they 
will reach the same therapeutic effect or that they are therapeutically 
equivalent [1]. Pharmacokinetic (PK) responses, such as area 
under the plasma or blood concentration–time curve (AUC) and 
maximum concentration (Cmax), are usually considered to assess the 
rate and the extent of drug absorption. The United States Food and 
Drug Administration (FDA) requires that evidence of BE in average 
bioavailabilities in terms of some primary PK responses such as AUC 
and Cmax between the two formulations of the same drug product or 
the two drug products be provided (FDA, 1992, 2003). This type of BE 
is referred to as average bioequivalence (ABE).

In practice, bioavailability and bioequivalence studies are usually 
conducted under a crossover design such as a standard 2x2 crossover 
design or a higher-order crossover design. Under a crossover design, 
bioequivalence is commonly evaluated using a two one-sided tests 
(TOST) procedure (each test is performed at a 5% level of significance) 
or a 90% confidence interval (CI) approach. Bioequivalence is claimed 
if the constructed 90% confidence interval for the geometric mean ratio 
(GMR) of the primary PK parameters (e.g., AUC and Cmax) of the 
two drug products (i.e., the test product and the reference product) 
falls entirely within the bioequivalence limit of (80%, 125%). Statistical 
methods for bioequivalence evaluation are well established and widely 
accepted in the pharmaceutical industry since the publication of the 
FDA guidance in 2003.

However, several practical issues are commonly encountered 
during the review of regulatory submissions of generic drug products. 
These practical issues include, but are not limited to, (i) the mixed 
use of the concepts of interval hypotheses and the confidence interval 
approach for bioequivalence evaluation, (ii) mis-interpretation of the 
power of TOST and the probability of claiming bioequivalence based 
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Abstract
For approval of generic drug products, the United States Food and Drug Administration (FDA) has published several 

regulatory guidance to assist the sponsors in preparing documents, which provide substantial evidence for demonstration 
of bioequivalence between a generic (test) product and its innovative (reference) product (e.g., FDA, 1992, 2003) 
through the conduct of bioavailability and bioequivalence studies. Bioavailability and bioequivalence studies are usually 
conducted under crossover designs such as a standard 2x2 crossover design or a higher-order crossover design. Under 
a crossover design, bioequivalence is commonly evaluated using a two one-sided tests procedure (each at a 5% level 
of significance) or a 90% confidence interval approach. Bioequivalence is claimed if the constructed 90% confidence 
interval for the geometric mean ratio falls entirely within the bioequivalence limit of (80%, 125%). Statistical methods for 
bioequivalence evaluation are well established and widely accepted in the pharmaceutical industry since the publication of 
the FDA guidance in 2003. However, several practical issues are commonly encountered during the review of regulatory 
submissions of generic drug products. In this article, these issues are described. In addition, some recommendations for 
possible clarification and/or resolutions are made.

on the confidence interval approach, (iii) sample size requirement 
under higher-order crossover designs, (iv) inconsistency between test 
statistics under a 2x2 crossover design and a 2x2m replicated crossover 
design, (v) justification for log-transformation, (vi) statistical methods 
for detection of outlying subjects, (vii) missing values at later dosing 
periods, (viii) the relationship between bioequivalence criteria and 
variability, (ix) bioequivalence assessment based on binary responses, 
and (x) post-approval equivalence in manufacturing process. In this 
article, these issues are described. In addition, some recommendations 
for possible clarification and/or resolutions are made whenever 
possible.

TOST versus CI Approach
As indicated in the 2003 FDA guidance on bioequivalence, the 

FDA recommends the following interval hypotheses for testing 
bioequivalence between a test product and a reference product in terms 
of pharmacokinetics (PK) responses such as area under the blood 
concentration time curve (AUC) or maximum concentration (Cmax) 
based on log-transformed PK data:

0 :     L U UH orθ δ θ δ θ≤ ≥  vs. : a L UH δ θ δ< < ,                    (1)

Where θ=μT/μR, μT and μR are mean PK response for the test product 

and the reference product, respectively, δL=0.8 and 
1 1.25U

L

δ
δ

= = .

Under the interval hypotheses (1), Schuirmann [2] suggested 
a two one-sided tests (TOST) procedure be used. In many cases, 
under certain conditions, TOST (each side is tested at the α level 
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of significance) is operationally equivalent to the (1-2α) × 100% 
confidence interval (CI) approach for the evaluation of bioequivalence. 
In other words, we may claim that the test product is bioequivalent to 
the reference product if the constructed (1-2α) × 100% CI falls entirely 
within the bioequivalence limits (δL, δU). As a result, in practice, for 
convenience sake, the (1-2α) × 100% CI is often used for evaluation of 
bioequivalence. This CI approach, however, has created the following 
confusion that the use of 90% CI (if we choose α=5%) may have 
inflated the overall type I error rate from 5% to 10%. This confusion 
has been challenged by many authors for adopting different standards 
for regulatory approval of generic drug products (i.e., α=10%) and new 
drugs (i.e., α=5%). To address this issue, Chow and Shao [3] showed 
that Schuirmann’s TOST is a size-α test. In addition, it should be noted 
that (i) the concept of interval hypotheses is different from that of the 
CI approach, (ii) TOST is the official test procedure recommended by 
the agency (see, e.g., FDA 1992, 2003), (iii) TOST, each side is tested at 
the α level of significance, is not generally equivalent to the (1 - 2α) × 
100% CI approach for evaluation of bioequivalence. For example, for 
bioequivalence studies with binary responses, TOST, each side is tested 
at α level of significance, is not equivalent to the (1 - 2α) × 100% CI 
approach for evaluation of bioequivalence.

Thus, for evaluation of bioequivalence between a test product 
and a reference product, it is then suggested that which method is 
recommended by the agency should be clarified in the future revision 
of the guidance.

Power and the Probability of Claiming Bioequivalence
Based on the discussion above, it is clear that the concept of interval 

hypotheses testing (i.e., TOST) is very different from that of the 90% CI 
approach. Under a standard 2x2 crossover design and the assumption 
of log-normality, assuming that –δL=δU=δ, and denote by ε=μT − μR, the 
following interval hypotheses is often tested for equivalence

H0 : |ε| ≥ δ  vs.  Ha : |ε| < δ,                    (2)

Where δ is bioequivalence limit (margin). The test drug is then 
concluded to be equivalent to the reference product in average if 
the null hypothesis is rejected at significance level α. Let x  and 2x  
be the sample mean for the test product and the reference product, 
respectively. Also let n1 and n2 be the sample size for the test product 
and the reference product, respectively. When σ2 is known, the null 
hypothesis H0 of (2) is rejected at the α level of significance if

1 2 1 2

1 2 1 2
1 1 1 1

  and  .
n n n n

x x x xz zα α
δ δ

σ σ
− − − −

< − >
+ +

                 (3)

Under the alternative hypothesis that |ε| < δ, the power of this test 
is given by
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                  (4)

Based on (4), an appropriate sample size is often chosen for 
achieving a desired power for establishment of bioequivalence (i.e., the 
probability of correctly claiming bioequivalence between a test product 
and a reference product when in fact the test product is bioequivalent 
to the reference product).

On the other hand, if the 90% CI approach is used, we may choose 
an appropriate sample size in order to have the following desired 

probability of claiming bioequivalence

( ){ }90%  90%  ,CI L Up P CI δ δ=                     (5)

It should be noted that p90%CI given in (5) is not the same as the 
power of the TOST given in (4). In practice, however, power analysis 
for sample size calculation is usually performed based on interval 
hypotheses (2) but the bioequivalence assessment is often done based 
on the 90% CI approach. Thus, it is suggested that (i) the agency should 
clarify what is the official method (either TOST or the 90% CI approach) 
for bioequivalence evaluation and (ii) sample size determination 
should be made under the official method for consistency.

Sample size

Under a standard 2x2 crossover design and interval hypotheses (2), 
the power function of TOST when σ2 is known is given in (4). Thus, the 
sample size needed to achieve power 1− β can be obtained by solving 
the following equation
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−
                    (6)

When σ2 is unknown, it can be replaced by s2 in (3). The null 
hypothesis H0 is rejected at the α level of significance if
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Under the alternative hypothesis that |ε| < δ, the power of this 
TOST test is given by
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Hence, with n1=κn2, the sample size n2 needed to achieve power 
1 − β can be obtained by setting the power to 1 − β. Since the power is 
larger than,

1 2 1 2

1 2
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δ ε
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a conservative approximation to the sample size n2 can be obtained by 
solving,

2 2

2
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                   (8)

Thus, under a standard 2x2 crossover design, sample size can be 
obtained either using (6) when σ2 is known or solving equation (8) 
when σ2 is unknown. In practice, however, power analysis for sample 
size calculation for bioequivalence studies is often performed under a 
2 x 2 crossover design regardless a higher-order crossover design such 
as 4 x 2 Balaam’s crossover design, 2 x 3 dual crossover design, or 2 x 
4 crossover design (or duplicated 2 x 2 crossover design) is used. Table 
1 summarizes four commonly used higher-order crossover designs in 
bioequivalence evaluation.
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For higher-order crossover designs comparing two formulations of 
the same drug products or two drug products, similar formulae can 
be derived [4]. Because the power curves of Schuirmann’s two one-
sided tests procedure are symmetric about zero, we present only the 
equations for the case where q ³ 0. Let ni be the number of subjects in 
each sequence i, have the same value n, and Fv denote the cumulative 
distribution function of the t distribution with v degrees of freedom. 
Then the power function, Pk (θ) of Schuirmann’s two one-sided tests at 
the a level of significance for design (k) is given by

( ) ([( ) / ( / )] ( , ))

( ( , ) [( ) / ( / )]) 1, 2, 3, 4
k

k

k k k

k k

P F CV b n t

F t CV b n for k
ν

ν

θ θ α ν

α ν θ

= ∆ − −

− − ∆ + =
    (9)

Where ν1=4n - 3, ν2=4n - 4, ν3=6n - 5, ν4=12n - 5, b1=2, b2=3/4, 
b3=11/20, and b4=1/4.

Hence, the exact equation for determination of n required to 
achieve a 1 − b power at the a nominal level for each design (k) when 
q=0 is the following:

2 2[ ( , ) ( /2, )] [ / ] 1, 2, 3, 4k k kn b t t CV for kα ν β ν≥ + ∆ =  (10)

And if q > 0 the approximate formula for n is
2 2[ ( , ) ( , )] [ / ( )] 1, 2, 3, 4k k kn b t t CV for kα ν β ν θ≥ + ∆ − =  (11)

For the multiplicative model, we consider the (0.8, 1.25) 
bioequivalence range of mT/mR, denoted by d, where mT and mR denote 
the median bioavailabilities of the test and reference formulations, and 
let 1n denote the natural logarithm. Similarly, the sample size n required 
to achieve a 1 − b power at the a nominal level for each corresponding 
design (k) after the logarithmic transformation is determined by the 
following equations:
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And
2 2[ ( , ) ( , )] [ / ( )] 1, 2, 3, 4k k kn b t t CV for kα ν β ν θ≥ + ∆ − =  (12)

In the above equations, b is the probability of a type II error 
concluding bioinequivalence when, in fact, the two formulations are 
bioequivalent, d, 2exp( ) 1mCV σ= − , the coefficient of variation in the 
multiplicative model, and s2, the residual (within-subject) variance of 
the logarithmically transformed characteristics, can usually be obtained 
from previous studies. However, because the degrees of freedom are 
usually unknown, an easy way to find the sample size is to enumerate n.

Inconsistency between test statistics under a 2 x 2 crossover 
design and a 2 x 2 m replicated crossover design

A commonly asked question in the assessment of average 
bioequivalence is that there is an inconsistency between test statistics 
given in this book (second edition) and the one as described in the FDA 
draft guidance. It should be noted that test statistic for assessment of 
ABE given in this book was derived under a 2 x 2 crossover design 
and the test statistic as described in the FDA guidance was derived 
under a replicated 2 x 2 m crossover design. However, the test statistics 

derived under a replicated 2 x 2 m crossover design is reduced to the 
test statistics derived under a 2 x 2 crossover design given in our book 
if m=1. In addition, the current regulatory requirement for approval of 
generic drug is still average bioequivalence. As a result, the 2003 FDA 
guidance for general considerations recommends non-replicate 2 x 2 
crossover design for bioequivalence studies of immediate-release and 
modified-release dosage forms (p. 7 of the guidance). It follows that the 
test statistics under the standard 2 x 2 crossover design should be used 
for evaluation of average bioequivalence.

To address the inconsistency, first we would like to point out 
that the assessment of ABE is usually done under a 2 x 2 crossover 
design under certain assumptions (e.g., σBT=σBR=σS, where σBT and σBR 
are between subject variability for the test product and the reference 
product, respectively, and σBT=σBR=σ, where σWT and σWR are within 
subject variability for the test product and the reference product, 
respectively.). For convenience’s sake, we will refer to the statistical 
model under the 2 x 2 crossover design with these assumptions as the 
classical model. However, in practice, these assumptions may not hold. 
If there are replicates, we will be able to provide independent estimates 
for σBT, σBR, σWT, and σWR. In this case, the FDA suggests a mixed effects 
model be used. I will refer to the statistical model with the assumption 
that (i) σBT and σBR are not necessarily the same and (ii) σWT and σWR are 
not necessarily the same as the FDA’s model. The difference between 
the classical model and the FDA’s model is summarized below.

FDA’s model – As an example, consider a 2x6 crossover design, i.e., 
(ABABAB, BABABA), the following mixed effect model is considered:

,ijkl k ik ik ijkly s eµ γ= + + +

where ijkly  is the pharmacokinetics (PK) response from the jth 

(j=1,⋯,n) subject in the ith (i=1,2) sequence under the lth (l=1,2,3) 
replicate of treatment k (k=1:test,2: reference), μk is the k th formulation 
effect such that μ1− μ2=δ, γ ik, is the fixed effect of the ith sequence under 
treatment k, Sik is the random effect of the ith subject under treatment 
k, (Si1, Si2), i=1,⋯,n are assumed to be independent and identically 
distributed (i.i.d.) as bivariate normal random variable with mean 0 
and covariance matrix.

2

2

,
,

BT BT BR

BT BR BR

σ ρσ σ
ρσ σ σ

 
 
 

.

eij1l’s are assumed to be i.i.d normal random variables with mean 0 and 
variance, 2

WTσ and eij2l’s are assumed to be i.i.d normal random variables 
with mean 0 and variance 2

WRσ .

Classical model under a 2x2 design – Classical model is essentially 
the same as FDA’s model under the assumption that Si1=Si2, i=1, ⋯, n, 
which implies that σBT=σBR and ρ=1. Consequently, the variability due 
to formulation-by-subject interaction

2 2 2 2 0D BT BR BT BRσ σ σ ρσ σ= + − = .

This may not be true under the FDA’s model. As a result, under 
different models with different assumptions, test statistics for 
assessment of ABE could be different.

For example, under the 2x2 design, the unbiased estimates for δ 

and 2
WTσ , 2

BRσ  are given by 
2

11 21
1 1

1ˆ ( )
2

n

ij ij
i j

y y
n

δ
= =

= −∑∑ , which follows a 

normal distribution 
2 2,ˆ ( , )
2

WT WRN
n

σ σδ δ . On the other hand, under 

k pxq Crossover Design Description
1 4 x 2 Balaam’s design
2 2 x 3 Two-sequence dual design
3 2 x 4 Four-period design with two sequences
4 4 x 4 Four-period design with four sequences

Table 1: Four commonly used crossover designs in bioequivalence studies.
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the FDA’s model, we have 
2 2 2,ˆ ( , )

2
D WT WRN

n
σ σ σδ δ +

  Now, under a 

2xm design (e.g., m=4,6), let )(1
1 ijkmijkijk yy

m
y ++=•  . Then the 

unbiased estimates for δ is given by
2

1 2
1 1

1ˆ ( )
2

n

ij ij
i j

y y
n

δ • •
= =

= −∑∑ . Under 

the classical model, we have 
2 2, /ˆ ( , )

2
WT WR mN

n
σ σδ δ . On the other 

hand, under the FDA’s model, 
2 2 2( , ) /ˆ ( , )

2
D WT WR mN

n
σ σ σδ δ +



.

As discussed above, we have the following observations. First, the 
ABE is established based on δ̂ . According to the above discussion, it is 
clear that based on the FDA’s model, increasing the number of replicates 
does not decrease the variability due to the subject-by-formulation 
interaction. Especially in our simulation study, we choose ρ=0.75 
and, 2

BTσ  and 2
BRσ  are not necessarily equal to each other. Therefore, 

2 0Dσ ≠ , which prevent the further improvement of ABE. Second, 
for assessment of ABE under a 2x2 crossover design, the methods 
described in Chow and Liu (2008), which assumes 2 0Dσ = , has been 
widely used and accepted in practice. The reason of such observations 
comes can be explained as follows. Under the 2x2 crossover design, 
ρ, 2

BTσ  and 2
BRσ  are confounded with 2

WRσ  thus cannot be separated. 
As a result, the assumption that 2 0Dσ =  is necessarily made for a 
valid statistical assessment of ABE. However, as indicated in the 2003 
FDA guidance, the assumption of 2 0Dσ =  may not hold. In addition, 
replicated crossover designs provide independent estimates of ρ and all 
variance components.

Log-transformation

Both the 1992 and 2003 FDA guidance provide the pharmacokinetic 
rationale as the clinical rationale for use of logarithmic transformation 
of exposure measures. In addition, both guidance do not encourage 
the sponsors to test for normality of error distribution after log-
transformation, nor to use normality of error distribution as a reason 
for carrying out the statistical analysis on the original scale.

With respect to the pharmacokinetic rationale, deterministic 
multiplicative pharmacokinetic models are used to justify the routine 
use of logarithmic transformation for AUC and Cmax. However, the 
deterministic PK models are theoretical derivations of AUC and Cmax 
for a single object. Both guidance suggest that AUC be calculated 
from the observed plasma–blood concentration–time curve using the 
trapezoidal rule, and that Cmax be obtained directly from the curve, 
without interpolation. It is not known whether the observed AUC and 
Cmax can provide good approximations to those under the theoretical 
models if the models are incorrect.

On the other hand, assessment of bioequivalence requires statistical 
models that take into consideration the design features and the random 
components caused by inter-subject and intrasubject variations. The 
validity of the statistical inferences, such as confidence intervals and 
hypotheses testing, relies on the normality assumption of the random 
components in the statistical models. Consequently, determination 
of a scale of the exposure responses for assessment of bioequivalence 
also should be based solely on whether the random components in the 
statistical models satisfy the normality assumption.

The AUC and Cmax are calculated from the observed plasma–blood 
concentrations. Therefore, the distributions of the observed AUC and 
Cmax depend on the distributions of plasma–blood concentrations. Liu 
and Weng [5] showed that the log-transformed AUC and Cmax do not 

generally follow a normal distribution, even when either the plasma 
concentrations or log-plasma concentrations are normally distributed. 
This argues against the routine use of the logarithmic transformation in 
assessment of bioequivalence. Moreover, Patel [6] also pointed out that 
performing a routine log-transformation of data and then applying 
normal theory-based methods is not a scientific approach. In addition, 
the sample size of a typical BE study is general too small to allow an 
adequate large-sample normal approximation.

Because current statistical methods for evaluation of bioequivalence 
are based on the normality assumption on the inter-subject and 
intrasubject variabilities, the examination of the normal probability 
plots for the studentized inter-subject and intrasubject residuals should 
always be carried out for the scale intended to be used in the analysis. 
In addition, formal statistical tests for normality of the inter-subject 
and intrasubject variabilities can also be carried out through Shapiro-
Wilk’s method. Contrary to the misconception of many people, 
Shapiro-Wilk’s method is an exact method for small samples, such as 
bioequivalence studies. It is then scientifically imperative that tests for 
normality be routinely performed for the sale used in analysis, such as 
log-scale, is suggested in the guidance. If normality cannot be satisfied 
by both original-scale and log-scale, nonparametric methods should be 
employed.

Other issues concerning the routine use of the logarithmic 
transformation of exposure responses are the equivalence limits 
and presentation of the results on the original scale. The guidance 
recommends that the bioequivalence limits of (80%, 125%) on the 
original scale for assessment of average bioequivalence be used. On 
the log-scale, they are (log(0.8), log(1.25))=(-0.2231, 0.2231), where log 
denotes the natural logarithm. This set of limits is symmetrical about 
zero on the log-scale but it is not symmetrical about on the original 
scale. It should be noted that the rejection region of Schuirmann’s 
two one-sided tests procedure associated with the new limits of (80%, 
125%) is larger than that with the limits of (80%, 120%). As a result, 
a 90% confidence interval of (82%, 122%), for the ratio of averages 
of AUC between the test and reference formulations, will pass the 
bioequivalence test by the new limits, but not by the old limits. The 
new bioequivalence limits are 12.5% wider and 25% more liberal in 
the upper limit than the old limits. A new, wider upper bioequivalence 
limit may have an influence on the safety of the test formulation, which 
should be carefully examined if the new bioequivalence limits are 
adopted.

The FDA guidance requires that the results of analyses be presented 
on the log-scale as well as on the original scale, which can be obtained 
by taking the inverse transformation. Because the logarithmic 
transformation is not linear, the inverse transformation of the results 
to the original scale is not straightforward [7]. For example, the point 
estimator of the ratio of averages on the original scale obtained from 
the antilog of the estimator of difference in averages on the log-scale 
is biased and is always overestimated. Furthermore, the antilog of the 
standard deviation of the difference in averages on the log-scale is not 
the standard deviation for the point estimator of the ratio of the averages 
on the original scale. Further research is needed for the presentation of 
the results on the original scale, especially the estimation of variability 
after the analyses are performed on the log-scale.

Current regulation does not encourage the verification of the 
assumption of log-normality for the primary PK parameters such as 
AUC and Cmax [8]. The requirement of log-transformation needs to 
be scientifically or statistically justifiable. Also, “What if the distribution 
is still skewed after log-transformation?” and “Can non-parametric 
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method be used for bioequivalence assessment?” are questions of 
particular interest to the sponsors which need to be addressed.

Outlier detection

The 1992 FDA guidance provides a pharmacokinetic definition 
of subject outliers and provides possible causes for their occurrence. 
The FDA guidance suggests that Lund’s method [9] be used for outlier 
detection. Although Lund’s method is useful in a linear regression 
setting that requires statistical independence of all PK responses, this 
method may not be appropriate for a crossover design in which the 
PK responses from the same subject are correlated. Although Lund’s 
method may be applied to the difference of the PK responses between 
the test and the reference formulations from the same subject in a 
standard two-sequence, two-period crossover design, it does not 
account for the feature of the study design. Moreover, it does not 
eliminate other nuisance effects; hence, it cannot be applied to other 
crossover designs.

As an alternative, Chow and Tse [10] first proposed two formal 
statistical test procedures for detection of a subject outlier in any 
crossover designs for assessment of bioequivalence. Their methods are 
the extension of Cook’s likelihood distance [11]. Their methods are 
valid for large samples. For small samples, Liu and Weng proposed 
the use of Hotelling T2 for detection of multiple subject outliers. Wang 
and Chow [12,13] proposed a procedure for detection of outliers under 
a mean-shift model. Although Liu and Weng’s method is an exact 
method for small samples, it requires some special tables for critical 
values. Frequently, a subject may be considered an outlier based on the 
difference between the test and reference formulations. This subject, 
however, may not be considered an outlier based on the ratio. The 
reason for this conflict is that the design structure, statistical model, 
and scale for analysis are not taken into account for outlier detection. 
As a result, it is recommended that the detection of subject outliers 
should be carried out with a scale (original scale or the log-scale) 
intended for analysis under an appropriate statistical model for the 
design employed. In summary, Lund’s method cannot take all of these 
factors into account for detecting subject outliers. Chow and Tse’s 
method, Liu and Weng’s procedures, and Wang and Chow test can 
accommodate the design, scale, and statistical models for detection of 
subject outliers. Ramsay and Elkum [14] conducted a simulation study 
to compare the above four methods.

The 2003 FDA guidance suggest that product failure and subject-
by-formulation interaction are the two causes of outliers in a BE study. 
In addition, it discourages any deletion of outliers. Although statistical 
procedures for detection of outliers are available, these methods are 
derived from the model for assessment of average bioequivalence. 
Consequently, they are inadequate for identification of outliers in 
assessment of either PBE or ABE. More research on this topic is 
urgently needed.

In the current guidance, Lund’s method was recommended for 
outlier detection. Lund’s method is a valid method under a parallel-
group design. It is not a valid statistical method for outlier detection in 
bioequivalence trials.

Missing data

In bioequivalence trials comparing a test product with a reference 
product, the dataset is often incomplete for various reasons (protocol 
violations, failure of assay methods, missed visits, etc.) if there are more 
than two dosing periods. For example, for bioequivalence studies using 
a two-sequence, three-period crossover design or a two-sequence, 

four-period crossover design, subjects are likely to drop out at the third 
period because they are required to return for tests more often than 
a standard two-sequence, two-period crossover design. Also, due to 
cost or other administrative reasons, sometimes not all of the subjects 
receive treatments beyond the second dosing period. In this case, one 
may not apply directly standard statistical methods for a crossover 
design to an incomplete or unbalanced dataset. Current regulation 
does not address the issue of missing data in depth.

A simple and naive way to analyze an incomplete dataset from a 
two-sequence three-period crossover design is to exclude the data from 
subjects who do not receive all three treatments so that one can treat 
the dataset as if it is from a two-sequence, three-period crossover design 
with smaller sample sizes. This, however, may result in a substantial 
loss in efficiency when the dropout rate is appreciable. Alternatively, it 
is suggested that subjects with missing data be replaced for achieving 
the desired power for establishment of bioequivalence. In this case, 
the intended bioequivalence study become an add-on bioequivalence 
study. It is a concern that the subjects for replacement of subjects with 
missing data may come from a similar but different target population. 
Statistical methods for bioequivalence evaluation of an add-on 
bioequivalence study are not well established. More research is needed.

Under a two-sequence, three-period crossover design, for inference 
on the treatment and carry-over effects, Chow and Shao [15] proposed 
a method based on differences of the observations that eliminates the 
random subject effects and thus does not require any distributional 
condition on the random subject effects. When no data is missing, 
Chow and Shao’s method provides the same results as the ordinary 
least squares method. When there are missing data, Chow and Shao’s 
method still provides exact confidence intervals for the treatment 
and carry-over effects, as long as the dropout is independent of the 
measurement errors.

Bioequivalence Criteria and Variability
Chow [16] studied the relationship between bioequivalence limit 

and variability (or the impact of variability on the bioequivalence 
limit under a parallel design for assessment of biosimilarity between 
a proposed biosimilar product and a reference product. The idea 
can be similarly carried out under a crossover design. Let’s denote 
independent samples of Ti and Rj be the observations of T and R with 
i=1,⋯,nT and j=1,⋯,nR. Without loss of generality, assume Ti and Rj are 
independent samples from N(μT, VT) and N(μR, VR) respectively. Then 
the 100(1-2α)% confidence interval based on the parallel design for μT 
− μR can be expressed as

( ) ( )1 1 ,   T R T R

T R T R

V V V VT R Z T R Z
n n n nα α− −

 
− − + − + + 

  
where T  and R  are the unbiased estimators of μT and μR, and Z1- 𝛼 is 
the (1-𝛼) percentile of standard normal distribution. The ABE of the 
test product and reference product will be concluded at significance 
level of α if the above confidence interval lies entirely within (δL, δU). 
Thus, the probability of concluding ABE can be expressed as

( ) 1( T R
L

T R

V VP T R z
n nαδ −≤ − − + and ( ) 1 )T R

U
T R

V VT R z
n nα δ−− + + ≤

( )1 1( .T R T R
L U

T R T R

V V V VP z T R z
n n n nα αδ δ− −= + + ≤ − ≤ − +

In particular, if δ=δU=−δL), nT=anR , VT=bVR, and denote
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1 * R
R R

bC
n an

µ
 

= + 
 

, the above equation can be expressed as

( )1 1
1 1* *R R
R R R R

b bP z V T R z V
n an n anα αδ δ− −

       − − + ≤ − ≤ − +    
       

( )1 1
1 1* * * *R R R R
R R R R

b bP z CV T R z CV
n an n anα αδ µ δ µ− −

       = − − + ≤ − ≤ − +    
       

( ) [ ] ( )11 * ** *
* *

R T RR T R

R R

z C CVz C CV
C CV C CV

αα δ µ µδ µ µ −−  − − − − − − −    = Φ −Φ   
      

Since the power of the test is defined as correctly concluding 
average bioequivalence when μT − μR is 0 or close to 0 (within the 
bioequivalence limit), we can obtain the required bioequivalence limit 
(δ) to achieve desired power and type I error given the variability as 
measured by coefficient of variation (CV) by solving the equation of

( ) [ ] ( )11 * ** *
1

* *
R T RR T R

R R

z C CVz C CV
C CV C CV

αα δ µ µδ µ µ
β−−  − − − − − − −    Φ −Φ = −   

      
. (13)

In (13) using the first order of Taylor expansion around μT − μR, 
we obtain

( ) ( )1 * *
2* 1 1 .

*
R T R

T R
R

z C CV
o

C CV
αδ µ µ

µ µ β− − − −  Φ − + − = − 
  

Solving the equation, we get

( ) ( ) ( )1 1 / 2 * * R T R T RZ Z C CV oα βδ µ µ µ µ− −= + + − + −

Therefore, when μT − μR is close 0, the closed form of relationship 
between δ and CV can be approximated as

( )1 1 / 2 * * RZ Z C CVα βδ − −= +                     (14)

When μT − μR is largely deviated from 0 (outside of the bioequivalence 
limit for example), the probability of concluding bioequivalence in 
expression (13) will be mainly obtained by one side of the interval.

( )1 1
T R T R

T R T R

V V V VP z T R z
n n n nα αδ δ− −

   − − + ≤ − ≤ − +  
    

( )1

if  0

T R
T R

T R
T R

T R

T R

V Vz
n n

V V
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αδ µ µ
µ µ

−

 
− + − − 
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( )1 1
T R T R

T R T R

V V V VP z T R z
n n n nα αδ δ− −
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Under this situation, we get
1 * *1 1 1 1

V V bT RZ Z Z Z CVT R R R T Rn n n anT R R R
δ µ µ µ µ µα β α β

                
= + + + − = + + + −− − − −   (15)

Expression (14) and (15) above provide us some closed form 
of relationship between bioequivalence limit (δ) and variability as 
measured by CV, approximately. The precise numerical solution and 
the approximation from those close forms are off slightly as CV goes 

beyond 1. But the difference decreases as the sample size increase. The 
relationship provided in closed form (14) and (15) motivates the use of 
scaled bioequivalence limits.

Another observation from expression (14) and (15) is that the 
required margin is linearly related with the coefficient of variation (CV) 
given the fixed choice of type I error, desired power, and sample size. 
In a traditional PK bioequivalence study where sample size is generally 
less (e.g. n is from 18-24), the margin of 20%± 20%*μR will provide 
sufficient power for CV≤ 30%, which is consistent with current generally 
accepted criteria. For highly variable drug products, the sample size 
per group could go up to fifty or hundreds per group. With the larger 
sample sizes, a fixed margin of ± 20%*μR can provide sufficient power 
for CV up to 40%. However, when CV is even larger than 40% which 
is commonly seen in biological products, scaled margin need to be 
applied to account for the large variability of the reference drug itself.

Apparently, bioequivalence limit depends upon the variability 
associated with the reference product. Table 2 summarizes current 
bioequivalence criteria for in vitro and in vivo bioequivalence testing 
recommended by the FDA. As it can be seen from Table 2, for in 
vitro bioequivalence testing, FDA recommends the use of (90%, 
111%) as the bioequivalence limit, while for in vivo bioequivalence 
testing, bioequivalence limit of (80%, 125%) is suggested. In most 
cases, we expect to have a less variability (say less than 6%) in in vitro 
bioequivalence testing, while a moderate variability (say 20% to 30%) 
in in vivo bioequivalence testing. As the variability increases, a wider 
bioequivalence limit is expected or justified. For example, for highly 
variable drug products, FDA suggested a scaled average bioequivalence 
(SABE) criterion be used (Haidar et al., 2008). SABE is a criterion 
based on (80%, 125%) adjusted for the variability associated with the 
reference. Thus, in the revised guidance, it is suggested the relationship 
between the bioequivalence limit and variability associated with the 
reference product be established (Table 2).

Continuous Endpoint versus Binary Response
Current regulation for bioequivalence evaluation only focuses 

on continuous endpoints (i.e., AUC and Cmax). However, in many 
bioequivalence studies, binary responses are considered as the 
primary study endpoints (e.g., for locally acting drug products such as 
nasal spray drug products). In this case, standard methods (e.g., the 
90% confidence interval approach) based on continuous endpoint 
cannot be applied directly for bioequivalence evaluation because 
TOST is not operationally equivalent to the 90% confidence interval 
approach for binary responses. Besides, it is not clear that (i) should 
log-transformation be performed before data analysis? (ii) whether the 
bioequivalence should be assessed based on difference in proportion 
between the two products or ratio of proportions or odds ratio of the 
two products, and (iii) what bioequivalence criteria should be used for 
difference in proportion, ratio of proportions, and/or odds ratio of 
proportions between the test product and the reference product.

However, there is little or no mentions of statistical approaches for 
bioequivalence evaluation based on study endpoint of binary response 

 Variability BE Criterion Application
<10% (90%, 111%) In vitro BE testing

10%-20% (85%, 118%)1 or SABE2 In vivo BE testing
20%-30% (80%, 125%) In vivo BE testing

>30% (70%, 143%)1 or SABE2 Highly variable drugs

Note: 1suggested BE criterion. 2Scaled average bioequivalence (SABE) criterion.
Table 2: Bioequivalence criteria and variability.
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in the current guidance on bioequivalence. Thus, for bioequivalence 
studies with binary endpoints, bioequivalence criteria, study endpoints, 
and the corresponding statistical methods need to be developed under 
the study design for a valid, accurate, and reliable assessment of 
bioequivalence. Along the same line, criteria and statistical methods 
need to developed for bioequivalence studies with other types of study 
endpoints such as time-to-event data.

Post-Approval BE in Manufacturing Process
Since bioequivalence evaluation is usually done based on few small-

scaled laboratory batches, it is important to evaluate the performance 
of the manufacturing process post-approval. For this purpose, the 
manufacturing process is necessarily validated according regulations as 
described in the current Good Manufacturing Practices (cGMP). The 
validation of a manufacturing process assures not only that the process 
does what it purports to do but also that the drug product will conform 
to United States Pharmacopeia and National Formulary (USP/NF) 
specifications. In practice, however, although the manufacturing 
process is validated, it is still a concern whether the manufacturing 
process will produce approved generic drug products which will possess 
good drug characteristics such as identity, strength, quality, purity, 
and stability as compared to the brand-name drugs. Thus, it may be a 
good idea to establish/document equivalence in manufacturing process 
between the test product and the reference product post-approval.

Conclusion
In the past several decades, criteria, statistical designs, and analysis 

methods for bioequivalence evaluation of generic drug products are 
well established (FDA, 1992, 2003). However, some practical issues are 
inevitably encountered during the review and approval of regulatory 
submissions. These practical issues may have an impact on the review 
and approval process. Thus, these issues need to be either clarified or 
resolved.

Practical issues that need clarification or resolution include (i) 
what is the official method (either TOST or the confidence interval 
approach) for bioequivalence evaluation? (ii) power analysis for 
sample size calculation should be performed based on the official 
method for bioequivalence evaluation under study design of the 
intended bioequivalence trial, (iii) inconsistency between the FDA’s 
recommended method (based on mixed effects model) and the classical 
method for bioequivalence under a higher-order crossover design or 
a replicated crossover design, (iv) why log-transformation? (v) the 
validity of Lund’s method for outlier detection under a crossover design 
is questionable, (vi) appropriate statistical methods for bioequivalence 
evaluation based on incomplete dataset should be developed when there 
are missing data, and (vii) the relationship between bioequivalence 
criteria and the variability of the reference product.

In addition, current regulatory guidance does not cover 

bioequivalence studies with binary response or time-to-event data 
as the primary study endpoint. Thus, bioequivalence criteria and 
corresponding statistical methods are necessarily developed under 
a valid study design for an accurate and reliable assessment of 
bioequivalence. Furthermore, bioequivalence evaluation is usually 
done based on few small-scaled laboratory batches. It is a concern 
whether the approved generic drug products will possess similar good 
drug characteristics such as identity, strength, quality, purity, and 
stability post-approval. Thus, it is suggested that a provision on the 
establishment of equivalence in manufacturing process between the 
test product and the reference product be documented.
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