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Introduction
In geographic spatial epidemiology, researchers use spatial data 

to determine whether an observed pattern of disease has arisen 
by chance [1]. Three types of statistical methods, distance based, 
quadrat [2,3] and regression methods, are applicable to point data, 
i.e. data collected at the individual level, including precise measures
of subject residential location. Distance based methods, such as
Cuzick and Edwards Tk and Bonetti and Pagano’s M statistics, compare
expected and observed distributions of distances between cases in a
study sample [4,5] but have been criticized for unclear inferences as
statistics, based on distances, do not describe geographic locations
[6]. Quadrat methods, such as the spatial scan statistic, evaluate
the likelihood of cases falling within versus outside of a geographic
zone of interest [6]. The spatial scan statistic performed well with
high power estimates in a number of scenarios [7-9]; however it was
disadvantaged as, for a dichotomous outcome, stratified analyses
must be applied to adjust for covariates [10]. Kriging, a regression
method, is an interpolation technique where estimated outcome
values are produced based on observed data; however applications
are somewhat limited as models may only be applied to Gaussian
outcomes [11]. Of interest are generalized additive models (GAMs),
semiparametric extensions of generalized linear models that allow
nonlinear associations between outcomes and covariates [12].
In spatial epidemiology, Webster et al. [14] applied GAMs with a
bivariate locally weighted regression (LOESS) smoothing term [12,13]
to smooth over subject residential longitude and latitude [14].

Various hypothesis tests have been proposed to test for 
associations between the outcome and smoothed predictors in 
applications of GAMs. An approximate chi-square test (ACST), based 
on the likelihood ratio statistic, is available and is provided by 
standard software such as R [15] and S-Plus [16]; however the assumed 
asymptotic chi-square distribution is only approximate [12] and has 

been shown to have an inflated type I error rate [17]. Tusell (2001) 
proposed a permutation test when applying GAMs with a univariate 
spline smoother, Kelsall and Diggle (1998) proposed using Monte 
Carlo resampling, while other authors used bootstrap sampling 
methods [18-20] to compare observed statistics to distributions 
produced under the null hypothesis. Webster et al. [14] proposed a 
conditional permutation test (CPT) for applications of GAMs with a 
bivariate smoothing term.

For CPT, prior to analysis, Webster et al. [14] applied GAMs to 
observed data across a range of span (smoothing parameter) sizes and 
selected the span corresponding to the minimal Akaike Information 
Criterion (AIC). They computed the difference in deviance statistics of 
models including and excluding the LOESS smoothing term. Webster 
et al. applied GAMs to permuted datasets using the selected span 
from the observed data and corresponding difference in deviance 
statistics were recorded. The result was a permutation distribution 
conditioned on the selected span [14].

In a simulation study evaluating the type I error rates of ACST and 
CPT hypothesis tests applied with GAMs, two additional permutation 
tests were proposed. The first was the fixed span permutation test 
(FSPT) where the span size was determined a priori. The second 
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Abstract
In spatial epidemiology, when applying Generalized Additive Models (GAMs) with a bivariate locally weighted 

regression smooth over longitude and latitude, a natural hypothesis is whether location is associated with an outcome, 
i.e. whether the smoothing term is necessary. An approximate chi-square test (ACST) is available but has an inflated
type I error rate. Permutation tests can provide appropriately sized alternatives. This research evaluated powers of ACST
and four permutation tests: the conditional (CPT), fixed span (FSPT), fixed multiple span (FMSPT) and unconditional
(UPT) permutation tests. For CPT, the span size for observed data was determined by minimizing the Akaike Information
Criterion (AIC) and was held constant for models applied to permuted datasets. For FSPT, a single span was selected
a priori. For FMSPT, GAMs were applied using 3-5 different spans selected a priori and the significance cutoff was
reduced to account for multiple testing. For UPT, the span was selected by minimizing the AIC for observed and for
permuted datasets. Data were simulated with a single, circular cluster of increased or decreased risk that was centered
in a circular study region. Previous research found CPT to have an inflated type I error when applied with the nominal
cutoff. ACST and CPT had high power estimates when applied with reduced significance cutoffs to adjust for the
respective inflated type I error rates. FSPT power depended on the span size, while FMSPT power estimates were
slightly lower than those of FSPT. Overall, UPT had low power estimates when compared to the other methods.
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was the unconditional permutation test (UPT) where the span size 
was determined by minimizing the AIC statistic for observed and 
for permuted datasets, producing an unconditional permutation 
distribution of statistics. CPT was found to have an inflated type I error 
rate, corrected by an empirically determined reduced significance 
cutoff. FSPT was appropriately sized; however it was unclear how to 
choose the most appropriate span size. This led to the proposal of 
the fixed multiple span permutation test (FMSPT) where 3 or 5 span 
sizes were selected a priori and significance cutoffs were adjusted 

using a Bonferroni-like adjustment, #spanscompared
α

. UPT was 
appropriately sized but was computationally burdensome and, with 
current computing power, its application may not be reasonable in 
model building applications [17].

The type I error rates of ACST and CPT when applied with reduced 
significance cutoffs and the powers and sensitivities of ACST, CPT, 
FSPT, FMSPT and UPT have yet to be compared. In this study, we used 
simulated data to identify which hypothesis testing method, ACST, 
CPT, FSPT, FMSPT, or UPT, has the greatest power across a range 
of effect sizes under a simple alternative hypothesis. We examined 
the power curves of five global hypothesis testing methods. We 
estimated and compared the sensitivity and false positive rates of 
point-wise tests for the four permutation methods.

Methods

Simulated data

Data were simulated under a simple case-control setting. The 
study region was a circular subset of the Euclidean plane with a 
radius of one unit and a circular cluster located at its center. (Figure 
1) This is a simplified version of a pattern that may be observed if
subjects living within some radius of an exposure source, such as a
lead smelter [21], are at constant increased or decreased risk when
compared to subjects living further from the source.

Two scenarios were considered where the cluster covered 15% 
(Scenario 1) or 5% (Scenario 2) of the study region. In both scenarios 
the probability of disease outside the cluster was held constant at 
20%. Geographic locations were generated from a bivariate uniform 
distribution of longitude and latitude. For Scenario 1, odds ratios 
comparing subjects within to outside of the cluster were specified 
as 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. For the Scenario 2, odds ratios were 
0.25, 1.0, 2.0, 3.0, 4.0 and 5.0. We chose these odds ratios to provide 
similar ranges of theoretical power estimates for Pearson chi-square 
tests applied to these scenarios while also reflecting odds ratios that 
may be observed in epidemiologic applications (Table 2, Table 3). 

Odds ratios of 0.25 and 0.5 indicate locations of decreased 
risk while odds ratios greater than 1.0 indicate areas of increased 
risk. For each of these odds ratios, 1,000 datasets were simulated, 
each containing 1,000 observations. We selected the dichotomous 
outcome and sample size to reflect previous studies in spatial 
epidemiology that used GAMs as a primary statistical method [22-24]. 
The nominal type I error rate for each test was 0.05. All simulations 
and analyses were performed using the statistical software R v2.8.0. 
[15]. Syntax used to generate synthetic data is available on the Boston 
University Superfund Basic Research Program website (http://www.
busrp.org/). 

Theoretical power

The data could be analyzed using a Pearson chi-square test though, 
in practice, investigators would not be aware that the association was 
not more complex. To evaluate the performance of the hypothesis 

testing methods, we computed the theoretical power for a Pearson 

chi-square test: ( )2 2
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Here, P01and P02 are the joint probabilities of controls living inside 
and outside the cluster, while P11 and P12 are the joint probabilities 
of cases living inside and outside the cluster [25]. The theoretical 
powers ranged from 0.050 to >0.999. (Table 2) Pearson chi-square 
tests were performed on the simulated datasets for each parameter 
combination. Simulated power for this test was defined as the 
proportion of datasets where we rejected the null hypothesis with a 
significance level of 0.05. 

Hypothesis testing methods

GAMs were applied to simulated datasets using a bivariate LOESS 
smoothing term to adjust for geographic location [14] using of the 
gam package [26] in R v2.8.0. [15]. When necessary we applied GAMs 
across a range of span sizes between 0.05 and 0.95 and selected the 
span that minimized the model AIC [27]. As cluster size differed in 
the two scenarios, we expected the distributions of selected spans 
to differ as well.

For ACST, it was shown through simulations that the distribution 
of difference in deviance statistics of models applied with and without 
smoothing terms can be loosely approximated by a chi-square 
distribution [12]. In this application, when applying ACST, for each 
dataset, the span size was selected and the approximate statistic and 
p-value were recorded. The test was found to have an inflated type
I error rate when the significance cut-off was 0.05 with an observed
rejection rate of 0.151 (95% CI: 0.137-0.165) under the null hypothesis
[17]. Intuitively, one might divide α by 3 as the observed type I error
was approximately 3 times greater than the desired; however this
adjustment provided an observed type I error rate of 0.073 (95% CI:
0.059-0.087) and did not correct the test size. Dividing α by 4 may
seem conservative; however simulations showed that this adjustment
provided a test of the appropriate size (0.061; 95% CI: 0.047-0.075).

Figure 1: Diagram of study region. Figure 1 is a diagram of the simulated 
study region. The circular cluster of increased or decreased risk is displayed in 
red. Observations falling in the blue area are considered “unexposed” and have 
a 20% probability of disease.

http://www.busrp.org/
http://www.busrp.org/
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For CPT, the span size was selected for each dataset and the 
difference in deviances between models including and excluding the 
bivariate LOESS smoothing term was computed. Through permutation 
of geographic locations, 999 permuted datasets were created and 
GAMs were applied. For each permuted dataset the difference in 
deviance statistic was recorded, conditioned on the selected span 
for the observed data. The statistics were ranked and the global null 
hypothesis of no association between the outcome and smoothed 
term was rejected if the observed difference in deviance fell in the 
upper tail of the conditional permutation distribution [14]. The CPT 

was found to have an inflated type I error rate when applied with 
a significance cut-off of 0.05 and a rejection rate of 0.090 (95% CI: 
0.076-0.104) [17]. We adjusted the nominal cutoff to the upper 2.5% 
to obtain an observed type I error rate of the correct level. 

The FSPT was applied across five span sizes: 0.1, 0.3, 0.5, 0.7 
and 0.9, selected to display power estimates across a range of 
possible span sizes. GAMs with each predetermined span size were 
applied to observed and permuted datasets. The power for each of 
the five spans was obtained by rejecting the null hypothesis when 

Hypothesis Testing Method Abbreviation Description Significance Cutoff
Approximate Chi-Square Test ACST Compare the model deviance statistic to an approximate chi-square distribution. 0.0125

Conditional Permutation Test CPT
Select optimal span size for observed data by minimizing AIC statistic across range of spans. 
Compare difference in deviance statistic to conditional permutation distribution obtained by 
holding span size constant.

0.025

Fixed Span Permutation Test FSPT Select span size a priori. Compare difference in deviance statistic to conditional permutation 
distribution obtained by holding span size constant.

0.05

Fixed Multiple Span 
Permutation Test FMSPT

Select 3-5 span sizes a priori. For each span size, compare the difference in deviance statistic 
to corresponding conditional permutation distribution obtained by holding the span size 
constant. Reject the null hypothesis if at least one p-value falls below the significance cutoff.

0.05
# Span sizes

Unconditional Permutation 
Test UPT

Select optimal span size for observed data as in CPT. Compare difference in deviance statistic 
to unconditional permutation distribution obtained by selecting optimal span size for each 
permuted dataset.

0.05

Table 1: Description of Hypothesis Testing Methods and Significance Cutoffs.

Table 2: Scenario 1 Observed Power Estimates.

Odds Ratios
0.5 1.0 1.5 2.0 2.5 3.0

Significance 
Cutoff

Power 
(95% CI)

Type I Error
(95% CI)

Power
(95% CI)

Power
(95% CI)

Power
(95% CI)

Power
(95% CI)

Pearson Chi-Square 
Test
Theoretical Power 0.05 0.731  (0.704,0.758) 0.050 (0.036,0.064) 0.521 (0.490,0.552) 0.953 (0.940,0.966) 0.999 (0.997,>0.999) >0.999 (0.997,>0.999)
Observed Power 0.05 0.765 (0.739,0.791) 0.036 (0.024,0.048) 0.513 (0.482,0.544) 0.928 (0.912,0.944) 0.996 (0.992,>0.999) >0.999 (0.997,>0.999)
ACST 0.0125 0.252 (0.225,0.279) 0.061 (0.046,0.076) 0.161 (0.138,0.184) 0.459 (0.428,0.490) 0.763 (0.737,0.789) 0.918 (0.901,0.935)
CPT 0.025 0.239 (0.213,0.265) 0.047 (0.034,0.060) 0.149 (0.127,0.171) 0.447 (0.416,0.478) 0.764 (0.738,0.790) 0.923 (0.906,0.940)
FSPT
Span = 0.1 0.05 0.163 (0.140,0.186) 0.046 (0.033,0.059) 0.113 (0.093,0.133) 0.309 (0.280,0.338) 0.617 (0.587,0.647) 0.837 (0.814,0.860)
Span = 0.3 0.05 0.234 (0.208,0.260) 0.043 (0.030,0.056) 0.150 (0.128,0.172) 0.415 (0.384,0.446) 0.755 (0.728,0.782) 0.917 (0.900,0.934)
Span = 0.5 0.05 0.226 (0.200,0.252) 0.045 (0.032,0.058) 0.157 (0.134,0.180) 0.450 (0.419,0.481) 0.785 (0.76,0.810) 0.935 (0.920,0.950)
Span = 0.7 0.05 0.223 (0.197,0.249) 0.042 (0.030,0.054) 0.153 (0.131,0.175) 0.453 (0.422,0.484) 0.787 (0.762,0.812) 0.923 (0.906,0.940)
Span = 0.9 0.05 0.208 (0.183,0.233) 0.047 (0.034,0.060) 0.140 (0.118,0.162) 0.442 (0.411,0.473) 0.773 (0.747,0.799) 0.914 (0.897,0.931)
FMSPT
0.1, 0.3, 0.5, 0.7, 0.9 0.01 0.152 (0.130,0.174) 0.020 (0.011,0.029) 0.094 (0.076,0.112) 0.330 (0.301,0.359) 0.673 (0.644,0.702) 0.880 (0.860,0.900)
0.1, 0.5, 0.9 0.0167 0.166 (0.143,0.189) 0.027 (0.017,0.037) 0.111 (0.092,0.130) 0.378 (0.348,0.408) 0.697 (0.669,0.725) 0.89 (0.871,0.909)
UPT 0.05 0.088 (0.070,0.106) 0.045 (0.032,0.058) 0.094 (0.076,0.112) 0.263 (0.236,0.290) 0.545 (0.514,0.576) 0.789 (0.764,0.814)

Table 3: Scenario 2 Observed Power Estimates.

Odds Ratios
0.25 1.0 2.0 3.0 4.0 5.0

Significance 
Cutoff

Power
(95% CI)

Type I Error
(95% CI)

Power
(95% CI)

Power
(95% CI)

Power
(95% CI)

Power
(95% CI)

Pearson Chi-Square 
Test
Theoretical Power 0.05 0.693 (0.664,0.722) 0.050 (0.036,0.064) 0.622 (0.592,0.652) 0.971 (0.961,0.981) 0.999 (0.997,>0.999) >0.999 (0.997,>0.999)
Observed Power 0.05 0.799 (0.774,0.824) 0.056 (0.042,0.07) 0.616 (0.586,0.646) 0.934 (0.919,0.949) 0.992 (0.986,0.998) >0.999 (0.997,>0.999)
ACST 0.0125 0.175 (0.151,0.199) 0.059 (0.044,0.074) 0.145 (0.123,0.167) 0.345 (0.316,0.374) 0.526 (0.495,0.557) 0.722 (0.694,0.750)
CPT 0.025 0.136 (0.115,0.157) 0.052 (0.038,0.066) 0.120 (0.100,0.14) 0.306 (0.277,0.335) 0.479 (0.448,0.510) 0.688 (0.659,0.717)
FSPT
Span = 0.1 0.05 0.168 (0.145,0.191) 0.044 (0.031,0.057) 0.177 (0.153,0.201) 0.287 (0.259,0.315) 0.471 (0.4400.502) 0.672 (0.643,0.701)
Span = 0.3 0.05 0.145 (0.123,0.167) 0.047 (0.034,0.060) 0.125 (0.105,0.145) 0.321 (0.292,0.350) 0.504 (0.473,0.535) 0.711 (0.683,0.739)
Span = 0.5 0.05 0.104 (0.085,0.123) 0.052 (0.038,0.066) 0.106 (0.087,0.125) 0.247 (0.220,0.274) 0.396 (0.366,0.426) 0.593 (0.563,0.623)
Span = 0.7 0.05 0.103 (0.084,0.122) 0.053 (0.039,0.067) 0.101 (0.082,0.12) 0.222 (0.196,0.248) 0.363 (0.333,0.393) 0.517 (0.486,0.548)
Span = 0.9 0.05 0.095 (0.077,0.113) 0.058 (0.044,0.072) 0.098 (0.080,0.116) 0.210 (0.185,0.235) 0.354 (0.324,0.384) 0.521 (0.490,0.552)
FMSPT
0.1, 0.3, 0.5, 0.7, 0.9 0.01 0.081 (0.064,0.098) 0.026 (0.016,0.036) 0.073 (0.057,0.089) 0.219 (0.193,0.245) 0.382 (0.352,0.412) 0.587 (0.556,0.618)
0.1, 0.5, 0.9 0.0167 0.122 (0.102,0.142) 0.04 (0.028,0.052) 0.100 (0.081,0.119) 0.268 (0.241,0.295) 0.443 (0.412,0.474) 0.648 (0.618,0.678)
UPT 0.05 0.161 (0.138,0.184) 0.041 (0.029,0.053) 0.125 (0.105,0.145) 0.275 (0.247,0.303) 0.463 (0.432,0.494) 0.650 (0.620,0.680)
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the observed statistic fell in the upper 5% of the corresponding 
permutation distribution [17]. We also evaluated the power of a 
hypothesis test considering the data at multiple span sizes, the Fixed 
Multiple Span Permutation Test (FMSPT). For combinations of three 
or five spans across the range of possible span sizes we rejected 
the null hypothesis if any of the observed statistics fell in the upper 

100 %#spanscompared
α  
 

of the corresponding permutation 

distribution. The adjustment was suggested in a previous paper to 
obtain tests of the appropriate size [17].

We selected the span size by minimizing the model AIC for 
observed and permuted datasets to perform the UPT. We rejected 
the null hypothesis if the observed difference in deviance statistic fell 
in the upper 5% of the permutation distribution [17].

Point-wise hypothesis tests

For each permutation method, point-wise hypothesis tests were 
performed by recording the predicted logodds from observed and 
permuted datasets at each point on a fine regular grid (1955 points 
per unit circle) overlaying the study region. Permutation distributions 
of point-wise predicted logodds were produced for each point. 
Hotspots, areas of increased risk, were identified as locations having 
predicted logodds from the observed data that fell in the upper 2.5% 
of the corresponding permutation distribution of predicted logodds. 
Coldspots, areas of decreased risk, were identified as locations with 
predicted logodds that fell in the lower 2.5% of the distribution [14]. 
It is unclear whether the conditional or unconditional nature of the 
permutation tests will affect the results. A point-wise testing method 
is not available for the ACST.

Sensitivity and false positive rate were defined in a similar 
manner to Ozonoff et al. [28] when evaluating local hypothesis tests, 
sensitivity was defined as the conditional proportion of the true 
cluster correctly identified as increased or decreased risk, given the 
global null hypothesis was rejected [28, 29]. 

O

point identified as high/low risk | 
Sensitivity 

point is at high/low risk & global H  rejected
P
 

=  
 

False positive rate, the complement of specificity, was defined as 
the proportion of the study region falsely detected by the methods 
as high or low risk when the global hypothesis was rejected. 

O

point identified as high/low risk | 
False Positive Rate 

point not at high/low risk & global H  rejected
P
 

=  
 

Note that the false positive rate can be computed under the null 
hypothesis while sensitivity depends on the choice of a specific 
alternative.

Results

The observed power estimates for the Pearson chi-square test 
were similar to the theoretical power for both Scenarios 1 and 2. 
(Table 2, Table 3) ACST had observed type I error rates of 0.061 
(95% CI: 0.046-0.076) and 0.059 (95% CI: 0.044-0.074) when applied 
under the null hypothesis. The nominal level of 0.05 fell within a 95% 
confidence interval of the ACST estimates as well as for the type I 
error estimates of CPT (Scenario 1: 0.047; 0.034-0.060; Scenario 2: 
0.052; 0.038-0.066). The FSPT, FMSPT and UPT had observed type I 
error rates at or below the nominal level (Table 2, Table 3).

The power estimates for ACST under alternative hypotheses 
were smaller than the theoretical power, ranging between 0.161 and 
0.918 for Scenario 1 and 0.145 and 0.722 for Scenario 2. The CPT had 

Figure 2: Power curves of approximate chi-square test with nominal and 
adjusted significance cutoffs in Scenario 1. Figure 2 displays observed 
power curves and 95% confidence bands when ACST was applied with 
nominal and adjusted significance cutoffs in Scenario 1.

Figure 3: Power curves of conditional permutation test with nominal and 
adjusted significance cutoffs in Scenario 1. Figure 3 displays observed 
power curves and 95% confidence bands when CPT was applied with nominal 
and adjusted significance cutoffs in Scenario 1.

Figure 4: Distributions of selected span size across odds ratios in Scenario 
1. Figure 4 displays the distribution of span sizes observed to minimize the AIC 
statistic when GAMs were applied in Scenario 1. This is also the distribution of 
span sizes selected for the application of ACST, CPT and UPT.
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power of similar magnitude to the ACST with estimates ranging from 
0.149 to 0.923 and 0.120 to 0.688 for Scenarios 1 and 2, respectively. 
(Table 2, Table 3) Compared to their application with an unadjusted 
significance cutoff of 0.05, the ACST and CPT had reduced power 
across effect sizes. The shapes of the respective power curves were 
similar, regardless of the significance cutoffs for each method (Figure 
2, Figure 3).

For Scenario 1, the distribution of spans selected for observed 
data through the minimization of the AIC statistic were left skewed 
with a single mode near spans of 0.9 for odds ratios of less than 2.0. 
For odds ratios of at least 2.0 the distributions were bimodal with 
modes near 0.3 and 0.6. (Figure 4) For Scenario 2, odds ratios less 
than 3.0 had left skewed distributions of optimal spans while larger 
odds ratios corresponded to an increased density for span sizes near 
0.2 (Figure 5).

In Scenario 1, with a cluster covering 15% of the study region, 
the FSPT showed unbiased type I error rates across all span sizes and 
had power estimates ranging from around 0.150 to at least 0.900 for 
spans greater than 0.1. Estimates for a span of 0.1 were slightly lower. 
The highest power was observed for spans of 0.5 and 0.7. (Table 2) 
For a cluster covering 5% of the study region (Scenario 2), the greatest 
power was observed for a span of 0.3 followed by spans of 0.1 and 
0.5. (Table 3) Evaluated at multiple spans, the FMSPT performed well 
with power estimates slightly smaller than those of the FSPT. The 
slight power reduction was likely due to the conservative significance 
cutoff: α divided by the number of spans compared. The observed 
type I error rates were conservative for both scenarios. The power 
estimates ranged from less than 0.100 to approximately 0.900 for 
Scenario 1 and from less than 0.100 to 0.650 for Scenario 2 (Table 
2, Table 3).  

UPT had reduced power when compared to the other methods in 
Scenario 1. Power estimates ranged from around 0.100 to near 0.800, 
smaller than estimates for FSPT. In Scenario 2, UPT performed better 
than FSPT with spans of 0.5, 0.7 and 0.9 while it had comparable 
power estimates to the FSPT with a span of 0.1. The power estimates 
ranged from 0.125 to 0.650 (Table 2, Table 3).  

Comparing computing times, using a personal computer with 
504MB RAM, for a single analysis on a dataset including 1,000 
observations, CPT, FSPT and FMSPT were completed in less than 15 
minutes. For the same analysis, UPT was completed in 5.5 hours. 

Examining power curves for Scenarios 1 and 2, ACST and the 
permutation tests had fairly similar power estimates across the range 
of effect sizes though they were outperformed by the theoretical 
and observed Pearson chi-square tests. In Scenario 1, the greatest 
power was observed for the ACST and CPT however there was little 
difference between these tests and the power of the fixed spans of 
0.5 and 0.7. (Figure 6) In Scenario 2, maximum power was obtained 
by the ACST, closely followed by the FSPT for a span of 0.3 and 
similar estimates were observed for a span of 0.1, the CPT and the 
UPT (Figure 7).

Sensitivity and false positive rates for the permutation based 
methods are presented in Tables 4 and 5. Scenarios 1 and 2 shared 
false positive rates of approximately 5% under the null hypothesis, a 
trend of increasing false positive rates with increasing effect size and 
higher false positive rates for the UPT with respect to several other 
methods (Table 4, Table 5).  

For Scenario 1, the highest sensitivity rates were observed for 
FSPT with spans of 0.5 and 0.7 and the UPT. The CPT also performed 

Figure 5: Distributions of selected span size across odds ratios in Scenario 
2. Figure 5 displays the distribution of span sizes observed to minimize the AIC 
statistic when GAMs were applied in Scenario 2. This is also the distribution of 
span sizes selected for the application of ACST, CPT and UPT.

Figure 6: Power curves of all hypothesis testing methods in Scenario 1. 
Figure 6 displays the power curves of the theoretical power, Pearson’s chi-
square test, ACST, CPT, FSPT, FMSPT and UPT when applied to Scenario 1.

Figure 7: Power curves of all hypothesis testing methods in Scenario 2. 
Figure 7 displays the power curves of the theoretical power, Pearson’s chi-
square test, ACST, CPT, FSPT, FMSPT and UPT when applied to Scenario 2.
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well detecting, on average, between 65 and 99% of the true cluster. 
The lowest sensitivity was observed for the FSPT with a span of 0.1. 
False positive rates were between 5 and 40% for the permutation 
tests. Overall, the FSPT with a span of 0.1 had the lowest false positive 
rates while the span of 0.7 had the highest rates across effect sizes 
(Table 4).

In Scenario 2, the highest sensitivity was observed for the UPT, 
followed closely by the CPT (97%) and the FSPT with spans of 0.1 and 
0.3. Across all effect sizes, the sensitivity estimates were similar for 
all tests. False positive rates increased with increasing effect sizes. 
Consistently high false positive rates were observed for the UPT 
followed by the FSPT with spans of 0.7 and 0.9. Lowest false positive 
rates were observed for the span of 0.1 followed by the span of 0.3 
with the CPT also showing low values (Table 5).

Discussion
In this paper the type I error rates and powers of five hypothesis 

testing methods were compared to theoretical and observed 
type I error and power of Pearson chi-square tests in two simple 
scenarios. In Scenario 1, a circular cluster covered 15% of the circular 

study region area, representing a large cluster close to the size of 
Worcester County in Massachusetts, while in Scenario 2, the circular 
cluster covered 5% of the area representing a small cluster the size 
of Barnstable County in Massachusetts [30]. In previous research we 
performed a power comparison of CPT, FMSPT and the spatial scan 
statistic. The relative pattern of power estimates for CPT and FMSPT 
was preserved through changes in region shape and variation in 
disease risk [29]. Similar results would be expected for ACST, FSPT 
and UPT. The pattern of disease risk for this paper was selected 
to present a simple alternative hypothesis where the tests were 
expected to have high power.

The Pearson chi-square test, a simple but theoretically appropriate 
test, outperformed the ACST and all permutation tests in its observed 
and theoretical power. These results are not surprising considering 
the simplicity of the Pearson test and the use of added information 
about a dichotomous exposure pattern. It is of note that in Scenario 
1, with a large cluster, the ACST, CPT and some FSPTs had power 
estimates nearing those of the Pearson chi-square test.

The ACST and CPT were shown to have inflated type I error rates 
in previous research [17]. In this paper, we applied empirically based 

Odds Ratios
0.5 1.0* 1.5 2.0 2.5 3.0

Sensitivity False 
Positive

False 
Positive Sensitivity False 

Positive Sensitivity False 
Positive Sensitivity False 

Positive Sensitivity False 
Positive

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

CPT 0.88
(>0.99;0.27)

0.14
(0.11;0.13)

0.06
(0;0.09)

0.65
(0.91;0.4)

0.11
(0.09;0.12)

0.93
(>0.99;0.21)

0.21
(0.21;0.13)

0.98
(>0.99;0.1)

0.28
(0.28;0.11)

0.99
(>0.99;0.08)

0.31
(0.3;0.11)

FSPT
Span = 
0.1

0.55
(0.6;0.35)

0.08
(0.08;0.05)

0.05
(0.05;0.03)

0.38
(0.26;0.36)

0.07
(0.06;0.04)

0.64
(0.74;0.34)

0.10
(0.10;0.04)

0.78
(0.91;0.27)

0.14
(0.14;0.04)

0.89
(>0.99;0.21)

0.17
(0.17;0.04)

Span = 
0.3

0.91
(>0.99;0.2)

0.11
(0.1;0.09)

0.05
(0.04;0.06)

0.66
(0.79;0.37)

0.08
(0.07;0.07)

0.96
(>0.99;0.12)

0.14
(0.14;0.08)

0.99
(>0.99;0.06)

0.20
(0.20;0.07)

>0.99 
(>0.99;0.02)

0.24
(0.24;0.06)

Span = 
0.5

0.89
(>0.99;0.27)

0.14
(0.12;0.12)

0.05
(0.01;0.07)

0.75
(0.98;0.34)

0.10
(0.09;0.10)

0.97
(>0.99;0.13)

0.20
(0.21;0.12)

0.99
(>0.99;0.06)

0.29
(0.30;0.09)

>0.99 
(>0.99;0.01)

0.35
(0.36;0.08)

Span = 
0.7

0.86
(>0.99;0.31)

0.15
(0.13;0.14)

0.05
(0;0.08)

0.77
(>0.99;0.36)

0.12
(0.09;0.12)

0.96
(>0.99;0.14)

0.24
(0.26;0.14)

0.99
(>0.99;0.07)

0.35
(0.37;0.1)

>0.99
(>0.99;0.01)

0.41
(0.42;0.08)

Span = 
0.9

0.84
(>0.99;0.33)

0.13
(0.1;0.13)

0.05
(0;0.09)

0.78
(>0.99;0.36)

0.11
(0.07;0.12)

0.95
(>0.99;0.2)

0.22
(0.24;0.14)

0.99
(>0.99;0.07)

0.33
(0.35;0.11)

>0.99 
(>0.99;0.01)

0.39
(0.39;0.08)

UPT 0.95
(>0.99;0.15)

0.13
(0.04;0.16)

0.05
(0;0.10)

0.76
(0.95;0.33)

0.10
(0.01;0.13)

0.97
(>0.99;0.1)

0.22
(0.24;0.16)

>0.99
(>0.99;0.03)

0.33
(0.35;0.12)

>0.99 
(>0.99;0.03)

0.38
(0.39;0.09)

Table 4: Scenario 1 Sensitivity and False Positive Rates of Permutation Test Methods under Alternative Hypotheses.

*Note that Sensitivity is not meaningful under the null hypothesis

Table 5: Scenario 2 Sensitivity and False Positive Rates of Permutation Test Methods under Alternative Hypotheses.

*Note that Sensitivity is not meaningful under the null hypothesis

Odds Ratios
0.25 1.0* 2.0 3.0 4.0 5.0

Sensitivity False 
Positive

False 
Positive Sensitivity False 

Positive Sensitivity False 
Positive Sensitivity False 

Positive Sensitivity False 
Positive

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

Mean 
(Median;Std)

CPT 0.73
(0.95;0.39)

0.09
(0.05;0.11)

0.07
(0;0.10)

0.64
(0.79;0.38)

0.08
(0.04;0.11)

0.86
(>0.99;0.27)

0.13
(0.11;0.11)

0.97
(>0.99;0.1)

0.15
(0.13;0.11)

0.99
(>0.99;0.08)

0.16
(0.14;0.10)

FSPT
Span = 
0.1

0.71
(0.84;0.33)

0.06
(0.06;0.04)

0.05
(0.05;0.03)

0.58
(0.67;0.32)

0.06
(0.05;0.03)

0.87
(0.95;0.2)

0.07
(0.07;0.04)

0.96
(>0.99;0.09)

0.08
(0.08;0.03)

0.98
(>0.99;0.06)

0.09
(0.09;0.03)

Span = 
0.3

0.72
(0.88;0.36)

0.07
(0.06;0.07)

0.06
(0.04;0.06)

0.61
(0.79;0.39)

0.07
(0.05;0.06)

0.88
(>0.99;0.25)

0.10
(0.09;0.07)

0.97
(>0.99;0.11)

0.12
(0.11;0.06)

0.99
(>0.99;0.07)

0.14
(0.14;0.06)

Span = 
0.5

0.70
(0.93;0.38)

0.08
(0.05;0.09)

0.06
(0.02;0.08)

0.65
(0.86;0.40)

0.08
(0.04;0.09)

0.80
(>0.99;0.33)

0.13
(0.12;0.11)

0.94
(>0.99;0.17)

0.17
(0.17;0.11)

0.96
(>0.99;0.16)

0.21
(0.22;0.11)

Span = 
0.7

0.64
(0.98;0.43)

0.09
(0.03;0.11)

0.06
(0;0.09)

0.67
(0.95;0.41)

0.09
(0.03;0.11)

0.83
(>0.99;0.32)

0.16
(0.15;0.13)

0.92
(>0.99;0.2)

0.22
(0.23;0.13)

0.97
(>0.99;0.11)

0.27
(0.29;0.13)

Span = 
0.9

0.68
(>0.99;0.43)

0.08
(0;0.11)

0.06
(0;0.10)

0.61
(0.79;0.43)

0.08
(0;0.11)

0.83
(>0.99;0.32)

0.14
(0.12;0.13)

0.90
(>0.99;0.24)

0.19
(0.20;0.13)

0.96
(>0.99;0.15)

0.24
(0.26;0.13)

UPT 0.86
(>0.99;0.26)

0.10
(0;0.15)

0.05
(0;0.10)

0.79
(0.91;0.29)

0.08
(0;0.13)

0.97
(>0.99;0.12)

0.15
(0.12;0.15)

0.99
(>0.99;0.03)

0.21
(0.23;0.15)

>0.99
(>0.99;0.04)

0.26
(0.28;0.14)
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significance cutoff adjustments to provide appropriately sized tests. 
While there is not sufficient evidence to guarantee these adjustments 
will hold in future studies, initial evidence based on unpublished 
research indicates the adjustments are robust to region shape and 
variations in population densities. 

The ACST and CPT, when applied with reduced significance 
cutoffs, had high power estimates when compared to other methods 
in both scenarios and across effect sizes. For Scenario 1, the highest 
power was observed for FSPT with mid-ranged span sizes of 0.5 
and 0.7 while for Scenario 2, the most often selected span size was 
smaller, corresponding to high power estimates for FSPT with spans 
of 0.1 and 0.3. Comparing power estimates across span sizes, the 
choice of span for FSPT does not affect the type I error rate; however 
the span was observed to influence the power of the hypothesis test. 
FSPT using spans with high densities in Figures 4 and 5 correspond 
to higher power estimates than for lower density spans. To maximize 
power, researchers would select a span expected to minimize the AIC 
statistic for the data at hand. In practice, however, the distribution 
of selected spans is unknown making the a priori selection of a span 
to minimize the AIC difficult and likely reducing the power of FSPT. 

FMSPT in Scenario 1 showed power estimates smaller than most 
FSPTs, exceeding only the estimate for a span of 0.1; while in Scenario 
2, the power estimates for the FMSPT were greater than all but the 
fixed spans of 0.1 and 0.3. In both scenarios, the evaluation of the 
FMSPT produced adequate power in relation to the estimates for a 
single fixed span, despite its conservative type I error rate.

It is of interest that the UPT was outperformed by the FSPT for 
all span sizes in Scenario 1 while it had higher power than spans 
of 0.5 or greater in Scenario 2. When applying the UPT, the critical 
value for the significance cutoff is determined as the 95th percentile 
of the ranked deviance statistics, obtained from permuted datasets. 
In general, the difference in deviance statistics obtained from GAMs 
with large spans will be smaller than those observed with small 
spans. Applying the UPT, for each permuted dataset, the span size is 
selected through the minimization of the AIC statistic. Under the null 
hypothesis the most appropriate span size is the largest available, 
i.e. the closest value to 1. By chance, some permuted datasets have 
characteristics causing a smaller span size to be selected and, as a 
result, the unconditional permutation distribution has larger variation 
than would be observed for a conditional permutation distribution. 
The rank of the observed statistic in an unconditional permutation 
distribution is often smaller, i.e. farther to the left, than the ranked 
statistic in a fixed span permutation distribution. As a result, the 
null hypothesis is rejected less frequently, corresponding to reduced 
power for the UPT for a fixed span test.

Though small span sizes may be observed in practice, in the 
extreme case examined in Scenario 2 with an odds ratio of 5.0, the 
UPT did not perform much better than the FSPT when applied with 
fixed large span sizes. Additionally, it was outperformed by the CPT 
and the FMPST had power estimates nearing those of the UPT. 

In Scenario 1, with effect sizes of 2.0 or greater, the UPT and FSPT 
with span sizes of 0.3 or greater had sensitivity rates of at least 80%. 
In Scenario 2, with odds ratios of at least 3.0, all tests had sensitivity 
estimates of at least 80%. Sensitivity of this magnitude or greater 
indicates that at least 80% of the area that was truly at risk was 
detected by these methods, a reasonable requirement of a statistical 
test in practice. Increased sensitivity increases researchers’ abilities 
to detect areas that are at risk and subsequently provide services to 
those neighborhoods. 

In contrast, researchers aim to reduce false positive rates as 
increased false detection in spatial epidemiologic studies may waste 
resources as public health officials target unaffected areas with 
unnecessary procedures to reduce residential risk. Depending on 
the severity of the disease of interest, risk of exposure to residents 
and cost of resources sent to detected areas, different false positive 
rates may be acceptable to researchers. In Scenario 1, the highest 
false positive rate was observed for a fixed span of 0.7 with 41% false 
positives for an odds ratio of 3.0. Depending on the costs, this rate 
may be considered high and the CPT may be preferred as its false 
positive rate was smaller at 31%. For Scenario 2, the highest false 
positive rates were observed for fixed spans of 0.7, 0.9 and for UPT. 
The CPT outperformed many of the methods with smaller rates than 
the UPT and the FSPT with spans of at least 0.5. In general, with 
increased sensitivity comes an increased false positive rate as the two 
measures are highly related. Researchers must balance the benefits of 
the sensitivity of a test with the false positive rate in order to select a 
desirable test that can detect areas of increased risk without extreme 
false positive rates. 

In this study, we considered two simple scenarios with different 
most appropriate span sizes, one large and one small, expected to 
minimize the AIC. We included an array of effect sizes and obtained 
a wide range of observed power estimates. We computed theoretical 
power using a Pearson chi-square test for comparison to the testing 
methods performed with GAMs. Though we included only one 
cluster pattern, other research has indicated that different variations 
in disease risk are not expected to change the relative patterns of 
power and sensitivity [29]. Benchmark data is provided on the 
Boston University Superfund Basic Research Group website (http://
www.busrp.com) to allow comparison of GAMs with other methods; 
however an extensive power comparison in complex scenarios, such 
as areas with sparse data, irregular boundaries and multiple clusters, 
is left for future research. While we considered span selection by 
minimizing the AIC statistic, there are many other methods that can 
be used. We expect similar patterns of relative power to be observed 
for any data driven span selection procedures relying on functions of 
model deviance. The confirmation of this is left to future research. 

We proposed type I error rate adjustments for the ACST and CPT 
based on empirical evidence and a nominal level of 0.05. While the 
adjustments produced tests of an appropriate size in this application, 
for other nominal levels simulation studies must be performed 
to determine appropriate adjustments. Though not rigorously 
proven, we present an explanation for the relative positioning of 
the hypothesis testing methods in a hierarchy of power, sensitivity 
and false positive estimates based on the results of this study. The 
evaluation of sensitivity and false positive rates for FMSPT is left for 
future research.

Conclusion
The choice of hypothesis testing method may depend on the 

motivation of the analysis. For exploratory or model building 
investigations, ACST, CPT, FSPT and FMSPT are appropriate. The 
statistic and p-value for ACST are produced by standard software 
and, when applied with a reduced significance cutoff, the test had 
high power estimates; however ACST is disadvantaged in the limited 
information it provides. Permutation tests can detect overall variation 
in outcomes across the study region and can identify specific areas 
of increased or decreased risk while ACST can only evaluate overall 
departures from the null hypothesis of spatial randomness. CPT uses 
data driven span selection procedures, allowing investigators to gain 

http://www.busrp.com
http://www.busrp.com
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information about the degree of spatial variation in the study region, 
to see how this may change in a model building scenario, as well as to 
perform hypothesis tests. When applied with a reduced significance 
cutoff it is appropriately sized and produces high power estimates. 
FSPT is appropriately sized; however it requires the selection of a 
single span and its power depends on the span size. FMSPT is a better 
alternative, allowing investigators to produce maps using multiple 
span sizes and to examine possible associations at a variety of 
smoothing levels. Though conservative in its type I error rate, FMSPT 
produced adequate power estimates. UPT, mathematically, is the 
most appropriate test and may be applied when investigators would 
like to avoid a priori span size selections while also maintaining 
the nominal type I error rate without applying significance cutoff 
adjustments. However, in light of its computational burden, UPT may 
not be appropriate for model building scenarios at this time as CPT, 
FSPT and FMSPT can provide more immediate results. 
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