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Background
Randomized controlled trials and other experiments often evaluate 

repeated measures of continuous outcomes on each unit (i.e. either an 
individual or a facility) at systematic time points before and after an 
intervention begins, using two arms one which is entirely switched onto 
the intervention at a fixed time point and a control arm that remains in 
the same state [1-8]. Investigators measure longitudinal outcomes on 
each unit over b sequential pre-intervention time points. Then the units 
are randomly divided into two arms: one with intervention started at 
time point b+1 and one left without the intervention. The outcomes 
are then measured over k sequential post-intervention time points. The 
shortest duration clinical trial of this type is having b=0 pre-intervention 
and k=1 post-intervention time points; no pre-intervention measure 
and one post-intervention measure with randomization serving as the 
basis for the post-intervention comparison or the intervention arm. 
Increasing the number of pre-intervention measures (b) and/or post 
intervention measures (k) improves the precision of the estimated 
intervention effect and thus study power, but doing this is offset by 
increased study duration and costs.

In our nomenclature, “units” could be facilities such as nursing 

homes or persons such as HIV infected patients. For example, units 
could be HIV patients being treated for depression with the outcome 
measured at 6-month intervals with b=2 semiannual measures taken 
among all subjects then a randomly chosen 50% being put on an 
intervention with k=4 more semiannual depression measures taken 
among all subjects after that. The change in depression between 
the two pre-intervention and four post-intervention time points is 
compared between those who are and are not put on the intervention. 
This design is widely used, for example, in articles published over 
the past four years involving addiction, pain management, sleep, 
heart disease, cancer, dementia, hypothyroidism growth, medical 
communication, headaches, multiple sclerosis, nutrition, obesity and 
industrial production as outcomes and persons, animals and residence/
treatment/manufacturing facilities as units [9-15].

Power and sample size determination for planning and optimizing 
such longitudinal randomized trials is important [3,5-7,16]. Repeated 
measures within the same unit are typically positively correlated which 
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Abstract
Background: Intervention effect on ongoing medical processes is estimated from clinical trials on units (i.e. persons 

or facilities) with fixed timing of repeated longitudinal measurements. All units start out untreated. A randomly chosen 
subset is switched to the intervention at the same time point. The pre-post switch change in the outcome between these 
units and unswitched controls is compared using Generalized Least Squares models. Power estimation for such studies 
is hindered by lack of available GLS based approaches and normative data.

Methods: We derive Generalized Least Squares variance of the intervention effect. For the commonly assumed 
compound symmetry correlation structure, this leads to simple power formulas with important optimality properties. To 
maximize power given a constrained number of total time points, we investigate on the optimal pre-post allocation with 
the local minimization of variance.

Results: In four examples from nursing home and HIV patients, the Toepltiz within-unit correlation of repeated 
measures differed from compound symmetry. We applied empirical Toeplitz based calculations for variance of the 
estimated intervention effect to these examples (each with up to seven longitudinal measures). Unlike what happened 
under compound symmetry, where power was often maximized with multiple observations being pre-intervention, for 
these examples, having one pre-intervention measure tended to maximize power. Attempts to approximate the Toeplitz 
variance structures with compound symmetry (to take advantage of the simpler formulas) resulted in overestimation of 
power for these examples.

Conclusions: While compound symmetry correlation among repeated within-unit measures leads to simple power 
estimation formulas, this structure often did not hold. There may be strong underestimation of variance of the intervention 
effect estimate from incorporating short-term within-unit correlation estimates as a common compound symmetry 
correlation to approximate an unknown Toeplitz correlation without adequately accounting for the correlation between 
repeated measures declining with time.
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compared to the standard setting of independence complicates power 
estimation as well as statistical analysis. While general linear models 
(GLMs) for both statistical analysis and power estimation exist [17-
19], these methods require that the correlation structure of repeated 
measures within the same unit be estimated. This is often impossible 
when historical data is lacking. Going back to our example that 
measures depression outcomes over b=2 semiannual pre-intervention 
and k=4 semiannual post-intervention (or a total of 6 semiannual) it 
would be very likely that at the study planning stage this would be a 
new cohort with only limited historical data on within-unit correlation 
of repeated measures as use for such data for study planning would not 
have been anticipated 2.5 years in advance.

Our goal is to develop power estimation framework using 
Generalized Least Squares (GLS) estimators in planning randomized 
pre-post intervention longitudinal clinical trials with two intervention 
arms. We first consider the simplest repeated-measure correlation 
structure, compound symmetry (which in practice is often assumed 
given the absence of normative data) that leads to closed form 
formulas. We then study four real examples and observe that 
repeated-measure correlation attenuates with time leading to a more 
complicated repeated-measure structure known as Toeplitz (for which 
simple closed form formulas do not occur). The influence of pre-post 
intervention allocation of varying total visits on power (i.e. variance 
of the intervention effect estimate) for both the compound symmetry 
and the Toeplitz correlations of our four examples are studied. We 
also evaluate the ability to use a compound symmetry approximation 
to estimate study power for our four examples given the temptation 
investigators have to do this especially when limited normative data for 
correlation structure exists.

The paper is organized as follows: we first present a general 
linear model (GLM) for longitudinal data with pre-post repeated 
measures, then develop a generalized least squares (GLS) framework 
for estimation of the intervention effect and incorporated the GLS 
variance estimate into power estimation. Under compound symmetry, 
a simple GLS variance estimate formula for the intervention effect is 
derived and the influence of pre- (vs. post-) intervention time point 
allocation on this variance is evaluated. However, as compound 
symmetry correlation may not always hold, we empirically construct 
the Toeplitz correlation structures of repeated measures over seven 
time points from four longitudinal health care outcomes of nursing 
homes, hospitals and HIV infected patients. We investigated the 
true variances of intervention effect estimates obtained under these 
empirical correlation structures. The effect of pre-post allocation 
for varying T on these variances and closeness of variances obtained 
from the compound symmetry approximations that would be used by 
someone with limited normative data to those true variances for these 
settings are evaluated.

Methods (for Compound Symmetry and Toeplitz 
Correlation)
General linear model (GLM)

We begin with the statistical model of the intervention effect. 
For randomized longitudinal studies with two intervention arms, 
researchers encounter repeated measures of a quantitative outcome 
at T=b+k systematic time points with b being before and k being 
after the intervention is delivered to one of the arms. Let h denote 
the intervention arm with h=0 for control and h=1 for the new 
intervention. For each group, there are nh units (no for the control 
and n1 for the new intervention) and j={-b, -(b-1),…, -1, 1, 2,…, k} 

denotes the ordered times with {-b, -(b-1),…, -1} prior to and {1, 2,…, 
k} after the intervention onset. The goal is to assess the impact of the 
new intervention (versus control) on pre-post change in a longitudinal 
continuous outcome Y where Y1ij is measure j from unit i in the new 
intervention arm and Yoi’j’ is measure j’ from unit i’ in the control arm.

For example, consider a trial with n0=n1=30 hospitals in each arm. 
Let i denote hospitals (as “units”) where i=1,…,nh. The “units” are 
measured annually for T=7 years total with b=2 years (2001 to 2002) 
before and k=5 (2003 to 2007) after the intervention implementation in 
the intervention arm (h=1). The outcome of interest, Y, could be portion 
of patients discharged within 30 days after surgery. Thus Y1,3,-2 and Y0,17,3 
respectively denote the measurement taken in 2001 (2 years prior to 
start of the intervention) in the 3rd hospital of the intervention arm and 
2005 (3 years after the start of the intervention) in the 17th hospital of 
the control arm, respectively. We assume complete data with T=b+k 
measures observed on each unit. Now Yhij can be decomposed as:

*
hij j hj ijY Z= α + β + θ + ε 				                    (1)

The overall means (α) for two intervention arms are equal at 
baseline due to randomization. The fixed time effect (βj) is modeled 
to allow for temporal effect at time point j. Now Zhj=I{h=1,j>0} as the 
intervention effect (θ) only delivers to the intervention arm (h=1) 
on the k post-intervention measurements. Any random unit (ith 
level) effects are subsumed into the within-unit error term *

ij ε , where 
( )* 2

ij ~ N 0,  Vε σ
 with the correlation matrix V defined below in eqn. (2). 

We assume an immediate “jump effect” of size θ after the intervention 
begins at time j=1, that remains unchanged at subsequent time points. 

Note that other functions such as linear intervention effect increase j 
∗θZhj for j ≥ 1 or threshold followed by exponential decay e-j ∗θZhj for 
j ≥ 1 are possible. However, there may be settings where an immediate 
“jump effect” that continues forward unchanged is appropriate, such 
as when the intervention is a process change at a medical facility that 
can be implemented quickly; a drug that the body does not develop 
resistance or acclimation to, or an immediately successful behavioral 
intervention. Even if the intervention impact was not “immediate 
jump”, it could be close to this.

Generalized least squares (GLS) estimates

The matrix form of eqn. (1) is: * Y X= β + ε , where ( )* 2
ij ~ N 0, Vε σ . 

Here X represents the design matrix and Y is a vector of outcomes. 

For the general parameter vector ( )( )1 1 kb 1,  ,  ,  ,  ,  ,  ,  −− −β = α β … β β … β θ , 
the corresponding design matrix X has columns (I,J-(b-1),…, J-1,J1,…, Jk, 
Z), with N*T rows per column. Z is a column vector of intervention 
indicator with Zhj coded (0, 1) as defined above; J-(b-1),…, J-1,J1,…, Jk are 
columns corresponding to b+k-1 independent time coded variables 
as follows: for j={-(b-1), -(b-2),…, -1, 1, 2,…k), Jj={-1 at time –b 
(reference); 1 at time j; and 0 at all other times}. There is no column for 

J-b as 
( )

k

b j
j b 1

−
=− −

β = − β∑  under the fixed effects constraint 
k

j
j b

 0
=−

β =∑ .

More details on the full expansion of design matrix to a related 
design, the stepped wedge, can be found [20]. The covariance matrix 
V is made up with (n0 + n1) times block T diagonal matrices V0’s with 
all off block diagonal matrix elements being 0. The error term measures 
are independent between units, and within-unit correlation structure is 
invariant given two visit j and j’, i.e., ρi,jj,=ρi’,jj, (i≠I’,j≠j’). Thus,
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       (2)

The within-unit correlation structure (ρij) is often unknown 
in advance. Typically, correlation for any two visits would be 
monotonically non-increasing with |j –j’|, i.e., as the two time points 
are further separated, they will not become more strongly correlated 
[21-23].

The Generalized Least Squares (GLS) estimate for β  is β  in eqn. 
(3), which has proven properties of being the best linear unbiased 

estimator (BLUE) for β  and uniform minimum variance (UMVU) if 
Yhij is normally distributed [17].

 ( ) 11 1X V X X V Y
−− −′β ′= ; 			                 (3)

The Generalized Least Squares variance of β  is Λ in eqn. (4); a 
square matrix of order T+1 with the variance of θ̂  the estimated 
intervention effect being in the last row and last column of Λ.

Λ =(X′V-1X)-1σ2.				                    (4)

General power estimation

We consider Ho : θ=0 versus HA:θ=± θA where θA is some expected 
or hypothesized value for the intervention effect we wish to be able 

to statistically detect. Where without loss of generality, Á= θ
δ

σ
 is the 

effect size [24] or θA expressed as units of standard deviation. For 
practical repeated-measure designs, the normal approximation of 
the non-central t distribution can be applied [25]. In specific, the two 
distributions are almost identical when degrees of freedom (DF) γ > 
30 and we have the following equations of power (1-β) in eqn. (5), in 

which ( )Var θ̂  as derived above in the GLS variance estimate in eqn. (4).

( )A 11
2

z z Var ˆ
α −β

−

 
θ = + θ 

 
 			                 (5)

where αand βare Type I and Type II errors, respectively. For smaller 
sample sizes, it may be appropriate to approximate degrees of freedom 
(DF) (γ) in non-central t distribution for the mixture variance (for 
example, by Satterthwaite’s [26], and Kenward-Roger’s approximations 
[27]) and adjust eqn. (5) for this. But the full details are beyond the 
scope of this paper.

Repeated-measures correlation structure

As previously noted, one main difficulty in parametric analysis 
of longitudinal data lies in specifying covariance structure [4,23], i.e. 
estimating ρjj, for j ≠ j’, as normative data from historical settings often 
does not exist or is limited. The simplest approximation is compound 
symmetry structure (VCS) where correlations among repeated measures 
are assumed to be equal within the same unit; For example, VCS is 
shown below with T=7.

CS

1
1

1
V 1

1
1

1

ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ
 

= ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ
 
ρ ρ ρ ρ ρ ρ 

 ρ ρ ρ ρ ρ ρ 

For VCS, correlation does not decline with time; thus ρjj′≡ρjj′′ for, j’ ≠ 
j’’. While surprisingly little empirical research has been done to confirm 
this structure holds given how often VCS, is used in practice, CS has 
been found to be a reasonable simplification in planning longitudinal 
studies [5,28,29].

However, both logical reasoning and empirical data (such as that 
presented in the examples below) suggest that correlation declines with 
greater separation of time. Thus, stationary declining Toeplitz structure 
(VTP) where jj′=ρ|j-j′| with ρ|j-j′|=1 ≥ ρ|j-j′|=2 ≥… ρ|j-j′|=T-1 is reasonable or for 
T=7.

1 2 3 4 5 6

1 1 2 3 4 5

2 1 1 2 3 4

CS 3 2 1 1 2 3

4 3 2 1 1 2

5 4 3 2 1 1

6 5 4 3 2 1

1
1

1
V 1

1
1

1

ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ
 

= ρ ρ ρ ρ ρ ρ 
 ρ ρ ρ ρ ρ ρ
 
ρ ρ ρ ρ ρ ρ 

 ρ ρ ρ ρ ρ ρ 

We note that stationarity is needed with ρ|j-j′| being constant over 
time for study planning otherwise, historical estimates of correlation 
cannot be applied to the future timepoints of a planned study [7,8]. 
However, VTP may be hard to estimate in practice, especially in early 
planning stage when researchers do not have enough historical data 
going back T time points.

We do note that correlation may also be modeled as a deterministic 
function of the absolute time separation of the observations (i.e., as ρ∆t 
where ∆t is the difference in times which may have additive value if 
periodicity of evaluations varies within and between persons [3,30]. 
However, this is beyond the scope of this paper. Finally, once the 
data has been collected the restricted maximum likelihood (REML) is 
recommended for estimation of ρ for VCS or {ρ1,ρ2,…, }{ρ1,ρ2, …, ρb+k-

1} for VTP [2]. In fact, REML estimation is included as a default option 
in many current model-fitting software packages (e.g., Proc Mixed in 
SAS).

Compound symmetry correlation

Under the assumption of CS, we derive a closed form GLS 

formula for ( )CSVar θ̂  follows. The GLS estimator of β  is therefore 

 ( ) 11 1X V X X V Y
−− −′β ′=  and has variance ∧=(X′V-1σ2) where Λ is a square 

matrix of order T+1. ( )CSVar θ̂  is the last diagonal element of Λ. Using 
the inverse formula for portioned matrix as discussed [20], we calculate 
for the following GLS variance estimate of intervention effect. More 
derivations can be found in the Appendix.

( ) ( ) ( )
( )

2
CS

0 1

1 b k 1 11 1Var
n k 1 b 1

ˆ
n

 + + − ρ − ρ   θ = + σ 
 + − ρ   

                          (6)

We note that after rearrangement of terms eqn. (6) is identical 
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to the variance of intervention effect under compound symmetry 
presented in Section 5 from Frison and Pocock [5] who used a 
simpler approach of linear models on mean summary statistics that 
derived the same variance estimate as GLS model obtains. We are 
not, however, aware that this same result has been previously shown 
for the generally more powerful Generalized Least Squares design. 
 The relatively simple form of eqn. (6), simplifies investigation on 
optimal design in planning longitudinal study. For example, a repeated-
measure design may have a constrained total number of longitudinal 
times T (T=b + k) because of the budget and/or time constraints. In 
such scenarios, finding the optimal allocation of T into b and k that 
maximizes power (or minimizes the sample size needed to obtain 
a given power) would be important. From eqn. (6), for CS structure 
with constrained T given ρ, the optimal b with the local minimization 
of variance is (as was also inferred by Frison and Pocock [5] using 
illustrative examples):

T 1 1b max round ,0
2 2

∗   +
= −  ρ  

 			                   (7)

Note Y=round (X) rounds each element of X to the nearest integer. 
If an element is exactly between two integers, then Y can be either 
of the two integers. For example, suppose ρ=0.50 for a randomized 
trial, we can calculate the optimal pre-intervention measurements

* T 1 1 T 1 b round round
2 2 0.50 2∗

+ −   = − =   
   

. Therefore, for odd T,

* T 1 T 1b round
2 2
− − = = 

 
; for even T, * T 1 T 1 T 1b round  or 

2 2 2
− − − = = 

 
; 

Now b* is 0 for ρ=0 and approaches T/2 as ρ goes to 1.

To show how this work in practice including for comparison with 
our future examples involving empirical Toeplitz correlation structures, 
Table 1 presents examples under CS, letting T=2, 3,…, 7, and b range 
from 0 to T-1. We chose seven as a maximum for T which is reasonable 
for our examples below and for trials conducted for a maximum of 
2-4 years with repeated measures at 3-6 months’ interval. In most 
published examples [9-15], we observed T was less than 8 as having 

more time points makes the study too long for practical consideration. 
We take ρ=0,0.25,0.50,0.75 to range from no correlation, to high 
correlation. Here and elsewhere we let n0=n1=30 units each in both the 
intervention and control arms and σ2=100 as simple common values to 
enable comparison across different designs and settings.

For example, for n0=n1=30, σ2=100, with T=7 and b=2 visits before 
the intervention (and thus k=7-2=5 visits after the intervention), if CS 
correlation structure exists with ρ=0, the variance of the intervention 
effect estimate, i.e., ( )CSVar θ̂  will be 1.33. However, if ρ=0.25, ( )CSVar θ̂  

rises to 2.00 (an increase of 50% over 1.33 when ρ=0) and if ρ=0.75, 

( )CSVar θ̂  drops to 1.05 (a reduction of 13.5% below 1.33 when ρ=0). 

These changes in ( )CSVar θ̂  with ρ represent a complex interplay 
between amount new information brought in with new measures 
(which is decreasing with ρ) and amount of common effect removed 
by matching post intervention to pre-intervention measures (which is 
increasing with ρ) as given by eqn. (6). However, the ratio changes are 
invariant to no,n1 and σ2. Thus, if n0=10, n1=20 and σ2=40, with T=7 and 
b=2, ( )CSVar θ̂  is still 50% higher when ρ=0.25 and 13.5% lower when 
ρ=0.75 compared to when ρ=0.

As T increases, ( )CSVar θ̂  decreases thus power increases. However, 
when planning a study, this must be weighed against the extra cost and 
time that increasing T requires. For example, with n0=n1=30, σ2=100, 
ρ=0.25, starting with T=2 and b=1 pre-intervention time point, 

( )CSVar θ̂  is 6.25. This drops by 40% to 3.75 from increasing T to 3 
(With b remaining at 1). However, further increasing T to 4 (with b 
still at 1) only reduces ( )CSVar θ̂  another 13% (for a cumulative 53% 
of 6.25) down to 2.92. If the time points were 6 months apart, one 
would need to consider if this additional reduction of 13% was worth 
extending the study from 1 year to 1.5 years. Another consideration is 
when T is fixed, what value of b minimizes ( )CSVar θ̂  in eqn. (7) and by 
how much. Cleary when ρ=0 there is no common within-unit effect 
to be removed by matching to pre-intervention measure so ( )CSVar θ̂  
is minimized by having maximizing k at T with b=0. As ρ increases 

ρ=0b ρ=0.25b

Total No 
Measures

Number of Measures Taken Pre-Intervention Total No 
Measures

Number of Measures Taken Pre-Intervention
b=0 b=1 b=2 b=3 b=4 b=5 b=6 b=0 b=1 b=2 b=3 b=4 b=5 b=6

T=2 3.33* 6.67 T=2 4.17* 6.25
T=3 2.22* 3.33 6.67 T=3 3.33 3.75* 6.00
T=4 1.67* 2.22 3.33 6.67 T=4 2.92 2.92* 3.50 5.83
T=5 1.33* 1.67 2.22 3.33 6.67 T=5 2.67 2.50* 2.67 3.33 5.71
T=6 1.11* 1.33 1.67 2.22 3.33 6.67 T=6 2.50 2.25 2.25* 2.50 3.21 5.63
T=7 0.95* 1.11 1.33 1.67 2.22 3.33 6.67 T=7 2.38 2.08 2.00* 2.08 2.38 3.13 5.56

ρ=0.50b ρ=0.75b

Total No 
Measures

Number of Measures Taken Pre-Intervention Total No 
Measures

Number of Measures Taken Pre-Intervention
b=0 b=1 b=2 b=3 b=4 b=5 b=6 b=0 b=1 b=2 b=3 b=4 b=5 b=6

T=2 5.00* 5.00* T=2 5.83 2.92*

T=3 4.44 3.33* 4.44 T=3 5.56 2.08* 2.38
T=4 4.17 2.78* 2.78* 4.17 T=4 5.42 1.81 1.55* 2.17
T=5 4.00 2.50 2.22* 2.50 4.00 T=5 5.33 1.67 1.27* 1.33 2.05
T=6 3.89 2.33 1.94* 1.94* 2.33 3.89 T=6 5.28 1.58 1.13 1.06* 1.22 1.98
T=7 3.81 2.22 1.78 1.67* 1.78 2.22 3.81 T=7 5.24 1.53 1.05 0.92* 0.94 1.15 1.93

a ( )ĈSVar θ with study design standardized as n0=n1=30, σ2=100.
bThe common value of the compound symmetry correlation.
*Column value of b that generates minimum variance for given the given row T.

Table 1: Illustrative variance of the intervention effect estimate ( )ĈSVar θ  under compound symmetry correlation with T=2-7 and the other study design parameters 
standardized as follows a.
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this shifts towards larger b to remove common within-unit effect with 
Tb
2

≈  being optimal for ρ ≥ 0.5. Although often b being one unit lower 
than this performs nearly as well.

Toeplitz correlation

As shown below, declining Toeplitz Correlation may occur 
frequently in practice which at least theoretically raises concerns about 
using the assumption of compound symmetry when planning studies. 
But there is no simple closed form for the variance of the estimated 
intervention effect under Toeplitz correlation VTP, as was the case with 
compound symmetry in eqn. (6) rather ( )TPVar θ̂  must be obtained 
by computer incorporating VTP into eqn. (4). We thus explore this 
further in the Results Section using the empirical Toeplitz correlation 
structures of our four examples.

Results (for Empirically Observed Toeplitz Correlations)
Four Toeplitz correlation examples

While the formulas and properties for Compound Symmetry are 
easily implemented we wanted to see how well they applied to relevant 
data that we had in four examples with T=7 time points. The first two 
were collected on 365 New Jersey nursing homes being monitored every 
three months from the second quarter of 2011 to the fourth quarter 
of 2012 (seven quarters total) in the Nursing Home Compare [31] for 
proportions of: 1) long stay nursing home residents with weight loss 
(NH - WEIGHT LOSS); and 2) long-stay nursing home patients that 
reported fall injury (NH - FALL INJURY). Higher levels of NH - FALL 
INJURY and NH - WEIGHT LOSS are undesirable and targeted for 
improvement at a facility level. The “unit” for these examples is the 
facility with the repeated measures being quarterly facility values. Thus, 
for example, in a future study, it is conceivable that all 365 New Jersey 

nursing homes (NH) could be followed for b baseline time points to 
obtain proportions of their long stay residents with NH - WEIGHT LOSS 
and NH - FALL INJURY and then around 50% randomly chosen facilities 
be moved to a facility intervention to improve one or both outcomes with k 
post-intervention measures (proportions of long stay residents with each 
outcome) obtained from both groups for comparison of changes.

The next two examples were obtained from 1012 Bronx HIV 
infected women [32] who had complete data for their first seven 
semiannual visits at patient (PT) level: PT-CD4 counts and PT-
CESD Depression scores [33]. Higher PT-CD4 and lower PT-CESD 
are desired and have been previously targeted for interventions. The 
repeated measures for these examples are from semi-annual visits of 
patients. It is conceivable that in a future study these patients could 
be followed for b baseline visits to obtain PT-CD4 counts and/or 
PT-CESD scores and then around 50% be put on an intervention to 
improve one or both outcomes with k post-intervention measures 
obtained from both groups for comparison of changes.

Table 2 and Figure 1 summarize the empirical Toeplitz correlation 
structures for the four outcomes described above estimated using the 
REML algorithm in the mixed procedure in SAS from our normative 
data. Visually, Figure 1 and Table 2 illustrate a range from starting 
correlations at ρ1 of ~0.60 to ~0.85 and slight to steep generally 
monotonic linear declines of ~0.10 to ~0.62 going out to ρ6.

From the four examples in Figure 1, PT-CESD is qualitatively 
closest to compound symmetry with correlations between 0.52 and 
0.64, but qualitatively the other correlation structures have rapid and/
or sustained decline in ρ starting at ρ2 with greater separation of time 
points. We mow present variance estimates and optimality properties 
for these four examples obtained by computer using eqns. (4) and (5) 
incorporating VTP in Table 2 and Figure 1.

Figure 1: Visualization of Toeplitz correlation structures from four examples (T=b+k=7).

Time point Separation ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

Among Quarterly Evaluations of 365 New Jersey Nursing Homes
NH-WEIGHT LOSS 0.59 0.44 0.37 0.32 0.29 0.30
NH-FALL INJURY 0.74 0.51 0.32 0.14 0.13 0.12

Among Semiannual Visits of 1012 HIV-Infected Bronx-WIHS Patients
PT- CD4 0.84 0.74 0.65 0.57 0.46 0.47
PT-CESD 0.64 0.59 0.54 0.53 0.52 0.55

Table 2: Toeplitz Correlation Structures VTP from four real examples.
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Toeplitz variance estimates

We calculated the variance of the intervention effect estimate, 
i.e., ( )TPVar θ̂  from eqn. (4) using the identified Toeplitz correlations 
in Table 3 and Figure 1 over all possible b: k allocations with T=2,…, 
7 for each of the four examples. As before, to permit comparability 
across examples, it was assumed that the variance of each outcome was 
σ2=100 and n0=n1=30. This is presented in Table 3. For each example, 
the b: k allocation for each value of T that gives the minimum variance 
is indicated in bold.

For example, with PT-CESD {T=2, b=1} and {T=5, b=2}, ( )TPVar θ̂  
are 3.94 and 2.29 respectively while for the same values of T and b 
for PT-CD4, the ( )TPVar θ̂  are 1.96 and 1.78, respectively. The lower 
variances for PT-CD4 reflect that it has higher values of ρ1 and ρ2. The 
slower declining in variance from T=2, b=1 to T=5, b=2 for PT-CD4 
(which also occurs for NH - WEIGHT LOSS and NH - FALL INJURY) 
may reflect larger deviation from compound symmetry with ρ1 being 
larger than the other correlations and thus having a more pronounced 
role in removing shared matched effects from adjacent pre-intervention 
observations.

Not surprisingly, ( )TPVar θ̂  decreases for all as T increases. For 
T≥4, the advantages from increasing T in terms of ( )TPVar θ̂  may 
attenuate. Also, not surprisingly, b=0 performs particularly poorly for 
all examples. But b=1 is the optimal choice for NH - WEIGHT LOSS, 
NH - FALL INJURY, and PT-CD4. For PT-CESD, which is closer to 
compound symmetry, b=1 is optimal for smaller T (T<4), but b=2 is 
optimal for larger T (T≥4). While more comprehensive analyses for 
other values of T and VTP is beyond the scope of this paper, we believe 
that: i) VTP presented here are likely representative of many settings ii) 
T ≈ 7 may be reasonable for many settings so this observation can be 
widely applicable.

CS variance approximation

If the actual structure of VTP can be identified and the needed 
software is available, it is ideal to use it in eqn. (4) to obtain ( )TPVar θ̂  for 
power estimation in eqn. (5). However, in practice, investigators often 

have limited access to: i) normative historical correlation structure data 
from which to obtain VTP; ii) needed software to generate ( )TPVar θ̂  
from eqn. (4); iii) space in a grant proposal to explain and justly 
complicated parameter estimates for power estimation. Furthermore, 
power/sample size estimates using VTP could have unknown 
robustness properties against misspecification on {ρ1, …,ρT-1}. For the 
above reasons, investigators may opt to use a Compound Symmetry 
approximation even in settings where a non-CS VTP is known or CS 
is not likely to hold. Indeed, in practice simpler statistical models are 
often fit when it is impossible or impractical to fit a more complicated 
model that is closer to truth. Still it is important to be aware how robust 
the approximation of VTP with compound symmetry (in ways that are 
likely to occur) is.

For example, in many settings, the investigator may have data 
spanning two visits (such as data from two semiannual visits for our 
previous HIV+ patients, or two quarterly reports in the nursing home 
example) to obtain ρ1. Or it may otherwise be possible to use other 
approaches to derive values for ρ1 but not for other ρ′s. The most 
immediate choice (particularly if the investigator mistakenly believes 
the structure is VCS) would be to use eqn. (6) with the observed or 
surmised ρ1. This seems likely to lead to underestimation of the variance 
of the intervention effect estimate as the variance declines with ρ and 
for VTP in our examples in Table 2 and Figure 1 and in general ρ1 is the 
largest value.

Another option is that the investigator would try to estimate the 
average ρ in VTP say as a weighted average of estimated ρ1,ρ2,…,ρT-1, i.e., 

( ) ( )1 2 T 1
avg T 1

i 1

T 1 T 2

i
−

−

=

− ρ + − ρ +…+ ρ
ρ =

∑
 and use this as the common ρ 

in VTP approximation based on eqn. (6). If ρ1,ρ2,…,ρT-1 were known, 
then ρavg could be calculated directly and used as described above if the 
software to incorporate VTP was unavailable. As ρavg will be smaller than 
ρ1 if the correlation declines with temporal distance, use of ρavg would 
not have as strong a pull towards underestimation of the variance of the 
intervention effect as would use of ρ1, in a VCS approximation to VTP.

NH-WEIGHT LOSSb NH-FALL INJURYb

Total No 
Measures

Number of Measures Taken Pre-Intervention Total No 
Measures

Number of Measures Taken Pre-Intervention
b=0 b=1 b=2 b=3 b=4 b=5 b=6 b=0 b=1 b=2 b=3 b=4 b=5 b=6

T=2 5.30 4.35* T=2 5.80 3.02*
T=3 4.59 3.48* 4.26 T=3 5.03 2.90* 2.99
T=4 4.14 3.05* 3.38 4.21 T=4 4.37 2.75* 2.88 2.98
T=5 3.81 2.78* 2.95 3.34 4.20 T=5 3.75 2.63* 2.71 2.86 2.94
T=6 3.55 2.59* 2.69 2.90 3.31 4.19 T=6 3.45 2.15* 2.62 2.71 2.84 2.79
T=7 3.37 2.40* 2.48 2.62 2.86 3.28 4.15 T=7 3.17 2.06* 2.14 2.62 2.67 2.70 2.79

PT-CD4b PT-CESDb

Total No 
Measures

Number of Measures Taken Pre-Intervention Total No 
Measures

Number of Measures Taken Pre-Intervention
b=0 b=1 b=2 b=3 b=4 b=5 b=6 b=0 b=1 b=2 b=3 b=4 b=5 b=6

T=2 6.13 1.96* T=2 5.47 3.94*
T=3 5.77 1.84* 1.94 T=3 4.99 2.94* 3.57
T=4 5.45 1.80* 1.81 1.94 T=4 4.69 2.64 2.60* 3.48
T=5 5.16 1.77* 1.78 1.81 1.94 T=5 4.49 2.44 2.29* 2.49 3.41
T=6 4.83 1.77 1.75* 1.78 1.81 1.90 T=6 4.34 2.31 2.08* 2.16 2.40 3.36
T=7 4.67 1.49* 1.75 1.75 1.78 1.81 1.71 T=7 4.24 2.16 1.92* 1.92 2.04 2.31 3.26

a ( )T̂PVar θ with study design standardized as n0=n1=30, σ2=100.
bThe empirical Toeplitz correlation structures for these examples are given in Table 2 and Figure 1
*Column value of b that generates minimum variance for the given row T.
Table 3: Variances of the intervention effect estimate ( )T̂PVar θ under the empirical Toeplitz correlation structures observed in our four examples with T=2-7 and the other 
study design parameters standardized as followsa.
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 For example, consider an investigator planning to use for NH - FALL 
INJURY described above as a longitudinal outcome in a randomized 
nursing home facility intervention with T=7. To refresh for NH - FALL 
INJURY in Table 2, ρ1=0.74, ρ2=0.51, ρ3=0.32, ρ4=0.14, ρ5=0.13, ρ6=0.12. 
But the investigator may not have all the normative data. If only ρ1=0.74 
were known, it might be used as a common ρ in a VCS approximation 

to VTP. Alternatively, 1 2 3 4 5 6
avg

6 5 4 3 2
6 5 4 3 2 1

ρ + ρ + ρ + ρ + ρ + ρ
ρ =

+ + + + +
 could be used 

in eqn. (6) under VCS approximation to VTP. If estimated correctly for 

this example, ( ) ( ) ( ) ( ) ( )
avg

6 0.74 5 0.51 4 0.32 3 0.14 2 0.13 0.12
0.43

21
+ + + + +

ρ = = , 

is much less than the previously described ρ1. The question we now 
address is how well use of VCS in eqn. (6) with either (i.e., a correctly 
identified) ρ1 or avg as the common correlation performs in estimating 

( )TPVar θ̂ .

We let T range for 3 to 7 (as by default, T=2 is compound 
symmetry). We focus on b=1 as: i) in Table 3, b=1 typically minimizes 
the variance, and thus ii) b≥2 would be used only if this number of 
pre-intervention measures already existed in which case these could be 
used to identify more components of VTP minimizing the need for a VCS 

approximation. Figure 2 presents the actual ( )CSVar θ̂  from VTP and the 

( )CSVar θ̂  approximations using ρ1 and ρavg. As before to allow for cross 
comparability between different estimates, we assume that σ2=100 and 
n0=n1=30 units in each treatment arm.

Thus, for example, with NH - FALL INJURY for T=3 (on the x-axis 

in Figure 2) and b=1, ( )TPVar θ̂  from VTP shown in Table 2B is 2.90. If 

the investigator did not know VTP but knew (or estimated correctly) 
ρ1=0.74 and used it in eqn. (6) assuming CS, he would underestimate 

that variance as 2.15. However, if the investigator could obtain or 

correctly estimate 1 22 0.66
2 1avg
ρ + ρ ρ = = + 

 and use this in eqn. (6) 

( )TPVar θ̂  is less underestimated, as 2.63.

For the three outcomes (PT-CD4, NH-WEIGHT LOSS, NH-FALL 
INJURY) where the correlations declined greatly after ρ1 using VCS 
with 1 greatly underestimated ( )TPVar θ̂ , sometimes by as much as 40% 
which would result in great overestimation of study power. For PT-
CESD where the correlation was much closer to compound symmetry, 
the disparity while was much less being at most an underestimation 
of 13% of ( )TPVar θ̂  when T=6. While not perfect, the performance 

of a correctly estimated ρavg in the VCS approximations were much 

better. Often the ( )csVar θ̂  with ρ=ρavg was almost the same as the true 

( )csVar θ̂ , while it sometimes underestimated ( )TPVar θ̂ . The greatest 

underestimation of the variance was by 10% (for T=3 of PT-CD4).

Conclusion
The aim of this paper was to present a “usable” power and 

sample size estimation framework for randomized two-arm pre-post 
intervention trials with repeated continuous longitudinal outcomes. 
We developed Generalized Least Squares estimates of the intervention 
effect ( )Var θ̂  for general linear models assuming a jump effect on the 

outcome fully occurs immediately after the intervention is delivered.

Presented in eqn. (6) is an easily implemented formula for 
variance of the intervention effect estimate under the very commonly 
assumed compound symmetry correlation structure i.e., ( )CSVar θ̂ . 

Not surprisingly, ( )CSVar θ̂  decreases as the number of total visits T 

Figure 2: Comparative variance for randomized designs over all possible b: k allocations with CS approximations.
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increases. But this must be weighed against the extra cost associated 
with more follow-up visits. For T that is fixed due to budget or time 
limitations researchers would like to determine the optimal number 

of pre-post intervention measures (b: k) to minimize ( )CSVar θ̂ . From 
eqn. (7), the optimal b∗ becomes larger as the correlation coefficient ρ 
increases for a constrained T because higher correlation increases benefits 
from matching on pre-intervention measurements. When ρ=0 there 
is no common within-unit effect, the variance is minimized by having 
maximizing k at T with b∗=0. As ρ increases this shifts towards larger b∗ to 

remove common within-unit effect with * Tb
2

≈  being optimal for ρ≥ 

0.5. But in practice smaller values also performed well with b being one 
unit lower than b∗ performing nearly as well as b∗ in most cases.

Although compound symmetry is commonly used in healthcare 
research, the correlation structures of outcomes we evaluated from 
nursing homes and HIV patients behaved (sometimes very) different 
from CS. Therefore, further investigation on power approximation 
with a more general stationary declining Toeplitz correlation was 
needed. As simple closed form GLS variance formulas are not directly 
available for Toeplitz correlations, we numerically evaluated ( )TPVar θ̂  
using computer software in eqn. (4). While stochastically, increasing 
T reduced the ( )TPVar θ̂  the declines were much lower especially for 
two of the four examples than they were with compound symmetry 
with T=7 giving only 24% - 32% lower ( )TPVar θ̂  than T=2 for PT-CD4 
and NH–FALL INJURY in studies with the same number of units. 
Such gains must be weighed the fact that studies with T=7 measures 
require 6 times as much follow up time as do those with T=2. In our 
four examples with fixed T, b=1 gave optimal or close to optimal results 
in minimizing ( )TPVar θ̂ . Moreover, having at least one baseline pre-
intervention measure is important as b=0 always produced (often 
substantially) larger ( )TPVar θ̂ .

While when the correlation structure is Toeplitz, it is more 
accurate to estimate the variance of the intervention effect using VTP 
in eqn. (4), investigators often neither have precise normative data to 
estimate the needed parameters ρ1, …,ρT-1 nor the software/expertise 
to implement eqn. (4). However, in these settings, investigators often 
have some insight on correlations (i.e., to observe ρ1 and/or estimate 
ρavg). In practice, as compound symmetry is often used as a default 
correlation structure where either observed or estimated ρ1 or ρavg 
could be used as the common correlation in a compound symmetry 
approximation. Thus, we assessed how close the ( )CSVar θ̂  from either 
of these approximations with the parameters correctly obtained 
was to the real ( )CSVar θ̂  using closed form formula in eqn. (6) with 
T varied from 2 to 7 (with fixed b=1). The ( )CSVar θ̂ approximations 
using =ρavg underestimated ( )TPVar θ̂  by at most 10%, especially when 
the correlations declined dramatically over time. While the ( )CSVar θ̂
approximations using =ρ1 typically substantially underestimated the 
true ( )TPVar θ̂  and thus overestimated power. Of note, we only focused 
on b=1 as this is typically the setting that maximizes power and where 
the true correlation structure could not be obtained, but results were 
similar for larger b (data not shown) Also there may be some other 
conservative approaches to overestimate ( )TPVar θ̂  when it cannot be 
calculated directly; for example by using mean summary statistics [5], 
or simple approximations using T=2 with b=k=1 and ρ=ρ1.

 There are some limitations in our work. For simplicity, we focused 
on balanced designs with equal time interval between visits and no 
missing data. We assumed an immediate one-time jump effect of the 

intervention, but in some settings, the effect may be linear cumulative 
or some other patterns. Also, our analysis was restricted to T ≤ 7 
longitudinal measures as we observed to be the case in most previous 
published studies. While this need to be confirmed in future studies, we 
suspect, however, that the properties observed on optimal b: k allocation 
and compound symmetry approximation to Toeplitz correlations in 
our four examples, qualitatively hold when these settings are expanded. 
Although we assumed stationary covariance (a minimum requisite to 
use historical data for correlation estimation), covariance could change 
over time from uncontrollable mechanisms in practice. Relaxation of 
the above assumptions may likely lead to complicated settings that 
perhaps can only be addressed with simulation.

In conclusion, this paper developed a Generalized Least Squares 
power estimation framework based on correlation structures and 
investigated optimality for randomized longitudinal randomized 
intervention trials. Under the commonly made assumption of 
compound symmetry correlation, we derived a simple formula for 
the variance of the intervention effect estimate. However, CS may not 
always hold in the practice as shown in our real examples. In those 
examples, for T ≤ 7 total measures per unit, having b=1 pre-intervention 
visit typically minimized the variance of the estimated intervention 
effect. Furthermore, our examples suggest that if compound symmetry 
correlation structure is used to approximate Toeplitz correlation 
structure with short-term correlation assumed to hold for longer 
periods, there may be a strong bias towards underestimation of the 
variance of the intervention effect.
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