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Abstract
Epidemiological data from the COVID-19 pandemic shows increased severity and mortality among males compared with females. Several studies 
offer evidence that this disparity may be, in part, due to sex hormone biases contributing to different outcomes in SARS-CoV-2, suggesting 
hormone therapy as a potential combination treatment alongside antivirals in COVID-19. This review explores the potential mechanisms by which 
estrogen and androgen have distinct impacts on the development of COVID-19.
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Background

Men account for 63% of hospitalizations and 57% of deaths due 
to the coronavirus disease of 2019 (COVID-19) worldwide, though 
incidence of infection does not differ greatly between the sexes [1]. 
There may be several possible explanations for this disparity between 
men and women, including comorbidities such as smoking and heart 
disease, X-linked chromosomal biases, and sex hormone biases [2,3].
This short review article will focus on the estrogen- and androgen-
mediated responses to severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infection, and potential treatments alongside antivirals 
to combat SARS-CoV-2 infection. 

The literature search was conducted through PubMed, Google 
Scholar, University of Toronto Libraries, and ClinicalTrials.gov using 
keywords including COVID-19, SARS-CoV-2, sex differences, 
hormonal effects, immune/inflammatory response, genomic regulation, 
viral entry, estrogen, estradiol, androgen, antiandrogen, estrogen/
androgen receptor, Angiotensin-Converting Enzyme 2 (ACE2), 
Angiotensin-converting Enzyme (ACE), Renin-Angiotensin System 

(RAS), Transmembrane Protease, Serine 2 (TMPRSS2), Disintegrin 
and Metalloprotease 17 (ADAM-17), and the Receptor for Advanced 
Glycation Endproducts (RAGE). 

Estrogen Treatment in SARS-CoV-2 and 
SARS-CoV Infection 

In vitro VERO-E6 cells, estradiol treatment reduced over 40% 
of SARS-CoV-2 viral load [4]. In a mouse model of SARS-CoV, 
ovariectomy and estrogen receptor blockers increased mortality 
[3]. A retrospective study found that for women above 50, those 
receiving estradiol therapy had an over 50% reduced fatality risk due 
to COVID-19 compared to those without [5]. A related class of drugs 
called Selective Estrogen Receptor Modulators (SERMs) is shown to 
have similar protective effects as endogenous estrogens by activating 
Estrogen Receptors (ER) in a tissue-specific manner [6]. This tissue-
specificity, which is observed for both SERMs and endogenous 
estrogens, is believed to be the result of different expression of ER 
subtypes and co-regulators in different cell types, as well as different 
conformational changes caused by binding of different ligands, which 
ultimately result in transcriptional regulation of different gene targets 
[7,8]. For example, tamoxifen is being investigated in the context of 
COVID-19 and was found to increase protection against SARS-CoV 
in female mice [3]. This SERM demonstrates tissue-specific effects, 
acting as an estrogen antagonist in breast tissue and an agonist in 
the bone, uterus, and cardiovascular system [8]. Furthermore, many 
of these drugs, such as tamoxifen, clomiphene, and raloxifene, have 
additional, unique, ER-independent mechanisms that inhibit viral entry 
through interaction with viral glycoproteins or host proteins [9]. 
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Antiandrogen Treatment in SARS-CoV-2 
Infection

Antiandrogens are often achieved by blocking the AR and/or 
the production of androgens, the class of male sex hormones [10]. 
Both 5--reductase inhibitors (finasteride, dutasteride, enzalutamide) 
and AR-antagonists (bicalutamide, apalutamide, darolutamide, 
enzalutamide) have been tested in vitro for SARS-CoV-2. Finasteride 
and enzalutamide have been shown to reduce internalization of 
recombinant Spike protein into human alveolar epithelial cells and 
reduce SARS-CoV-2 titers in lung bud organoids [11,12]. Apalutamide, 
darolutamide, and enzalutamide dose-dependently reduced SARS-
CoV-2 infection in LNCaP cells [13]. In contrast, Dihydrotestosterone 
(DHT), the natural agonist of the Androgen Receptor (AR), significantly 
increased uptake of recombinant Spike protein by human alveolar 
epithelial cells [11].

 It has been reported that androgen deprivation therapy [14] 
and 5--reductase inhibitors, a class of antiandrogens that prevent 
conversion of testosterone into the more potent DHT [10], are 
associated with improved clinical outcomes in COVID-19 patients. 
A randomized clinical trial of proxalutamide, an AR-antagonist, has 
shown decreased hospitalization compared to a placebo group (2.2% 
vs. 26%) in male patients with COVID-19 [15,16]. Further studies by 
these authors suggest that proxaltumide and dutasteride treatment 
may reduce disease duration in COVID-19 patients also receiving 
standard of care by accelerating viral clearance and reducing 
inflammation compared with patients only receiving standard of care 
[17,18]. However, some scientists expressed concern regarding the 
strength of this association as patients receiving these antiandrogenic 
treatments often have abnormal hormonal regulation to begin with [19]. 

Potential Mechanisms by Which Estrogen 
Agonists and Androgen Antagonists Act 

The sex hormones might influence viral infection and the 
inflammatory responses. Estrogen receptors (ER-, and G protein-
coupled estrogen receptor 1 (GPER)) are expressed in lung and 
cardiac tissues [20,21] as well as on immune cells. Once activated 
by their respective ligands, these receptors can act as transcription 
factors, forming complexes at genomic regulatory sites or mediating 
long-range chromatin interactions for a wide variety of genes [22]. 

The androgen receptor is also expressed in lung and cardiac tissue 
and on immune cells and can modulate expression of various genes 
[23,24].

Estrogenic Regulation of ACE2 and TM-
PRSS2

Estradiol’s effect on ACE2 is reported differently in different cell 
types, decreasing mRNA expression in airway epithelial cells [25,26], 
but increasing mRNA expression and activity in cardiac cells [27], 
2 adipose tissue [28], and human umbilical vein endothelial cells 
(HUVEC) [29]. This discrepancy might be due to tissue-specific effects 
of estrogen or different dosing procedures [30]. There is evidence that 
this regulation is mediated by ER- binding to the ACE2 promoter [27-
29]. However, it is important to note that mRNA transcript levels are not 
always indicative of protein levels. In a study of HUVEC cells, Mompeon 

et al. found that estradiol increased ACE2 mRNA, but not protein 
levels. There is another possible post-transcriptional mechanism for 
the regulation of ACE2 protein by sex hormones. Shedding, which is 
believed to be a major regulatory mechanism for ACE2, is competitively 
mediated by the ‘sheddase’ ADAM-17 and TMPRSS2 [31], both of 
which are transcriptionally regulated by estrogen and androgen [32-
35]. The effect of exogenous estradiol on ACE2 protein levels in 
comparison with mRNA needs to be examined in lung cells to better 
understand estrogen’s potential impact on viral entry.

The relationship between estrogens and TMPRSS2 is less 
studied than that of androgens and TMPRSS2. Estradiol was found 
to downregulate TMPRSS2 mRNA in VERO E6 cells [4], MCF7 cells 
[36], and A549 lung epithelial cells [26]. However, ER- and GPER 
expression were positively correlated with TMPRSS2 expression 
in atrial tissue [34]. As above, the effect of estrogen treatment on 
TMPRSS2 protein levels should be investigated in lung tissue. 

Androgenic Regulation of ACE2 and TM-
PRSS2

Genomic and in vitro evidence suggest that endogenous 
androgens may aid viral entry through upregulation of both ACE2 and 
TMPRSS2, while antiandrogens may reverse this effect. Multiple AR 
binding sites were found upstream of the human ACE2 gene [37,38]. 
DHT was found to upregulate ACE2 protein expression in cardiac and 
alveolar epithelial cells [11], while antiandrogens have been shown to 
downregulate ACE2 mRNA and protein expression in stem cell-derived 
lung organoids and murine lungs [11,37-39]. 

There is significant evidence from prostate cancer research and 
emerging COVID-19 research for androgenic regulation of TMPRSS2 
expression. AR can bind directly to the TMPRSS2 promoter and 
enhancer regions to increase transcription of the TMPRSS2 gene 
[38,40,41]. In A549 cells, testosterone upregulated both AR and 
TMPRSS2 expression and induced AR loading onto the TMPRSS2 
promoter [23]. Antiandrogens, comparatively, have been shown to 
downregulate TMPRSS2 expression in lung epithelial and cardiac 
cells [11], as well as murine and hamster models [12,38,39]. 
Though Baratchain et al. found pulmonary TMPRSS2 expression 
to be unaffected in male mice. Overall, the research indicates that 
androgens, through activation of AR, can upregulate TMPRSS2 
expression, potentially assisting viral entry, and antiandrogens may be 
able to reverse this effect. 

In summary, the literature suggests that estrogen/ER may 
attenuate viral entry by downregulating TMPRSS2, while preventing 
loss of ACE2. However, further research is required to clarify the tissue-
specific effects of estrogen. Androgen/AR can upregulate both ACE2 
and TMPRSS2, while antiandrogens have the opposite effect (Figures 
1 and 2).

ER- and AR-mediated Regulation of the 
RAS

A dynamic RAS response may be vital to clearance of pathogens 
and subsequent host recovery, with an initial decrease in pulmonary 
ACE2 to allow for pro-inflammatory signaling and neutrophil infiltration 
for viral clearance, followed by restoration of ACE2 levels to reduce 
vascular permeability and inflammation, thereby promoting tissue 
repair [42,43]. Overactivation of the proinflammatory, ACE/Ang II/
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AT1R arm of RAS is associated with the cytokine storm and lung injury 
observed in the most severe COVID-19 patients [44]. Furthermore, 
vasoconstriction due to Ang II signaling could promote to thrombosis, 
another severe clinical manifestation of COVID-19 [45]. Androgenic 
and estrogenic regulation of RAS components may drive RAS towards 
or away from overactivation.

Estrogenic Regulation of RAS 

Estrogen regulates, not only ACE2 but also other RAS elements, 
shifting the balance towards the ACE2/Ang1-7/Mas receptor and 
angiotensin II type 2 receptor (AT2R) pathways and away from the 
ACE/Ang II/AT1R pathway. This effect is suspected to contribute to 
gender biases in hypertensive diseases [46]. Estradiol was found to 
lower circulating Ang II in murine models [47] and increase Ang1-7 
production in HUVEC cells [29]. Proposed mechanisms based on in 
vivo and murine studies include reduced expression/activity of ACE and 
angiotensin II type 1 receptor (AT1R), as well as increased expression/
activity of AT2R, Mas, and ACE2. ER- was implicated in some of the 
underlying mechanisms, though there are conflicting results between 

cell types regarding which combinations of these proteins within the 
pathway are and are not regulated by estrogen [27,29,46,48]. While 
the tissue-specific mechanisms are yet unclear, these results would 
suggest an overall anti-inflammatory, vasodilatory, and protective role 
for estrogen with respect to RAS. 

Androgenic Regulation of RAS

The literature suggests that androgens have the opposite effect, 
shifting RAS towards the ACE/Ang II/AT1R arm and playing a 
permissive role in Ang II-mediated hypertension [49]. DHT was found 
to directly downregulate AT2R mRNA and protein expression in murine 
aortas through AR signaling via ERK1/2 MAP kinase [50]. Testosterone 
was also shown to upregulate AT1R mRNA in murine aortas [46,51], 
and renal tissue [52]. However, Hanson et al. challenged this, finding 
that castration of male mice increased mRNA expression of AT1R 
and ACE in the aorta and kidney, which was restored by testosterone 
treatment. Differences in dosage and procedure could account for 
this contradiction. Since androgens, like estrogens, can have tissue-
specific effects, the interactions between AR/ER and the local RAS in 
the lungs need to be explored in greater depth.

In summary, the literature suggests overall that androgens support 
Ang II signaling by downregulating AT2R and upregulating AT1R, 
thereby promoting inflammation and vasoconstriction.

Estrogenic and Androgenic Modulation of 
the Inflammatory Responses

The cytokine storm triggered by COVID-19 infection consists of 
systemic overproduction of proinflammatory cytokines and severe 
endothelial inflammation. This process is believed to be a key 
contributor to the development of acute respiratory distress syndrome 
(ARDS) in the most severe COVID-19 patients. ER and AR are both 
expressed on various immune cells [6,24], allowing estrogen and 
androgen to interact with the immune system in a multitude of ways 
to modulate cytokine production and other aspects of the inflammatory 
response.

Figure 1. Proposed mechanisms for estrogenic and androgenic regulation of the immune response in the literature. AR (androgen receptor), ER (estrogen receptor), RAGE (receptor 
for advanced glycation endproducts), NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), TNF-a (tumour necrosis factor alpha), Th1 (type 1 T helper), Th2 (type 2 
T helper), DC (dendritic cell), IL-6 (Interleukin 6). Created with BioRender.com

Figure 2. Proposed mechanisms for estrogenic and androgenic regulation of viral 
entry and RAS in the literature. AR (androgen receptor), ER (estrogen receptor), ACE 
(angiotensin-converting enzyme), ACE2 (angiotensin-converting enzyme 2), TMPRSS2 
(transmembrane protease, serine 2), Ang (angiotensin), AT1R (angiotensin II receptor 
type 1), AT2R (angiotensin II receptor type 2). Created with BioRender.com
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Estrogenic Regulation of the Immune Cell 
Interactions and Cytokine Production

The cytokine storm in COVID-19 patients is characterized 
by overproduction of proinflammatory cytokines, principally IL-6 
and TNF-, by immune cells in the Th1 effector response [53]. In 
a murine model of SARS-CoV infection, estradiol treatment was 
found to significantly attenuate this inflammatory response [3]. High 
concentrations of estrogen suppress neutrophil and monocyte 
migration and pro-inflammatory cytokine production by macrophages 
and monocytes and activate anti-inflammatory cytokine production 
by T-lymphocytes, thereby potentially offering protection against the 
cytokine storm [22,54,55]. Female immunity is skewed toward the Th2 
and Treg responses over the Th1 and 17 responses [6,54]. However, 
female cells still exhibit higher immune reactivity than male cells [2,54]. 
Estrogen activates antibody production by B-lymphocytes, thereby 
promoting a strong adaptive immune response against viral infection, 
and activates INF- production by dendritic cells, which is a key 
aspect of the innate antiviral defence [54]. Genomic regulation by ER-
, in particular, is thought to play a role in several of these pathways 
[2,6,56]. However, it is important to note that low concentrations of 
estrogen have been reported to have opposite effects, increasing pro-
inflammatory cytokine production [22,54]. 

Estrogen Inhibits ROS Production via Inhi-
bition of RAGE

Oxidative stress due to excessive Reactive Oxygen Species 
(ROS) production is commonly induced in viral infections and 
contributes to tissue damage and inflammation. Males with COVID-19 
show enhanced oxidative stress compared with females [57]. There 
is evidence that estrogen modulates production of ROS via another 
mechanism, namely the RAGE. RAGE is a transmembrane receptor 
of the immunoglobulin superfamily that acts as a Pattern Recognition 
Receptor (PPR) in the innate immune response to viral infection. 
Infected cells and innate immune cells release the RAGE ligand, High 
Mobility Group Box 1 (HMGB1) [58]. Subsequent RAGE activation 
stimulates the pro-inflammatory response via NF-kB [58] and generation 
of ROS [59]. There is evidence that ER/estrogen inhibits the RAGE 
pathway and reduces oxidative stress, though the exact mechanism 
is not agreed upon [58]. This has been posited as another potential 
pathway for estrogen-mediated protection from tissue damage during 
SARS-CoV-2 infection [58]. 

Androgenic Regulation of Immune Cell 
Interactions and Cytokine Production

Androgens, comparatively, were found to have the opposite 
effect, suppressing Th2 while encouraging the Th1 effector response. 
In a hamster model of SARS-CoV-2, AR-antagonist, PT150-treated 
animals displayed decreased inflammatory cell infiltration and IL-6, 
with reduced tissue damage and viral load [39]. Androgens suppress 
the adaptive response through suppression of dendritic cell activation, 
antigen presentation to T-lymphocytes and their proliferation, and 
antibody production, thereby potentially increasing vulnerability to viral 
infection [2,24,54]. Meanwhile, androgens promote a strong innate 

immune response with inflammatory cytokine signaling by promoting 
neutrophil production, macrophage and monocyte recruitment, and 
TNF- production by macrophages, potentially increasing risk of 
the cytokine storm [24]. Studies of COVID-19 patients showed higher 
proinflammatory cytokines, chemokines and endothelial injury markers 
in males compared with females [60]. AR has been implicated in 
the respective pathways for the generation/function of neutrophils, 
regulation of macrophage recruitment and pro-inflammatory cytokine 
production, and development/activation of T and B cells [24]. 

In summary, the female immune response appears to confer a 
stronger anti-viral response and greater protection against the cytokine 
storm compared with the male immune response, and regulation of 
immune pathways by sex hormone receptors is, in part, responsible 
for this difference.

Limitations 

While the in vitro and in vivo studies discussed above demonstrate 
potential for antiandrogens and estradiol to attenuate viral infection via 
suppression of viral entry and the overactive inflammatory response 
leading to the cytokine storm, they only represent pieces of the puzzle. 
Questions remain regarding potential off-target effects of short-
term hormone therapy and the significance of ER and AR-mediated 
regulation of viral entry and immune factors in the larger context of 
the human body’s dynamic, multi-faceted response to SARS-CoV-2 
infection. Both ERs and AR regulate a wide range of genes [22], and 
as such, upregulating or downregulating their activity through hormone 
treatment could have off-target effects. Furthermore, some authors have 
raised specific concerns regarding the use of 5- reductase inhibitors, a 
class of antiandrogens that prevent conversion of testosterone into the 
more potent dihydrotestosterone. Androgen metabolism is speculated 
to play a role in restoration of the surfactant layer through modulation 
of communication between fibroblasts and lung epithelial cells, and as 
such, their use may in fact suppress healing from lung injury such as 
ARDS [61]. However, the exact mechanisms are poorly understood. 
Clinical trials of antiandrogens and estrogens currently underway will 
establish the effect of sex hormone therapies on the progression of 
COVID-19 infection and healing in the human body.

Conclusion

Sex biases in COVID-19 severity and mortality may be partially 
explained by hormonal regulation of viral entry, RAS, and immune 
factors by estrogen and androgen, largely through receptor-dependent 
pathways, though some receptor-independent pathways have been 
defined. Current research suggests estrogen receptor modulators and 
antiandrogens as potential attenuators of viral infection and COVID-19 
pathologies associated with the cytokine storm, which could be 
delivered in conjunction with antiviral medications. However, given 
the numerous genes that are regulated by estrogen and androgen 
receptors and the widespread impacts of sex hormones on cellular 
and immune processes, which undergo their own dynamics under 
viral infection, it remains to be tested whether hormone treatments will 
offer a significant advantage to SARS-CoV-2 patients. Physicians and 
scientists are excited to look for the results of randomized, controlled 
clinical trials (NCT04853069, NCT04539626, NCT04865029, 
NCT04853134, NCT04853927) of antiandrogens and estrogen 
receptor modulators currently underway.
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